
Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS

Zdeněk Bouška

HelenOS VFS-FUSE connector

Department of Distributed and Dependable Systems

Supervisor of the master thesis: Mgr. Martin Děcký

Study programme: Informatics

Specialization: Software Systems

Prague 2014

I’d like to thank my supervisor Mgr. Martin Děcký for his guidance during my
work on this thesis. I’d also like to thank HelenOS developers Jakub Jermář, Jǐŕı
Svoboda and Vojtěch Horký for their work on HelenOS. My thanks also go to my
family who provided moral support.

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 paragraph 1 of
the Copyright Act.

In Prague July 31, 2014 Zdeněk Bouška

Název práce: HelenOS VFS-FUSE connector

Autor: Zdeněk Bouška

Katedra: Katedra distribuovaných a spolehlivých systémů

Vedoućı diplomové práce: Mgr. Martin Děcký, Katedra distribuovaných a spo-
lehlivých systémů

Abstrakt: Tato magisterská práce se zabývá implementaćı konektoru mezi FUSE
ovladači souborových systémů a nativńım VFS rozhrańım v HelenOS. Práce nej-
prve popisuje možné zp̊usoby řešeńı a možnosti, které přicházely v úvahu. Zvo-
leno bylo napojeńı na ńızkoúrovňové vrstvě, které se prokázalo jako nejlepš́ı.
Práce dále popisuje skutečnou implementaci tohoto konektoru. Implementace
byla úspěšná, a proto se práce detailně zaměřuje na toto plně funkčńı řešeńı
na HelenOS operačńım systému. Dané řešeńı mimo jiné umožňuje to, že téměř
nejsou potřebné změny na obou spojovaných platformách - FUSE i Helenos VFS.
Implementace konektoru ukazuje dva reálně použ́ıvané FUSE souborové systémy
exFAT a NTFS na operačńım systému HelenOS.

Kĺıčová slova: HelenOS, VFS, FUSE

Title: HelenOS VFS-FUSE connector

Author: Zdeněk Bouška

Department: Department of Distributed and Dependable Systems

Supervisor: Mgr. Martin Děcký, Department of Distributed and Dependable
Systems

Abstract: This master thesis deals with the implementation of a connector be-
tween FUSE file system drivers and HelenOS native VFS interface. The thesis
first describes the way of finding the best solution and the potential possibili-
ties. The low level layer solution is described as the best one. Further the thesis
describes the real implementation of the connector. As the implementation of
the connector was successful the thesis then describes in detail the parts of the
fully functional solution in real-life HelenOS system. With this solution in place
almost no changes are necessary to be done neither in FUSE nor in Helenos VFS.
The connector implementation is demonstrated on two real-life FUSE file systems
exFAT and NTFS which were ported to HelenOS.

Keywords: HelenOS, VFS, FUSE

Contents

Introduction 3

1 Development context 5
1.1 HelenOS architecture summary 5
1.2 Filesystem in HelenOS . 6

1.2.1 Standard library . 6
1.2.2 VFS server . 7
1.2.3 Libfs library . 7
1.2.4 Block device drivers in HelenOS 8

1.3 Developing a file system with FUSE 8
1.4 FUSE architecture in Linux . 9
1.5 FUSE in other operation systems 10

1.5.1 NetBSD . 10
1.5.2 OS X . 10
1.5.3 FreeBSD . 10
1.5.4 Solaris . 10

2 Analysis 12
2.1 Decision whether to use a FUSE server or a library 12
2.2 Layer selection . 12

2.2.1 High level interface . 13
2.2.2 Low level interface . 13
2.2.3 Kernel channel interface 14
2.2.4 Summary of the selected solution 14

2.3 Separate task for each file system driver instance 16
2.4 Reading directories . 16
2.5 Mounting FUSE file systems . 17
2.6 Accessing block devices . 17

2.6.1 POSIX functions rewrite 17
2.6.2 Block device file system server 18
2.6.3 VFS output protocol support in block device drivers . . . 19
2.6.4 Conclusion . 19

3 Implementation 21
3.1 Integration with libfs . 21

3.1.1 Mapping operations . 21
3.1.2 Reply functions from the low level interface 27
3.1.3 Mounting . 30

1

3.1.4 Mounting other file systems under FUSE 30
3.1.5 Storage for data about opened files 30
3.1.6 Multithread support . 31
3.1.7 File indexes . 32
3.1.8 Creating and renaming files 32

3.2 High level interface . 32
3.3 Reused code from Linux FUSE 33
3.4 Block devices access . 33

3.4.1 Block device file system server 34
3.4.2 VFS output interface in block device drivers 35
3.4.3 Other patch notes . 36

3.5 Other necessary changes in HelenOS 37
3.5.1 HelenOS and POSIX return codes 37
3.5.2 Open error in libfs library 37
3.5.3 Pread and pwrite functions 37
3.5.4 POSIX prefix defines collision 38
3.5.5 Comparison between native and FUSE drivers on HelenOS 38

3.6 Development using distributed version control system 38

4 Ported FUSE file systems 39
4.1 ExFAT . 39
4.2 NTFS . 40
4.3 Examples from FUSE package . 41

4.3.1 Hello world in high level interface 41
4.3.2 Hello world in low level interface 41

4.4 Estimation of difficulty to port other file systems 41

Conclusion 43

Bibliography 45

List of Tables 47

Appendices 48

A CD-ROM content 49

B User Documentation 50
B.1 ExFAT . 50
B.2 NTFS . 51
B.3 Compiling from sources . 53

C List of files 54
C.1 FUSE high and low level library 54
C.2 New VFS server input operations

(pread and pwrite) . 55
C.3 Block device file system . 55
C.4 New features of the POSIX library 56
C.5 ExFAT, NTFS and other FUSE file system drivers and libraries . 57

2

Introduction

Motivation

There are many FUSE file system drivers because FUSE makes it easier for a
developer to implement a file system driver. This thesis makes it possible to use
these drivers in HelenOS.

Goals

The goal of this master thesis is to design and prototype a connector between
FUSE file system drivers and HelenOS native VFS interface.

The design has to be made in such a way that would minimize the amount of
changes in both the HelenOS VFS and the FUSE file system drivers.

The Linux FUSE implementation should be utilized so that reuse of the code is
maximized, e.g. between libfuse and the connector implementation. The next
goal is to demonstrate the connector implementation functionality as a prototype
on a real-life FUSE file system ported to HelenOS. The part of the goals is
also the intention to compare this implementation of the FUSE interface with
implementations in other operating systems.

Structure of the thesis

The first chapter (Development context) of this thesis deals with the context of
the connector implementation. Deep knowledge of both parts which are being
connected is necessary. This chapter describes HelenOS architecture with a view
to the kernel and servers IPC communication. It also includes information about
file systems in the HelenOS operating system and describes how it works there.
This description also includes the block device interface. The last part of this
chapter is about how FUSE file systems are developed and how FUSE architecture
looks on Linux and other platforms.

The second chapter describes the analysis which is necessary to choose the right
solution. All available possibilities to make the connector are described. The
advantages and disadvantages are carefully considered. The more detailed view

3

is focused on the connection layer selection, whether to choose the high level, the
low level or the kernel channel layer. The problem with accessing block devices
from FUSE drivers in HelenOS is also described in this chapter.

The third chapter includes details of the implementation. It shows how the results
from analysis were transformed into a working connector prototype. Firstly the
integration with the libfs library deals with the necessary parts such as operations
mapping, storing data from mounted file systems and opened files. One section
in this chapter describes the block device file system - way to access block devices
from FUSE drivers. Another section lists reused source code from Linux FUSE
and then other necessary changes in the HelenOS operating system that had to
be done.

FUSE file system drivers, that were ported as part of this thesis, are described in
the fourth chapter of the thesis. Namely exFAT, NTFS and some examples from
the Linux FUSE package are described.

4

Chapter 1

Development context

This chapter includes the summary of the development context and the back-
ground which is necessary for understanding to this thesis. The summary includes
both FUSE and HelenOS point of view.

1.1 HelenOS architecture summary

HelenOS[1] is an operating system that is based on the microkernel architec-
ture. The development of this system started at the Faculty of Mathematics and
Physics, Charles University. HelenOS is very portable and can run on several
platforms - e.g. IA-32, x86-64, IA-64, PowerPC, ARM, MIPS.

HelenOS microkernel architecture provides the possibility to have a smaller kernel
with less bugs. More about microkernel architecture can be found in Modern
Operating Systems [5] on page 62. HelenOS can be also seen as a component
system. The aim of the HelenOS’s microkernel and component based design is to
provide the system that can be called ”smart design, simple code”.

The kernel of HelenOS implements only several most important features like mul-
titasking, virtual memory management, symmetric multiprocessing and ability for
communication between processes - inter process communication (IPC). All other
services are implemented as common user processes. Also file system drivers are
implemented in this way.

Traditional systems distinguish very much between system and end-user applica-
tions. HelenOS architecture makes no distinction between the operating system
and end-user applications. Applications that provide services to other applica-
tions are called servers.

Userspace tasks in HelenOS are separated, each of them has its own address
space. Because of this fact tasks need a way to communicate with the kernel
and other tasks. The kernel provides an IPC communication which is mostly
asynchronous. There is also an asynchronous framework which provides layer
over IPC communication. This asynchronous framework makes it easier to write

5

Standard
library

VFS
server

libfs
libraryTMPFS driver

FAT driver

Client application Client application

Client application

VFS_IN

VFS_OUT

VFS_OUT

VFS_OUT

Figure 1.1: Filesystems in HelenOS

a task which communicates through IPC. Article IPC for Dummies [17] describes
in detail the IPC communication and the asynchronous framework.

1.2 Filesystem in HelenOS

HelenOS file system architecture is described by Jakub Jermář in [4]. HelenOS
file system architecture can be divided into three sections: Standard library, VFS
server and file system driver which uses the libfs library. How this works together
is the best seen in figure 1.1

1.2.1 Standard library

The standard library contains the code that transforms POSIX calls from the
user task to the VFS input protocol. This protocol is understood by the entry
part of the VFS server. Some calls as opendir(), readdir(), rewinddir() and
closedir() are implemented by the standard library directly by calling functions
open(), read(), lseek() and close().

