Ignore:
Timestamp:
2011-08-06T07:04:50Z (13 years ago)
Author:
Petr Koupy <petr.koupy@…>
Branches:
lfn, master, serial, ticket/834-toolchain-update, topic/msim-upgrade, topic/simplify-dev-export
Children:
d3e241a, e0e922d
Parents:
9a6034a
Message:

Quadruple-precision softfloat, coding style improvements. Details below…

Highlights:

  • completed double-precision support
  • added quadruple-precision support
  • added SPARC quadruple-precision wrappers
  • added doxygen comments
  • corrected and unified coding style

Current state of the softfloat library:

Support for single, double and quadruple precision is currently almost complete (apart from power, square root, complex multiplication and complex division) and provides the same set of features (i.e. the support for all three precisions is now aligned). In order to extend softfloat library consistently, addition of quadruple precision was done in the same spirit as already existing single and double precision written by Josef Cejka in 2006 - that is relaxed standard-compliance for corner cases while mission-critical code sections heavily inspired by the widely used softfloat library written by John R. Hauser (although I personally think it would be more appropriate for HelenOS to use something less optimized, shorter and more readable).

Most of the quadruple-precision code is just an adapted double-precision code to work on 128-bit variables. That means if there is TODO, FIXME or some defect in single or double-precision code, it is most likely also in the quadruple-precision code. Please note that quadruple-precision functions are currently not tested - it is challenging task for itself, especially when the ports that use them are either not finished (mips64) or badly supported by simulators (sparc64). To test whole softfloat library, one would probably have to either write very non-trivial native tester, or use some existing one (e.g. TestFloat from J. R. Hauser) and port it to HelenOS (or rip the softfloat library out of HelenOS and test it on a host system). At the time of writing this, the code dependent on quadruple-precision functions (on mips64 and sparc64) is just a libposix strtold() function (and its callers, most notably scanf backend).

File:
1 edited

Legend:

Unmodified
Added
Removed
  • uspace/lib/softfloat/include/comparison.h

    r9a6034a rc67aff2  
    11/*
    22 * Copyright (c) 2005 Josef Cejka
     3 * Copyright (c) 2011 Petr Koupy
    34 * All rights reserved.
    45 *
     
    3031 * @{
    3132 */
    32 /** @file
     33/** @file Comparison functions.
    3334 */
    3435
     
    4243extern int isFloat32Zero(float32);
    4344
     45extern int isFloat32eq(float32, float32);
     46extern int isFloat32lt(float32, float32);
     47extern int isFloat32gt(float32, float32);
     48
    4449extern int isFloat64NaN(float64);
    4550extern int isFloat64SigNaN(float64);
     
    4853extern int isFloat64Zero(float64);
    4954
    50 extern int isFloat32eq(float32, float32);
    51 extern int isFloat32lt(float32, float32);
    52 extern int isFloat32gt(float32, float32);
     55extern int isFloat64eq(float64, float64);
     56extern int isFloat64lt(float64, float64);
     57extern int isFloat64gt(float64, float64);
     58
     59extern int isFloat128NaN(float128);
     60extern int isFloat128SigNaN(float128);
     61
     62extern int isFloat128Infinity(float128);
     63extern int isFloat128Zero(float128);
     64
     65extern int isFloat128eq(float128, float128);
     66extern int isFloat128lt(float128, float128);
     67extern int isFloat128gt(float128, float128);
    5368
    5469#endif
Note: See TracChangeset for help on using the changeset viewer.