The standard library translates relative paths to absolute paths because the VFS

6

server can work only with the absolute file paths. The Standard library by itself
implements getcwd() and chdir() calls. The current directory is stored only in
the standard library.

The standard library has no data structures and algorithms for a file system
support. This means that every task that this library cannot realize by itself is
given via IPC to the VFS server.

1.2.2 VFS server

The virtual file system server plays a central role in the file system support in
HelenOS. This server can be divided to the input and output parts.

The input part receives calls from client tasks. If the parameter of the call is the
descriptor of the file, then VFS looks in the table of opened files and finds the
pointer to the structure that represents the open file. If the parameter of the
call is a path, VFS performs a lookup which returns a VFS triplet. The triplet
identifies the file by the global number of the file system, the global number of
the device and the number of the file. Based on this triplet the VFS server tries
to find the VFS node. All files are represented by these VFS nodes.

The output part of the VFS communicates with the driver of the end file system.
It includes the code which calls the file system drivers using output operations.
Only a lookup operation uses a path as a parameter. Other operations use VFS
node as a parameter. This means: the global number of the file system, number
of the device and file identification.

1.2.3 Libfs library

The libfs library implements structures and design patterns which have to be
implemented by almost all file system drivers. These structures are often very
similar or even the same for each file system driver. The libfs library also contains
the code which registers a file system to the VFS server during the initialization.

The other fundamental role of the libfs library is connected with the functional-
ity of the function libfs lookup(). This function implements the VFS output
lookup operation (VFS OUT LOOKUP). This operation must be implemented
by every file system. The libfs lookup() function does not only implement
the file lookup but also manages creating and deleting files. This operation also
includes the creating and the deleting links to files.

Several libfs operations must be implemented by a file system driver to ensure
the functionality of libfs lookup(). Those operations ”tell” the libfs library
how to list a directory, how to create or delete a file in the directory tree.

7

1.2.4 Block device drivers in HelenOS

Each block device type (for example ATA) has its block device driver server.
These servers are either part of the Device Driver Framework, or are started
separately. Currently, in HelenOS only ata bd is integrated in the Device Driver
Framework. Other block device servers (like sata bd) are planned to be integrated
in the future.

A great example of separately started block device server is file bd. This server
gets a file name as an argument on the command line. This file is an image of a
disk and file bd creates a virtual block device over this image.

The block device driver server provides the following operations: reading from
blocks, writing to blocks, getting block size and getting number of blocks on the
device. There is no cache inside the block device driver servers.

File system drivers use block client library. First of all, this library offers functions
to get the number of blocks and the size of one block. The main functions are
block get and block put. These functions operate over the block device cache.
The block cache uses logical blocks. One logical block can include more physical
blocks.

block get function locks the block in the cache and loads the block from the
cache. If the block is missing in the cache it is added there before loading. It is
possible either to request a block representation with valid data or to request a
block without valid data (NOREAD flag). A block representation without valid data
is useful for writing to a block when a caller does not care about previous data
in the whole block. block get returns the block with data in .data structure
member variable.

block put unlocks the block in the cache. A block structure contains dirty flag
as .dirty structure member variable. If this dirty flag is set, then block put

writes the block data to the block device (for the write through cache type).

The block client library also includes functions to access more blocks. These
functions bypass the cache and call the block device server directly.

1.3 Developing a file system with FUSE

FUSE (File System in User Space) has its origins in 1995 in GNU Hurd operating
system. The concept was based on the file system driver placed not in the kernel
of the system but in an userspace. This method is intended for Unix operating
systems and enables to create specific file systems without changing the kernel of
the system. The real FUSE development started in October 2004 as a separate
project.

The FUSE file system drivers runs in the userspace. Therefore their development
is as simple as the development of other userspace applications.

There are two different interfaces: A low level interface and a high level interface.

8

Figure 1.2: Filesystem in Userspace in Linux [8]

The high level interface identifies files by their names in all cases. For example
when you want to read a file content you create a function which does this:

int read(const char *path, char *buf, size t size, off t offset,

struct fuse file info *fi);

On the other hand the low level API uses numbers to identify files. So for exam-
ple when reading a directory both file names and numbers are returned. Later
when reading a file, the low level driver function uses only this number for file
identification purpose. In the following example ”ino” is the file number:

int ll read(fuse req t req, fuse ino t ino, size t size, off t off,

struct fuse file info *fi);

1.4 FUSE architecture in Linux

FUSE (Filesystem in Userspace)[6] has two parts: a kernel module and an userspace
library. When a call is made for example to read a file the FUSE kernel module
forwards this call to an userspace driver. How does it work is best seen in the
figure 1.2.

The kernel channel interface is used for exchanging messages between the userspace
library and the Linux kernel. The main operations of this interface are receive

and send. These messages are exchanged through a device /dev/fuse. The
userspace library decodes these messages upon an arrival and encodes the replies
before sending them back to the kernel.

When the messages are decoded by the library then an appropriate low level

9

operation function in the low level driver is called. This function is later supposed
to call a reply function with an answer. That answer is encoded and passed to
the kernel through the send function from the kernel channel interface.

The high level interface is implemented as a library. This library is written in the
same way as low level drivers are. The main purpose of the high level library is
a mapping between file numbers and names.

1.5 FUSE in other operation systems

FUSE is supported in other operation systems then just in Linux. A list of them
can be found on the FUSE website [9]

1.5.1 NetBSD

NetBSD has its own file system in userspace. It is called PUFFS (Pass-to-
Userspace Framework File System) and its architecture is similar to FUSE on
Linux.

ReFUSE [12] library was introduced in NetBSD 5.0. It linked FUSE drivers with
userspace PUFFS library. It only supported FUSE High Level Drivers.

PERFUSE (PUFFS Enabled Relay to FUSE) is implementing PUFFS to FUSE
kernel API bridge in NetBSD 6.0. Userspace daemon Perfused[13] translates
PUFFS requests into FUSE messages. This daemon creates /dev/fuse, which
FUSE drivers connects to. Modified version of the FUSE library from [6] is used
in this case. mount() and open() of /dev/fuse are modified to use their variants
from libperfuse [14]. Both the low and the high level interfaces are supported.

1.5.2 OS X

FUSE for OS X [10] has two parts: OS X specific in-kernel loadable file system
and a userspace library based on the FUSE project [6]. The userspace library has
numerous OS X specific extensions and features.[11]

1.5.3 FreeBSD

FUSE was ported to FreeBSD [15] during Google Summer of Code 2007 and
2011. It uses the userspace library from the FUSE project [6] and is currently
maintained. The architecture is similar to FUSE for Linux.

1.5.4 Solaris

In Solaris only the high-level FUSE interface from version 2.7.4 is present. Solaris
FUSE uses header files ported from Linux but the implementation is Solaris

10

specific. It is ’just’ a wrapper over libuvfs. UVFS is the Solaris equivalent of
FUSE. UVFS uses doors calls and a pseudo file system for communication between
the kernel and the userspace. [16]

11

Chapter 2

Analysis

This chapter includes the analysis of problems connected with the different possi-
ble solutions. At the end of each section of this chapter the final selected solution
is described.

2.1 Decision whether to use a FUSE server or a

library

One important decision is to choose a form how the implementation of the con-
nector between FUSE drivers and HelenOS VFS server can be done so that it
would function best.

One way to connect a specific FUSE file system driver to the VFS server is
to create a FUSE server. This new server would do all the data recoding and
therefore it would smooth out the differences between FUSE and HelenOS VFS.
This server would forward requests and responses to and from specific FUSE file
system driver servers.

Another possible solution is to create a library that would convert the FUSE
driver to HelenOS file system server. Basically this newly created library would
convert the FUSE driver to the HelenOS file system driver server. This solution
removes the need for changes in the VFS server.

The best solution depends on the layer selection which is discussed in the next
section 2.2. So the selected solution is described there.

2.2 Layer selection

It is important to choose a FUSE interface layer which would best fit to connect a
FUSE driver and HelenOS’s VFS. As described in the section 1.4 there are three
interface layers: the kernel channel interface, the low level interface and the high
level interface.

12

+ Code which best fits HelenOS VFS
- No support for low level API drivers
- File names vs. file numbers problem
- Almost all must be written from scratch

Table 2.1: Advantages and disadvantages of connection at high level interface
layer

+ Similar to VFS OUT and libfs operations
+ No need for FUSE server
+ High level interface code from Linux FUSE library
+ Both high and low level interface drivers supported
- Not using low level code from Linux FUSE library

Table 2.2: Advantages and disadvantages of connection at low level layer

The connection can be made in all these three layers. Every solution has its own
advantages and disadvantages.

2.2.1 High level interface

The high level interface uses file names for identification. This fact means a
great complication because HelenOS VFS output interface uses integer indexes
to identify files.

Choosing this layer would mean rewriting all the code which is already present in
the Linux FUSE library. On the other hand this new code could be more suitable
for VFS output and libfs operations.

Another drawback of choosing the high level layer solution is that it doesn’t
support the low level interface file systems.

Solaris 1.5.4 and NetBSD 5.0 1.5.1 are using this possibility - high level interface.

The advantages and disadvantages of the connection at the high level interface
layer can be seen in the table 2.1.

2.2.2 Low level interface

This interface is the most similar to HelenOS VFS output protocol. Both of
them use integer indexes to represent files. The only exception is the VFS output
operation lookup. Fortunately the libfs library divides this operation into several
operations which are similar to the ones in the FUSE low level interface.

Because of this similarity this interface represents a good choice for creating the
library which could convert the FUSE driver to the HelenOS file system server.

The advantages and disadvantages of connecting at the low level interface layer
of FUSE can be seen in the table 2.2.

13

+ Designed for connection in this layer
+ Almost all Linux library code reusable
+ Works good with other programing languages then C
- Encoding and decoding messages
- FUSE server is necessary

Table 2.3: Advantages and disadvantages of connection at kernel channel interface

2.2.3 Kernel channel interface

In FUSE all the file system operations are encapsulated into the kernel channel
interface messages. In order to select this layer VFS output operations need to
be converted into these messages.

The best way to implement the connector while using this interface would be to
use a FUSE server. Kernel channel API messages would then be sent between the
FUSE server and a specific FUSE file system driver in the form of IPC messages.
The implementation would be very similar to the way how the FUSE driver works
in Linux from the driver point of view.

Connecting the FUSE file system driver to the VFS server based on the kernel
channel interface allows using almost all the code from Linux’s FUSE library.

NetBSD 6.0 1.5.1 uses a similar solution by its Perfused daemon.

The advantages and disadvantages of connecting at the kernel channel interface
layer can be seen in the table 2.3.

2.2.4 Summary of the selected solution

According to the previously described analysis the low level interface layer is
the most suitable solution for connecting FUSE file system driver to HelenOS
VFS server. The main reason for this suitability is the great similarity of this
layer to HelenOS libfs and VFS output operations. There is also no need for
encoding operations into messages (as would be the case case with the kernel
channel interface) or to convert file paths into file node integer indexes (as would
be in case of the high level interface).

The next advantage is that the FUSE server does not need to be present in this
solution and the connector can be implemented as a library. The FUSE library
will use the libfs library in the same way as other file systems do. This minimizes
changes in both HelenOS VFS and FUSE (library and drivers). The description
of how the selected solutions work in HelenOS’s file system architecture can be
seen in the figure 2.1.

14

Standard
library

VFS
server

libfs
library

native
TMPFS driver

FUSE
low level

library

hello_ll
low level API
FUSE driver

NTFS
low level API
FUSE driver

FUSE
high level

library

hello
high level API

FUSE driver

exFAT
high level API

FUSE driver

Client application Client application

Client application

VFS_IN

VFS_OUT

VFS_OUT

VFS_OUT

Figure 2.1: FUSE in HelenOS

15

2.3 Separate task for each file system driver in-

stance

One file system server in HelenOS serves more instances of the same file system.
On the other side each instance of a FUSE driver needs its own task. Fortunately
this feature causes no problem since the new HelenOS file system task can be
launched for each FUSE driver instance.

The FUSE drivers also mounts itself during the driver initialization. This can be
done automatically after the start of the FUSE file system server. The FUSE file
system server suspends itself just after the FUSE file system is finally unmounted.

2.4 Reading directories

There is a difference in reading directories in the HelenOS VFS output operation
and the FUSE low level interface.

The HelenOS VFS output operation is performed for each file in a directory. This
operation has a file offset as a parameter. This parameter represents a file order in
a directory. So for example index 5 means 5th file in a directory. When HelenOS
VFS is reading a directory it gives the position of the file in a directory.

The FUSE low level interface requests a byte offset when it is reading a directory.
This byte offset points to a directory entity structures. It is not possible to request
a specific (for example 5th) file name from a directory because the byte offset of
that file name is not known.

Before the FUSE low level driver returns a directory structure it adds directory
entities to the buffer using the low level interface function fuse add dirent().
It seems like this function could count positions in a directory and save offset for
each file. This offset would be later used in order to read the desired file position
without going from the beginning. Unfortunately this solution is not possible
because there is no guarantee that the function fuse add dirent() is called with
the same buffer which is then returned by the reply function fuse reply buf.

The reading of the whole directory is not enough efficient since the whole directory
must be read again for each file. This can be accelerated by caching of the bytes
offset of the last read file and requesting that offset in readdir low level operation.
Another possibility is to cache next directory entries. This way the readdir low
level operation would not be called more times than it is really necessary.

The connector prototype currently saves the directory entities buffer. This avoids
calling the FUSE low level operation readdir more than once for a given specific
offset.

16

2.5 Mounting FUSE file systems

The FUSE file system drivers are standalone applications. They receive a mount
point path as a parameter from a command line. This behavior is different in
the native HelenOS file system drivers. The native drivers are started before the
mount action happens.

mount.file system name script can be used in order to mount FUSE file systems
in the same way as the native HelenOS file systems (mount command) are being
mounted. For each FUSE file system there would be a specific script. This script
would start FUSE file system driver and mount it. The standard system library
would then determine whether this script existed before the standard mount
procedure. If the script existed, it would launch this script instead of sending the
VFS IN MOUNT method.

2.6 Accessing block devices

There is a difference in accessing block devices in native HelenOS drivers and
in FUSE drivers. The FUSE drivers access block devices directly as files. For
example exFAT [18] uses pread and pwrite functions. Block devices are accessed
through block device servers in the native HelenOS drivers.

There is a possibility to change some parts of the code of a FUSE driver; namely
parts that access block devices. But this would need to be made for each file
system repeatedly again and again. There are three ways of solving this problem
without modifying all ported FUSE file system drivers: rewriting the POSIX
functions, creating the block device file system server and adding VFS output
interface support in a block device drivers. They are described in the following
sections.

One of the problems here is consistency when writing data only to a part of the
block and not to the whole block. It is necessary to read the rest of the block
before writing it back because otherwise the rest of the data in the block would
be lost.

2.6.1 POSIX functions rewrite

The native HelenOS applications do not follow the POSIX specification. But
there is a POSIX library in HelenOS. This library makes it possible to run the
POSIX applications. The POSIX calls are converted to the native calls in this
library.

The FUSE drivers also follow the POSIX specification. One possible solution is
to rewrite POSIX file functions. This means adding conditions to the POSIX
library. For a certain prefix these functions would send read or write requests to
the block device server instead of sending them to the VFS server.

17

+ Direct communication with block device driver
+ Uses block cache
- All POSIX file functions must be overwritten
- Block device is not a real HelenOS file
- Is a ”hack”, not a proper solution

Table 2.4: Advantages and disadvantages of block devices access through POSIX
functions rewrite

There are two advantages to this solution: direct communication with the block
device driver server and the possibility to use cache from the block device library
for consistency in writing.

The main disadvantage when choosing this way of accessing block devices is that
all POSIX file functions need to be overwritten. Also, block devices are not real
files from HelenOS point of view. It is more like a ”hack” than a clean solution.

Advantages and disadvantages are in table 2.4.

2.6.2 Block device file system server

The second possibility to access block devices is to create a special newly designed
file system server which would enable the desired access to the block devices via
VFS.

There are two approaches. This file system would either have a virtual file for
each block device. Accessing this file would result in accessing the block device.
This file system could be mounted at boot. It needs to constantly monitor the
available block devices.

Another approach is to have one instance of this file system per a block device.
This means a file system with only one file in it. This file represents the block
device. The block device file system would then be mounted only for a device
which is used by a FUSE file system. This approach offers simplicity, the block
device file system accesses block devices and communicates with VFS server in the
same way as any other native HelenOS file systems. This would be a big benefit
for the future development because the code to access block devices from FUSE
drivers is separated from the block device library and the server. Advantages and
disadvantages of this approach can be seen in table 2.5.

The advantage of both of these approaches is the ability to use cache from a block
device library for consistency in writing.

The disadvantage of this solution (for both approaches) is that it adds another
layer between a FUSE driver and a block device driver.

Implementation is described in detail in the section 3.4.1.

18

+ Device looks the same as real HelenOS file
+ No changes to existing parts of HelenOS
+ Works the same as native file system drivers
+ No complications in future development
+ Uses block cache
- Adds another layer between a FUSE driver and a block device driver

Table 2.5: Advantages and disadvantages of block devices access file system server

2.6.3 VFS output protocol support in block device drivers

The third possibility is to add VFS output interface support directly to the block
device driver servers. Only some VFS output operations would be necessary for
this solution (mainly VFS OUT READ and VFS OUT WRITE).

The console device drivers use a similar solution.

In this case the block device driver servers use a shared common skeleton library
(bd srv.h). There would be no need to add support for these VFS output oper-
ations into every single block device driver. They could be implemented directly
in the common skeleton library (in bd srv.c). But this library does not cover
everything. More parts from current block device servers need to be integrated
there.

There are differences between VFS output interface and block device interface.
These differences would need to be sorted out first. There are other complications
with integration with the Device Driver Framework. Main complications are
connected with the shared function which handles incoming IPC calls. Even if
these differences were sorted, it would create a more complicated code. And this
would make future development more complicated.

The VFS output operations would be implemented by calling block manipulation
functions for reading or writing blocks. But for writing to only a part of a block
it does not offer data consistency. A newly designed block locking mechanism
would need to be added. This is a big disadvantage comparing to other solutions
of accessing block devices.

Advantages and disadvantages can be found in the table 2.4.

This solution looked promising at first before all the complications appeared to
the extent that the final solution would not be efficient enough. Partially working
implementation is described in the section 3.4.2.

2.6.4 Conclusion

The POSIX function rewrite is probably the easiest way to implement, though it
is not the cleanest way, the block device does not appear as a file and it is hard
to track all POSIX file functions.

The block device file system server is a nice clean solution. It adds another layer
between the FUSE file system driver and the block device. This can be viewed as

19

+ Device looks same as real HelenOS file
+ Only VFS server is between FUSE driver and block device driver
- Block device interface conflicts with VFS output interface
- Problems with integration with the Device Driver Framework
- No block cache
- Synchronization problem for writing
- Complicates future development of block device and driver framework

Table 2.6: Advantages and disadvantages of block devices access file system server

a downside or an upside. Downside is obvious - another layer makes block device
access a bit slower. Upside is separating accessing block devices as files from the
actual block device drivers and the HelenOS driver framework. The variant of
block device file system with a new instance for each block device is more flexible
and also easier to implement.

Supporting VFS output protocol in block device drivers comes with too many
complications. It also makes the future development harder by mixing two dif-
ferent interfaces (VFS and block device) together.

From the previous analysis the conclusion is that the best solution is to create a
block device file system (described in the section 2.6.2) in the approach with a
single file for a block device.

The implementation is described in the section 3.4.1.

20

Chapter 3

Implementation

This chapter describes implementation details of the HelenOS VFS-FUSE con-
nector. The connector is implemented as FUSE library. The source code of this
library can be found in uspace/lib/posix/fuse in HelenOS tree.

3.1 Integration with libfs

The connector works as a library implementing libfs and VFS output operations
in the same way as any other file system. As discussed in the chapter 2 there is
almost no need to do any changes in the libfs library.

3.1.1 Mapping operations

The mapping between HelenOS VFS output operations (including libfs opera-
tions) and the FUSE low level operations is described in the table 3.1. From
the FUSE point of view there is no difference in mapping libfs and VFS output
operations.

Some libfs operations do not need to call FUSE low level operations. The follow-
ing operations is directory, is file, lnkcnt get, size get only return data
retrieved by the previous call of libfs operation node get. node put only frees
data from memory. Some other operations are not necessary for the functional
prototype of the connector and therefore are not implemented.

The call to FUSE driver is delayed until the first link operation because the file
name is not known in libfs operation create node.

Most of the low level interface conversion code can be found in the file
uspace/lib/posix/fuse/lib/fuse lowlevel.c.

21

HelenOS libfs operations FUSE low level operations

root get getattr
node get getattr

node open opendir, open
link node mkdir, mknod, link

unlink node rmdir, unlink
match lookup

HelenOS VFS OUT operations FUSE low level operations

mounted getattr
unmounted destroy

read getattr, read, readdir
write getattr, writebuf, write
close release, releasedir, flush

truncate setattr
sync fsync, fsyncdir

Table 3.1: Operations mapping between HelenOS FS and FUSE low level interface
operations

root get, node get

root get and node get libfs operations return the node representation. This
node (fs node t) is later used as an argument for other libfs operations.

The root get operation is implemented by the fuse lowlevel root get func-
tion. The node get operation is implemented by the fuse lowlevel node get

function.

The fuse lowlevel root get function calls the fuse lowlevel node get func-
tion with the root node index as an argument. The FUSE root node index is
determined in the VFS output mounted operation. This is different from other
native HelenOS file systems which use zero (0) as root node index. But this
difference does not matter. The actual value is not used anywhere in the VFS
server or the libfs library.

The fuse lowlevel node get calls the FUSE low level getattr operation to
read the file attributes.

The file system node (fs node t) is created from the stat structure which comes
from the getattr operation. The fuse lowlevel node get impl function man-
ages that. This function is also used by the match and create node libfs opera-
tions.

mounted

The mounted VFS output operation is called when a file system is being mounted.
The root node index, link count and size need to be set to the attributes of this
operation.

22

The mounted operation is implemented by the fuse lowlevel mounted function.

The fuse lowlevel mounted function initializes the file system. The
fuse lowlevel node get function with the number one (1) as index argument
loads the file system root node. The root node index, link count and size are
taken from the root node.

unmounted

The unmounted VFS output operation is called when file system is being un-
mounted.

The unmounted operation is implemented by the fuse lowlevel unmounted func-
tion.

The fuse lowlevel unmounted function calls the destroy FUSE low level oper-
ation.

The FUSE server should terminate here because the FUSE file system server
serves only one instance of the file system driver. Unfortunately the driver termi-
nation is not possible in the unmount VFS output operation because asynchronous
answer (async answer 0(rid, rc);) in the function vfs out unmounted in
uspace/lib/fs/libfs.c needs to be called first. This answer lets the VFS server
know the return code from the unmounted operation.

This thesis introduces the callback operation after unmounted. From the driver
point of view it looks like a VFS output operation. This callback operation
is called at the end of the vfs out unmounted function. This callback ope-
ration is implemented by the fuse lowlevel after unmounted function from
uspace/lib/posix/fuse/lib/fuse lowlevel.c. FUSE drivers terminate here
in this function.

create node

The create node libfs operation creates a new node. This node is not connected
or linked anywhere. The libfs library later creates a link to this node by calling
the link node operation.

The create node operation is implemented by the fuse lowlevel create node

function. This function does not call any FUSE low level operation. The empty
node with index 0 is returned. This index is later changed by the link node

operation.

link node

The link node libfs operation adds link to the node into the directory tree.

The link node operation is implemented by the fuse lowlevel link node func-
tion.

23

There are two cases that can happen: linking to a new node or adding new node
to the node which is already linked.

In the first case linking to a new node means that the node has been created
by the create node operation. mkdir or mknod FUSE low level operations are
called in this case. The mkdir operation is called for the case of directory, the
mknod operation is called for the case of file. Both of these operations return
stat structure. It is extracted by the fuse lowlevel reply attr function and
replaces the old temporary stat structure within the node. This also fills the
new node index number in the node.

In the second case the link FUSE low level operation is called for the already
linked node.

unlink node

The unlink node libfs operation removes the node from the directory tree.

The unlink node operation is implemented by the fuse lowlevel unlink node

function.

rmdir or unlink FUSE low level operations are called in the
fuse lowlevel unlink node function. The rmdir operation is called for the
case of a directory, the unlink operation is called for the case of a file.

match

The match libfs operation finds node by a given patch.

The match operation is implemented by the fuse lowlevel match function.

The fuse lowlevel match function calls the FUSE low level lookup operation.

The file system node (fs node t) is created from the stat structure which comes
from the lookup operation. The fuse lowlevel node get impl function man-
ages that.

node open

The node open libfs operation opens a node.

The node open operation is implemented by the fuse lowlevel node open func-
tion.

This operation is used both for files and directories.

The fuse lowlevel node open dir function is called for directories.

The fuse lowlevel node open file function is called for files.

The fuse lowlevel file get file info function is called at the beginning of
both of these functions. New file data structure (fuse file info) for

24

the FUSE low level open and opendir operations is allocated by the
fuse lowlevel file get file info function. A pointer to this structure is also
added to the opened file info hash table. This hash table allows to use this
file data structure later when there is a request to read or write to this file. This
is a way to allow FUSE file system to save file system specific data about opened
file.

The fuse lowlevel node open dir function is simple. It just calls the FUSE
low level opendir operation.

The fuse lowlevel node open file function is a bit complicated. HelenOS VFS
server does not send opening flags (for example read-only) over the VFS output
interface. Because of that the fuse lowlevel node open file function tries to
call the FUSE low level open operation with read-write flag (O RDWR) If opening
with these flags fails this function tries a second attempt with the read-only flag
(O RDONLY). One must have in memory that the append file open mode could
not be used here. The append file open mode is completely manged by the VFS
server which stores current position in the file. File system drivers in the HelenOS
always work with an absolute position in a file, so the append file open mode does
not make sense in this case.

read

The read VFS output operation reads data from a file or from a directory.

The read operation is implemented by the fuse lowlevel read function.

This operation is used both for files and directories. In both of these cases the
function fuse lowlevel get file info loads a pointer to the saved file data
(fuse file info). This pointer is stored in the hash table from the open opera-
tion. This is a way to allow FUSE file system to use the stored file system specific
data about opened file.

The read FUSE low level operation is called for the case of a file. The pointer to
the file data (fuse file info) is given as an argument to this operation. Then
the size of the data that has been read is calculated.

More complicated case is reading a directory content. The requested position in
the directory to be read means reading a node name at that position. Only one
node name is read. First of all it is necessary to increase the requested position
in the directory by two (2). That skips . and .. directories which HelenOS
does not use while FUSE does. Then readdir FUSE low level operation is called
as many times until desired position is found in the directory buffer from the
readdir operation. The pointer to the file data (fuse file info) is given as an
argument to this operation. The function find dirent then extracts the desired
directory entry from this buffer.

More detailed analysis of reading directories in the VFS-FUSE connector can be
found in the section 2.4.

25

write

The write VFS output operation writes data to a file.

The write operation is implemented by the fuse lowlevel write function.

The function fuse lowlevel get file info loads a pointer to the saved file
data (fuse file info). This pointer is stored in the hash table from the open

operation. This is a way how to allow the FUSE file system to use the stored file
system specific data about opened file.

There are two FUSE low level operations which write to a file: write buf and
write. The write buf operation is more general, it allows writing data from
several buffers.

If the FUSE low level operation write buf does not exist in a given FUSE file
system then the write operation is used. The write operation is sufficient in this
case because only a single buffer is used in HelenOS VFS output write operation.
The pointer to the file data (fuse file info) is given as an argument to both of
these operations.

close

The close VFS output operation closes a file.

The close operation is implemented by the fuse lowlevel close function.

This operation is used both for files and directories. The function
fuse lowlevel get file info loads a pointer to the saved file data
(fuse file info). This pointer is stored in the hash table from the open ope-
ration. This is a way how to allow FUSE file system to use the stored file system
specific data about opened file.

The file handle reference counting is handled by the VFS server. So the close

VFS output operation is called only once, immediately after all references are
dropped.

The releasedir FUSE low level operation is called for the case of a directory.
The pointer to the file data (fuse file info) is given as an argument to this
operation.

The flush and release FUSE low level operations are called for the case of a
file. The pointer to the file data (fuse file info) is given as an argument to
these operations.

At the end the function fuse lowlevel remove file info deallocates the file
data (fuse file info) and removes the pointer to those data from the hash
table opened file info.

truncate

The truncate VFS output operation truncates the file to a given size.

26

The truncate operation is implemented by the fuse lowlevel truncate func-
tion.

The setattr FUSE low level operation is called with the to set flag set to
FUSE SET ATTR SIZE.

sync

The sync VFS output operation performs the synchronization of file contents.

The sync operation is implemented by the fuse lowlevel sync function.

This operation is used both for files and directories. In both of these cases the
function fuse lowlevel get file info loads a pointer to the saved file data
(fuse file info). This pointer is stored in the hash table from the open opera-
tion. This is a way to allow FUSE file system to use the stored file system specific
data about opened file.

The fsync FUSE low level operation is called for the case of a file. The pointer
to the file data (fuse file info) is given as an argument to this operation.

The fsyncdir FUSE low level operation is called for the case of a file. The
pointer to the file data (fuse file info) is also given as an argument to this
operation.

3.1.2 Reply functions from the low level interface

The implementations of FUSE low level operations use reply functions. These
functions return the status of operations and they send back the actual requested
data for some operations (like read). In the original FUSE library [6] these reply
functions send messages back to the kernel.

It was necessary to create a reply structure as part of the FUSE request struc-
ture fuse req t. This request structure is passed as the first parameter in all
FUSE low level operations. FUSE reply function adds data to the reply part of
the request structure. These data are then extracted after the FUSE low level
function call is finished. It is necessary to convert some of these data and then
return them using the asynchronous framework.

In most of the cases more then one FUSE low level operation is called in one
libfs or VFS output operation. This is a reason why data can not be sent to VFS
server in the reply function.

Reply structure

FUSE low level reply functions use reply structure fuse req t. This structure
has several members.

27

The main member’s name is err. The err member is an integer return code
which is set by the fuse reply err function. The err member is set to EOK by
all other reply functions.

A group of members saves FUSE entry parameter (struct fuse entry param).
The FUSE entry parameter is saved in the entry member. The entry valid

boolean member describes whether the entry member contains a valid data.
The entry used boolean member describes whether the entry was requested by
the fuse lowlevel reply entry function. If the entry used equals to true then
the entry is not deallocated by the fuse lowlevel destroy req function. The
deallocation responsibility lies on the fuse lowlevel reply entry caller.

A group of members saves file attributes (struct stat). The file attributes are
saved in the attr member. The attr valid boolean member describes whether
the attr member contains a valid data. The attr used boolean member de-
scribes whether the attributes were requested by the fuse lowlevel reply attr

function. If the attr used equals to true then the attr is not deallocated by
the fuse lowlevel destroy req function. The deallocation responsibility lies
on the fuse lowlevel reply attr caller.

Another group of members saves a buffer. The buffer is saved in the buf mem-
ber. The buffer size is saved in the buf size member. The buf valid boolean
member describes whether buf and buf size members contain a valid data.
The buf used boolean member describes whether the buf were requested by the
fuse lowlevel reply buf function. If the buf used equals to true then the buf

is not deallocated by the fuse lowlevel destroy req function. The deallocation
responsibility lies on the fuse lowlevel reply buf caller.

The write count stores the size of the written data.

The * used attributes are there in order to skip unnecessary data copying of the
entry, attributes or a buffer.

fuse reply err

The fuse reply err function sets the error code to the reply structure (err
member).

fuse reply entry

The fuse reply attr handles the reply with the FUSE entry parameter.

The fuse reply entry function sets the err member to EOK. The EOK is a con-
stant which means that there was no error. It also fills the entry member of the
reply structure with the FUSE entry parameter (struct fuse entry param).
The entry valid is set to true because the entry member contains valid data
and the entry used is set to false.

The attr member field is also filled with file attributes because the

28

fuse entry param contains file attributes. The attr valid is set to true be-
cause the attr member contains valid data and the attr used is set to false.

The fuse reply entry function is called from lookup, mknod, mkdir and link

FUSE low level operations.

fuse reply attr

The fuse reply attr handles the reply with file attributes.

The fuse reply attr function sets the err member to EOK. The attr member
field is filled with file attributes. The attr valid is set to true because the attr

member contains valid data and the attr used is set to false.

The fuse reply attr function is called from getattr and setattr FUSE low
level operations.

fuse reply buf

The fuse reply buf handles a reply with a buffer.

The fuse reply buf function sets the err member to EOK. The buf member
is filled with the buffer. The buf size member is set to the buffer size. The
buf valid is set to true because the buf member contains valid data and the
buf used is set to false.

The fuse reply attr function is called from getattr and setattr FUSE low
level operations.

fuse reply write

The fuse reply write handles a reply from write operations.

The fuse reply write function sets the err member to EOK. The number of
bytes written by the operations is set to the write count member of the reply
structure.

The fuse reply write function is called from the write FUSE low level opera-
tion.

Other reply functions

Other reply functions are implemented only as a dummy functions which set the
err member to EOK. They are not necessary for the working VFS-FUSE connector
prototype.

29

3.1.3 Mounting

The FUSE driver is mounted automatically during the initialization to the mount-
point path specified in a command line. This is done for example for FUSE exFAT
driver by this command: fuse exfat /bd/dev /mnt).

The Linux FUSE library mounts a file system inside function fuse mount common

in uspace/lib/posix/fuse/lib/helper.c file. This mounting is done too early
for the HelenOS. Too early means that the FUSE driver is not yet connect-
ed to the VFS server. The mountpoint is saved into the fuse chan structure
and later used in the fuse session loop function in the file
uspace/lib/posix/fuse/lib/fuse lowlevel.c. The mount function is called
from the fuse session loop function. This mount function is the same function
which is called by the mount command from the command line. The name fuse

with the process id as suffix is used as the name of the FUSE file system.

The FUSE server should terminate when the file system is being unmounted
because the FUSE file system server serves only one instance of the file sys-
tem driver. Unfortunately that is not possible because the asynchronous answer
(async answer 0(rid, rc);) in the function vfs out unmounted in libfs.c

needs to be called first. This answer lets the VFS server know the return code
from the unmounted operation.

This thesis introduces callback operation after unmounted. From the driver
point of view it looks like a VFS output operation. This callback operation
is called at the end of the vfs out unmounted function. This callback oper-
ation is implemented by the fuse lowlevel after unmounted function from
uspace/lib/fs/libfs.c. FUSE drivers terminate here in this function.

3.1.4 Mounting other file systems under FUSE

Sometimes other file systems are mounted within the FUSE file system directory
tree. The libfs library then needs to store some data about nodes which work as
mount point for them.

The mount point data are stored in the mp data member in the file system node
(fs node t). The mount point node with the mount data is stored in the hash
table mounted fs nodes. The fuse lowlevel node get impl function manages
saving to this table.

The fuse lowlevel node put function does not free the node when the mount
point is active (mp data.mp active).

3.1.5 Storage for data about opened files

The FUSE low level driver allows storing some file system specific data for opened
files. The structure fuse file info is used for that. These data are later used in
all other FUSE low level file operations (read, write, flush, release, fsync).

30

VFS output operations are stateless and it is necessary to store these data some-
where. Opened files data are stored in a hash table similarly as the data about
the mount points. These data are removed from the hash table while closing the
file.

There are two functions which manage data about opened files:
fuse lowlevel get file info and fuse lowlevel remove file info. First pa-
rameter of both of them is numeric file index.

The fuse lowlevel get file info function loads file data from the hash table
(opened file info). Second parameter of this function determines what to do
when there are no data about the file in the hash table. If second parameter is
equal to false, then NULL is returned when there are no data about the file in
the hash table. If second parameter is equal to true, then new file data structure
(fuse file info) is allocated. The pointer to this data structure is added to the
hash table and returned as return value.

The fuse lowlevel remove file info deallocates the file data structure and
removes pointer to this file data structure from the hash table.

The fuse lowlevel get file info function is called at the beginning of the
open node libfs operation. Only in this place the second parameter is set to true,
that mean allocating new file data structure.

All other FUSE low level operations (for example read) load file data by the
fuse lowlevel get file info.

The fuse lowlevel remove file info function is called at the end of the FUSE
low level close operation. This deallocates the file data and removes the pointer
to these data from the hash table. The VFS server counts references to the
opened file and calls the FUSE low level close operation only when there is no
remaining reference to this file. So it is safe to deallocate the file data in the
close operation.

3.1.6 Multithread support

A multithread support in the connector prototype is limited since the Pthread
support in HelenOS POSIX library is also limited. The multithread access is
supported only for low level layer drivers.

There is a locking system around all low level operations. The
fuse lowlevel single thread lock function lock is called before each FUSE
low level operation. The fuse lowlevel single thread unlock function is called
after each FUSE low level operation. These functions lock and unlock the
fuse lowlevel single thread mutex lock. This lock is ignored by these func-
tions when the driver supports multi thread environment and starts from the
multi thread loop function fuse session loop mt. This lock gives assurance
that no more than one FUSE low level operation is called at the same time.

31

3.1.7 File indexes

Both HelenOS VFS output operations (including libfs library operations) and
FUSE low level interface operations use numeric file indexes. HelenOS operations
use fs index t numeric type for file index.

Libfs operations and VFS output operations use the same file indexes as the
FUSE low level interface. Their types are compatible.

3.1.8 Creating and renaming files

mkdir or mknod FUSE low level operations are not called from the libfs operation
create in the time when a file or a directory is created. Instead of this a dummy
node with the file index set to zero (0) is returned. The reason for this behavior is
that the file name is not known at that moment. mkdir or mknod FUSE low level
operations are called later when the libfs library calls the first link operation on
this node with the file name.

There is one issue: It is not possible to rename files, when the file system does not
support the link operation. The VFS server does not have the VFS OUT RENAME

operation and instead of this just calls link(new name) and then
unlink(old name). This issue is not specific only to the FUSE drivers in He-
lenOS. It is also present in other native HelenOS file system drivers which cannot
handle more than one link to a file.

This rename issue appears only in the exFAT FUSE driver. The NTFS FUSE
driver is unaffected because it can handle more than one link to a file.

3.2 High level interface

The high level interface source code implements the low level interface operations.
Almost all the code that implements the high level interface is reused from Linux
FUSE library. There is also some code which is not used (not called from the
connector library). This unused code is left there to enable easier upgrades based
on newer versions of Linux FUSE library.

The most of the high level interface source code is in the
uspace/lib/posix/lib/fuse.c file.

Pthread library

The high level interface uses pthread locks and condition variables. In order
to make this work then pthread locks and condition variables are transformed to
HelenOS fibril variants of locks. A fibril is a cooperatively scheduled thread which
is used by the HelenOS libfs library. These fibrils handle incoming operations in
the HelenOS file system servers.

32

include/fuse.h
include/fuse lowlevel.h
include/fuse compat.h

include/fuse common compat.h
include/fuse kernel.h

include/fuse lowlevel compat.h
include/fuse opt.h

lib/fuse misc.h
lib/fuse opt.c

Table 3.2: Files from Linux FUSE library with no changes

include/fuse common.h
lib/fuse i.h
lib/fuse.c

lib/buffer.c
lib/helper.c

Table 3.3: Files from Linux FUSE library with small changes

3.3 Reused code from Linux FUSE

The table 3.2 lists files with no changes to the upstream Linux FUSE library[6].

The table 3.3 lists files with small changes. Those changes are separated by
#ifdef HelenOS in order to make it easier to update them to new versions
of Linux FUSE library.

The last table 3.4 lists files with HelenOS specific code.

3.4 Block devices access

This section describes implementation of two ways of solving the access to block
devices from FUSE file systems. Analysis and decision which solution to use are
described in the section 2.6.

include/config.h
lib/fuse kern chan.c
lib/fuse lowlevel.c

lib/fuse mt.c
lib/fuse session.c
lib/fuse signals.c

Table 3.4: Files with almost all code being HelenOS specific

33

3.4.1 Block device file system server

This section describes implementation details of the block device file system serv-
er. The properties of this solution are described in the section 2.6.2.

This solution is part of the final code.

The block device file system has only two nodes, the root node and a file dev

which represents the block device. Theoretically in this solution there could be
only one node. Nevertheless, letting the root node be a file is not expected when
mounting a file system. Also, VFS server does not expect the root node to be a
file.

block get and block put functions are used to access a block device.

The description of some VFS output and libfs operations follows. They can all
be found in uspace/srv/fs/bdfs/bdfs ops.c

bdfs mounted function

This function is called after the block device file system is mounted.

First the block device library is initialized with the block init call.

The physical block size is determined by the block get bsize function call.

Afterwards the block cache is initialized with the block cache init function call.
The logical block size is equal to the size of the physical block.

bdfs unmounted function

This function is called after the block device file system is unmounted.

The bdfs unmounted function calls the block cache fini and also the block fini

function.

bdfs read function

VFS output read operation is the same for a file and for a directory.

First bdfs read function receives the asynchronous read request and gets this
requested size. This is handled by the async data read receive function.

If the file index is BDFS DEVICE, then the block size and the number of blocks are
determined by functions block get bsize and block get nblocks. While using
these variables the offset in the first block and its address are calculated from the
requested position in the file.

As a next step this function loads the block by the block get function. The re-
quested data from the blocks are read by the async data read finalize function
from the address block->data + offset in block. Only the remaining data in
the block are read. This amount of data can be smaller than the requested size.

34

If that is the case, the reader will repeat the reading at the beginning of the next
block.

It would be possible to read all the requested data in more blocks at once but
that would require allocating special buffer and copying all the data there.

Index BDFS ROOT means reading the root directory. Only the name of the
device file is read.

bdfs write function

This function first receives the asynchronous read request and gets the requested
size of the data to be written. This is handled by async data write receive

function.

The block size and the number of blocks are determined by functions
block get bsize and block get nblocks. Using these variables the offset in
the first block and its address are calculated from the requested write position in
the file.

After that this function loads the block by the block get function. The previous
data in the block are read only when the write position is in the middle of the
block or when the size of the data is smaller then the block size.

The data to be written to the file are written to the address block->data +

offset in block. Only the remaining data in the block are overwritten, which
can be less than the size of the data to be written to the file. If this is the case,
the writer will repeat the writing at the beginning of the next block.

Similarly, as in reading, it would be possible to write all the requested data in
more blocks at once but that would require allocating a special buffer and copying
all the data there.

The block->dirty flag is set and data are written to the block device by the
block put function.

3.4.2 VFS output interface in block device drivers

This section describes the source code for the block device access solution variant
which was considered in the analysis. This solution implements VFS output
interface directly into block device drivers. The properties of this solution are
described in the section 2.6.3. It is not a part of the final source code because
other solution was chosen as a better one. A Patch against helenos fuse is in
helenos fuse bd alt.patch.

The main reason to include this section is to show how complicated this solution
actually is in comparison with the block device file system (described in the
section 2.6.2). This solution was previously chosen as the most promising one
but big complications appeared during the implementation.

35

VFS and block device interface differences

In this solution the block device driver needs to provide both the VFS output
interface and the block device interface. The VFS output interface is for serving
FUSE file system drivers and the block device interface is made up to serve the
native HelenOS file system drivers.

The main difference between these interfaces is in the initialization of the connec-
tion. The native file system driver makes the first connection to the block device
driver when the file system is being mounted. For a FUSE file system driver, the
block device driver connects to the VFS server even before the device is being
mounted.

The first complication comes with the callback connection from the block device
to the native block device driver. This callback connection is established after the
entry to the block device driver function, which handles incoming IPC connec-
tions. It is either necessary to determine whether the connection comes from the
VFS server and then skip creating the callback connection. The second variant
is to remove this callback connection entirely. Currently this callback connection
is not used for anything, so removing the callback connection is possible and the
patch includes it.

The second complication comes from the fact that block device drivers determine
which device (identified as service id variable in the sources) to use before the
bd conn function is called. *srvs parameter of the bd conn function includes the
device identification. This either needs to be completely changed or the block
device driver needs to register each device as a new service to the VFS server.
Separate registrations would lead to a complicated code. Also the VFS server
does not expect multiple registrations from the same file system driver.

Some block device drivers use the Device Driver Framework. Solving the previous
complications is even more complicated within the Device Driver Framework.

3.4.3 Other patch notes

The patch does not include any block caching or block synchronization during
writing. The functions which handle VFS operations call directly the block device
operations. This is another important complication in this solution.

The functions which handle VFS operations in the patch use the global variable
global srv to access block device operations. This is just a ”hack” to make it
work quickly during the analysis of the solutions. It would need to be changed
in the final solution. This limits the block device driver to only one instance
(device).

file bd file system is the only file system which uses the solution in the patch.
It is a file system which converts a file with a disk image to a block device. Lim-
itation by the global variable global srv does not matter here because file bd

has only one instance.

36

The patch includes changes in the block device library bd.c, block device driver
skeleton bd srv.c and changes in the file bd file system.

3.5 Other necessary changes in HelenOS

During implementation it was necessary to make some changes in the HelenOS
source code. Almost all of them are improvements which can be easily integrated
in the HelenOS mainline without causing any harm.

3.5.1 HelenOS and POSIX return codes

It was necessary to use both POSIX and HelenOS native error codes in the file
fuse lowlevel.c. Definitions of POSIX error codes overwrite the native ones in
POSIX programs in HelenOS.

So it was necessary to introduce other names for these native error codes.

The native error codes are now also accessible in the POSIX applications with
the NATIVE prefix.

3.5.2 Open error in libfs library

This thesis uncovered a bug in the lookup function in the libfs library.

Among other things the lookup function manages the opening of directories. The
lookup function in libfs did not call libfs operation node open when lflag =

L OPEN | L CREATE. These flags represent an opening of a new file.

This bug was not found earlier because most file systems have a stateless open
where the node open operation does nothing. It has been unnoticed for a few
years.

3.5.3 Pread and pwrite functions

The FUSE drivers use pwrite and pread functions for accessing block devices.
Those functions were not implemented in HelenOS. New VFS input operations
VFS IN PREAD and VFS IN PWRITE were introduced in order for these func-
tions to work. The only difference between them and VFS IN READ and
VFS IN WRITE consists of having another parameter: offset in a file.

For the simplicity of the implementation HelenOS does not read or write the
whole buffer even when there is no end of file. This feature causes a problem
because some FUSE drivers expect full buffer usage. For solving this problem
POSIX pwrite and pread were mapped to pwrite all and pread all versions.
These functions call the native pwrite and pread more times until the whole
buffer is used.

37

3.5.4 POSIX prefix defines collision

During the development there were problems with collisions with POSIX def-
initions. This was caused by the fact that FUSE operations are implemented
as structure members. Unfortunately they had sometimes the same name as
POSIX functions. And POSIX functions were implemented like #define read

posix read. The code was requesting different inexistent structure members
(instead of read it requested posix read).

The pushing and poping of those definitions was used as a workaround. Later
this was solved directly in the HelenOS mainline by Vojtěch Horky by overwriting
function names at link time and this problem vanished.

3.5.5 Comparison between native and FUSE drivers on
HelenOS

The connector adds another layer of code. FUSE file system drivers are therefore
a bit slower than the native file system drivers on HelenOS.

The connector is adding a data copying in the fuse reply buf and
fuse reply data. The reason for this is described in the section 3.1.2.

The directory reading is also not completely optimized. See section 2.4.

Another difference is connected with the access to block devices. It is necessary
to mount the block device using block device file system first. But not all of the
FUSE drivers use that. For example archive or network FUSE file systems does
not access block devices at all.

The advantage of using all existing FUSE drivers is much greater then above
mentioned disadvantages against the native file system drivers.

3.6 Development using distributed version con-

trol system

The distributed version control system and the public repository[24] were used
for the development of VFS-FUSE connector. This was a great help during the
development and the merge process with HelenOS mainline repository[3]. It will
also help future merging of this work to the mainline repository.

38

Chapter 4

Ported FUSE file systems

This chapter describes the FUSE file systems which were ported to the HelenOS
as part of this thesis. The porting of real file systems proves that the work on
the connector was successful and adds new features to the HelenOS operating
system.

4.1 ExFAT

ExFAT[19] is a file system from Microsoft. ExFAT is optimized for flash drives.

Free exFAT file system implementation[18] was ported to HelenOS at the same
time as the connector was developed. This implementation uses the FUSE high
level interface.

The exFAT FUSE driver can be found in the userspace part of HelenOS sources:
uspace/srv/fs/fuse/exfat/. It also uses the exFAT library which can be found
in uspace/lib/posix/libexfat/.

Free exFAT file system implementation has an operation system specific section
for the detection of endianness and byte swapping. During the porting of the
exFAT driver it was necessary to add a specific HelenOS section to this driver for
handling a detection of endianness and byte swapping.

The exFAT FUSE driver uses pread and pwrite POSIX functions (section3.5.3)
to access the block device. The implementation of these functions was added to
HelenOS in this thesis in order for exFAT to work. Accessing real block devices
is solved by the block device file system. The block device file system is described
in the section 3.4.1.

One problem still remains: It is not possible to rename files on exFAT. VFS
server does not have VFS OUT RENAME operation and instead of this just calls
link(new name) and then unlink(old name). This means that for a moment
there are at least 2 links to the file which is being renamed. However, exFAT
does not support more then one link and therefore the rename operation fails.
This issue is not specific for FUSE file system drivers on HelenOS. It is also

39

present in other native HelenOS file system drivers which cannot handle more
than one link to a file.

HelenOS also has a native file system driver for exFAT. The same file system
was selected for porting because it is possible to test a file system image in
another working implementation of the same file system. This helped the during
development of the VFS-FUSE connector.

4.2 NTFS

NTFS[21] is a File System developed by Microsoft. NTFS means ”New Technol-
ogy File System”. This file system is used for writing and reading files on hard
disks of computers that are managed by Windows operating systems. NT File
System was developed to serve new needs that were not possible to be maintained
by the old Microsoft FAT system. As the main reason was working with very large
files. The NTFS is a largely used file system mainly on personal computers and
windows servers.

The NTFS-3G FUSE driver[20] was ported to HelenOS as part of this thesis.
Its full name is ”Third Generation Read/Write NTFS Driver”. This driver is
available for free under the GNU General Public Licence. It has now a stable
version and has all features needed for working with HelenOS via FUSE. The
NTFS-3G driver includes all necessary operations for working with files: create,
read, modify, rename, move and delete. These operations can be performed on
NTFS partitions.

The NTFS-3G driver comes in two variants. The first variant uses the high level
FUSE interface. The second variant uses the low level FUSE interface. The low
level variant was ported to HelenOS.

The NTFS-3G driver can be found in uspace/srv/fs/fuse/ntfs/ directory.

An important feature is that the NTFS-3G FUSE driver supports hard links. By
means of this it is possible to have more than one link to a file. This means that
unlike by the ExFAT FUSE driver, it is possible to move files by the NTFS FUSE
driver.

The NTFS-3G FUSE driver ignores the offset (off) argument of the FUSE low
level operation. This ignoring means that it is not possible to call the readdir

FUSE low level operation more than once with the same offset. The HelenOS
VFS output read operation saves the directory buffer in the hash table with the
information about the opened file. Saving this buffer allows calling the readdir

FUSE low level operation only once for multiple VFS output read calls.

The NTFS-3G FUSE driver uses pread and pwrite POSIX functions (section
3.5.3) to access the block device. Accessing real block devices is solved by the
block device file system. The block device file system is described in the section
3.4.1.

No changes were necessary to be made in the source code of the NTFS-3G FUSE
driver. The only two files specifically written for HelenOS port of this driver are

40

custom config.h and Makefile files.

4.3 Examples from FUSE package

The Linux FUSE package includes some example file systems. Some of them were
ported during VFS to FUSE connector development as the first working FUSE
file system drivers. They were easy enough for debugging during the beginning
of the connector development.

4.3.1 Hello world in high level interface

This is the simplest example file system which demonstrates using of the FUSE
high level API. It can be found in uspace/srv/fs/fuse/hello/ directory.

4.3.2 Hello world in low level interface

This is the simplest example file system which demonstrates using of the FUSE
low level API. It was the first working FUSE file system in HelenOS. It can be
found in uspace/srv/fs/fuse/hello ll/ directory.

4.4 Estimation of difficulty to port other file

systems

The main problem when porting FUSE file systems to HelenOS is that most
FUSE file systems depend on some other library. This is especially the case of
pseudo file systems (for example an access to archive) or network file systems
(for example sshfs). It is somewhat harder to port these libraries to HelenOS
because of the limited POSIX support. Multiple POSIX files and functions were
necessary to be added for both the exFAT and the NTFS FUSE drivers.

Some FUSE file system drivers work as a layer over another file system. This
means that they store some data in another file system. HelenOS VFS server has
a problem with namespace read-write lock. This lock locks too much code and
it causes deadlock in some of these file systems. The only exception is when the
file in other file system is opened during a file system initialization. The solution
to this problem is necessary to be done before porting them to HelenOS. There
is an issue [22] about this deadlock in the HelenOS issue tracker.

There is no complication with accessing real block devices. The access is solved
by the block device file system (section 3.4.1).

Some FUSE file systems need to add HelenOS specific section in them. For
example for a byte swapping and a changing endian ordering.

41

file system porting problems

MP3FS VFS server deadlock, libraries
Ramfuse VFS server deadlock, PERL

squashfuse libraries, OS specific
CryptoFS VFS server deadlock, libraries
LoggedFS VFS server deadlock

SshFS libraries
ZFS OS specific
gitfs VFS server deadlock, libraries

Table 4.1: Porting other FUSE file systems

The table 4.1 shows an estimated problems of the porting difficulty for some
popular file systems from the FUSE file systems list ([7]).

42

Conclusion

The goal of this master thesis was to design and implement the connector be-
tween FUSE file system drivers and HelenOS native VFS interface. The goal of
finding the solution and consequently the development of the implementation of
the connector was achieved.

The important part of this work was the decision how to implement the connector.
The selected decision to implement connection at low level layer has proved as
a very good choice. This allowed reusing of a great portion of code from Linux
FUSE implementation. Practically no changes were necessary to be made in the
FUSE file system drivers. In fact almost all of those changes do not relate to
FUSE but to the limited POSIX libraries in HelenOS.

The implementation of the connector at low level layer also allowed the use of
the same libraries as the native HelenOS file system drivers use and therefore no
changes in HelenOS VFS server were necessary to be done. This fact will make
the future development of the HelenOS VFS easier because there will be no need
to have FUSE in mind.

As part of this thesis the block device file system was created. It allows FUSE to
access real block devices as files.

Also the FUSE variant of exFAT file system driver was ported to HelenOS. This
did not add new features because HelenOS already has the native exFAT file
system driver. This was intentional for help in the development.

The implementation was widened to port another file system: NTFS. The NT
File System is one of the most used in working with data stored on disk drives.
This adds a new practical feature to the HelenOS operating system because the
HelenOS does not have the native NTFS driver.

The performance and speed was not the goal of this thesis. This is similar to
the concept of the rest of the HelenOS operating system. So no speed tests were
performed.

Future work

The current implementation provides a solid base for the direct use of FUSE file
system drivers in HelenOS. Although several FUSE features can be developed at

43

a deeper level and optimization. This includes for example multi-threaded drivers
and the readdir operation.

Introducing mount scripts will enable to mount FUSE file systems in the same
way as the native file systems do.

The block device file system can work more efficiently by caching the block size
and the block count. Also the block device file system can support virtual blocks
as an option.

Some FUSE file system drivers work as a layer over another file system. The
solution to the problem with namespace read-write lock [22] is necessary to be
fixed before porting them to HelenOS.

Last but not least, some work will be necessary to port other FUSE file system
drivers to HelenOS.

44

Bibliography

[1] HelenOS, http://www.helenos.org/

[2] HelenOS documentations, http://www.helenos.org/documentation

[3] HelenOS sources, http://www.helenos.org/sources

[4] Jakub Jermář: Implementation of file system in HelenOS operating system,
http://www.helenos.org/doc/papers/HelenOS-EurOpen.pdf

[5] Andrew S. Tanenbaum: Modern Operating Systems, 3rd edition, ISBN 0-13-
813459-6978-0-13-813459-4

[6] Filesystem in Userspace, http://fuse.sourceforge.net/

[7] File systems using FUSE, http://sourceforge.net/p/fuse/wiki/

FileSystems/

[8] FUSE structure image, http://en.wikipedia.org/wiki/File:FUSE_

structure.svg

[9] Operating Systems - FUSE, http://sourceforge.net/p/fuse/wiki/

OperatingSystems/

[10] FUSE for OS X, http://osxfuse.github.io/

[11] FUSE for OS X FAQ, https://github.com/osxfuse/osxfuse/wiki/FAQ

[12] ReFUSE (NetBSD), http://netbsd.gw.com/cgi-bin/man-cgi?refuse+

3+NetBSD-6.0

[13] PUFFS Enabled Relay to FUSE Daemon (NetBSD), http://netbsd.gw.

com/cgi-bin/man-cgi?perfused+8+NetBSD-6.0

[14] PUFFS enabled relay to FUSE Library (NetBSD), http://netbsd.gw.com/
cgi-bin/man-cgi?libperfuse++NetBSD-6.0

[15] FreeBSD FUSE module, https://wiki.freebsd.org/FuseFilesystem

[16] Jǐŕı Svoboda: discussion about FUSE in Solaris, http://lists.modry.cz/
private/helenos-devel/2012-June/005773.html

[17] IPC for Dummies, http://trac.helenos.org/wiki/IPC

[18] Free exFAT file system implementationFree exFAT file system implementa-
tion, https://code.google.com/p/exfat/

45

http://www.helenos.org/
http://www.helenos.org/documentation
http://www.helenos.org/sources
http://www.helenos.org/doc/papers/HelenOS-EurOpen.pdf
http://fuse.sourceforge.net/
http://sourceforge.net/p/fuse/wiki/FileSystems/
http://sourceforge.net/p/fuse/wiki/FileSystems/
http://en.wikipedia.org/wiki/File:FUSE_structure.svg
http://en.wikipedia.org/wiki/File:FUSE_structure.svg
http://sourceforge.net/p/fuse/wiki/OperatingSystems/
http://sourceforge.net/p/fuse/wiki/OperatingSystems/
http://osxfuse.github.io/
https://github.com/osxfuse/osxfuse/wiki/FAQ
http://netbsd.gw.com/cgi-bin/man-cgi?refuse+3+NetBSD-6.0
http://netbsd.gw.com/cgi-bin/man-cgi?refuse+3+NetBSD-6.0
http://netbsd.gw.com/cgi-bin/man-cgi?perfused+8+NetBSD-6.0
http://netbsd.gw.com/cgi-bin/man-cgi?perfused+8+NetBSD-6.0
http://netbsd.gw.com/cgi-bin/man-cgi?libperfuse++NetBSD-6.0
http://netbsd.gw.com/cgi-bin/man-cgi?libperfuse++NetBSD-6.0
https://wiki.freebsd.org/FuseFilesystem
http://lists.modry.cz/private/helenos-devel/2012-June/005773.html
http://lists.modry.cz/private/helenos-devel/2012-June/005773.html
http://trac.helenos.org/wiki/IPC
https://code.google.com/p/exfat/

[19] exFAT File System, http://www.microsoft.com/en-us/legal/

intellectualproperty/IPLicensing/Programs/exFATFileSystem.aspx

[20] NTFS-3G, http://www.tuxera.com/community/ntfs-3g-download/

[21] The NTFS File System, http://technet.microsoft.com/en-us/library/
cc976808.aspx

[22] VFS deadlock ticket, http://trac.helenos.org/ticket/480.

[23] QEMU machine emulator and virtualizer, http://qemu.org

[24] Development brach in Launchpad, https://code.launchpad.net/

%7ezdenek-bouska/helenos/fuse

46

http://www.microsoft.com/en-us/legal/intellectualproperty/IPLicensing/Programs/exFATFileSystem.aspx
http://www.microsoft.com/en-us/legal/intellectualproperty/IPLicensing/Programs/exFATFileSystem.aspx
http://www.tuxera.com/community/ntfs-3g-download/
http://technet.microsoft.com/en-us/library/cc976808.aspx
http://technet.microsoft.com/en-us/library/cc976808.aspx
http://trac.helenos.org/ticket/480
http://qemu.org
https://code.launchpad.net/%7ezdenek-bouska/helenos/fuse
https://code.launchpad.net/%7ezdenek-bouska/helenos/fuse

List of Tables

2.1 Advantages and disadvantages of connection at high level interface
layer . 13

2.2 Advantages and disadvantages of connection at low level layer . . 13
2.3 Advantages and disadvantages of connection at kernel channel in-

terface . 14
2.4 Advantages and disadvantages of block devices access through POSIX

functions rewrite . 18
2.5 Advantages and disadvantages of block devices access file system

server . 19
2.6 Advantages and disadvantages of block devices access file system

server . 20

3.1 Operations mapping between HelenOS FS and FUSE low level
interface operations . 22

3.2 Files from Linux FUSE library with no changes 33
3.3 Files from Linux FUSE library with small changes 33
3.4 Files with almost all code being HelenOS specific 33

4.1 Porting other FUSE file systems 42

47

Appendices

48

Appendix A

CD-ROM content

This thesis includes a CD-ROM medium on which you will find:

• HelenOS sources with VFS-FUSE connector inside in the tar archive
called helenos fuse.tgz

• HelenOS bootable CD image image.iso

• NTFS file system image ntfs.img

• ExFAT file system image exfat.img

• README a readme text file, reading it is recommended.

• Qemu wrapper script run.sh starts HelenOS in Qemu[23] emulator.

• An electronic version of this thesis in the file thesis.pdf.

• Patch with alternative access to block devices in the file
helenos fuse bd alt.patch.

49

Appendix B

User Documentation

As a start point of the installation copy the CD content to hard disk. This step
is necessary in order to be able to mount for writing.

The easy way how to run HelenOS operating system is Qemu[23]. It emulates
the whole PC and is the recommended emulator for HelenOS. You can do this
by starting Qemu by the run script run.sh.

B.1 ExFAT

Start Qemu by the run script run.sh. As a hard disc parameter specify the
exFAT block device image.

./run.sh -hda exfat.img

Next start the block device file system:

bdfs

Change the current directory to loc (this steps only enables command line com-
pletion of the ATA block device name):

cd /loc

Mount the block device file system:

mount bdfs /bd devices/\hw\pci0\00:01.0\ata-c1\d0

50

Now mount the FUSE exFAT driver:

fuse exfat /bd/dev /mnt

Access the files in the mounted exFAT file system.

ls /mnt

Unmount the FUSE exFAT file system:

umount /mnt

Unmount the block device file system:

umount /bd

B.2 NTFS

Start Qemu by the run script run.sh. As a hard disc parameter specify the NTFS
block device image.

./run.sh -hda ntfs.img

Next start the block device file system:

bdfs

Change the current directory to loc (this steps only enables command line com-
pletion of the ATA block device name):

cd /loc

51

Figure B.1: Screenshot of FUSE NTFS file system usage

Mount the block device file system:

mount bdfs /bd devices/\hw\pci0\00:01.0\ata-c1\d0

Now mount the FUSE NTFS driver:
(no detach option just avoids warning by unsupported fork() POSIX function)

fuse ntfs -o no detach /bd/dev /mnt

Access the files in the mounted exFAT file system.

ls /mnt

Unmount the FUSE NTFS file system:

umount /mnt

Unmount the block device file system:

umount /bd

52

You can see this at screenshot in the figure B.1.

B.3 Compiling from sources

The Linux operating system is recommended for compiling. First you need to
unpack the sources:

tar -zxvf helenos fuse.tgz

and then move to the newly created directory

cd helenos fuse

Next install the development toolchain. Specific versions of the compiler and
binutils are necessary to compile HelenOS. The toolchain has dependencies. Most
of them are listed when you run the toolchain. In order to save time install these
dependencies first. The toolchain will be installed to the directory specified by
the CROSS PREFIX environment variable. If the variable is not defined,
/usr/local/cross will be used by default.

./tools/toolchain.sh ia32

After that run

make

and in the configurator select

--- Load preconfigured defaults ...

ia32

Done

For cleaning after the compilation you can use

make clean

or for cleaning the configuration as well

make distclean

53

Appendix C

List of files

This appendix lists the files which were added to or modified in the HelenOS
source code during the work on this thesis.

The list is divided by the features they provide.

C.1 FUSE high and low level library

New files

uspace/lib/posix/fuse/include/config.h

uspace/lib/posix/fuse/lib/fuse kern chan.c

uspace/lib/posix/fuse/lib/fuse lowlevel.c

uspace/lib/posix/fuse/lib/fuse mt.c

uspace/lib/posix/fuse/lib/fuse session.c

uspace/lib/posix/fuse/lib/fuse signals.c

uspace/lib/posix/fuse/lib/mount dummy.c

uspace/lib/posix/fuse/Makefile

uspace/lib/posix/fuse/README

Modified files

uspace/lib/fs/libfs.c

uspace/lib/fs/libfs.h

uspace/Makefile

uspace/Makefile.common

Files taken from the Linux FUSE library and modified

uspace/lib/posix/fuse/include/fuse common.h

uspace/lib/posix/fuse/lib/buffer.c

54

uspace/lib/posix/fuse/lib/fuse.c

uspace/lib/posix/fuse/lib/fuse i.h

uspace/lib/posix/fuse/lib/helper.c

Files taken from the Linux FUSE library

uspace/lib/posix/fuse/include/fuse common compat.h

uspace/lib/posix/fuse/include/fuse common.h

uspace/lib/posix/fuse/include/fuse.h

uspace/lib/posix/fuse/include/fuse kernel.h

uspace/lib/posix/fuse/include/fuse lowlevel compat.h

uspace/lib/posix/fuse/include/fuse lowlevel.h

uspace/lib/posix/fuse/include/fuse opt.h

uspace/lib/posix/fuse/lib/fuse misc.h

uspace/lib/posix/fuse/lib/fuse opt.c

C.2 New VFS server input operations

(pread and pwrite)

Modified files

uspace/app/trace/trace.c

uspace/lib/c/generic/vfs/vfs.c

uspace/lib/c/include/ipc/vfs.h

uspace/lib/c/include/unistd.h

uspace/srv/vfs/vfs.c

uspace/srv/vfs/vfs.h

uspace/srv/vfs/vfs ops.c

C.3 Block device file system

New files

uspace/srv/fs/bdfs/bdfs.c

uspace/srv/fs/bdfs/bdfs.h

uspace/srv/fs/bdfs/bdfs ops.c

uspace/srv/fs/bdfs/Makefile

55

Modified files

.bzrignore

bootuspace/Makefile.common

uspace/Makefile

C.4 New features of the POSIX library

New files

uspace/lib/posix/include/posix/endian.h

uspace/lib/posix/include/posix/grp.h

uspace/lib/posix/include/posix/poll.h

uspace/lib/posix/include/posix/sys/ioctl.h

uspace/lib/posix/include/posix/sys/mount.h

uspace/lib/posix/include/posix/sys/param.h

uspace/lib/posix/include/posix/sys/statvfs.h

uspace/lib/posix/include/posix/sys/uio.h

uspace/lib/posix/include/posix/syslog.h

uspace/lib/posix/include/posix/utime.h

uspace/lib/posix/source/grp.c

uspace/lib/posix/source/poll.c

uspace/lib/posix/source/sys/ioctl.c

uspace/lib/posix/source/sys/types.c

uspace/lib/posix/source/syslog.c

Modified files

uspace/lib/c/generic/dlfcn.c

uspace/lib/c/include/dlfcn.h

uspace/lib/posix/include/posix/pthread.h

uspace/lib/posix/include/posix/stdlib.h

uspace/lib/posix/include/posix/string.h

uspace/lib/posix/include/posix/sys/stat.h

uspace/lib/posix/include/posix/sys/types.h

uspace/lib/posix/include/posix/time.h

uspace/lib/posix/include/posix/unistd.h

uspace/lib/posix/include/posix/errno.h

uspace/lib/posix/include/posix/fcntl.h

uspace/lib/posix/Makefile

uspace/lib/posix/source/fcntl.c

uspace/lib/posix/source/pthread/condvar.c

uspace/lib/posix/source/pthread/keys.c

uspace/lib/posix/source/pthread/mutex.c

56

uspace/lib/posix/source/pthread/threads.c

uspace/lib/posix/source/stdlib.c

uspace/lib/posix/source/unistd.c

C.5 ExFAT, NTFS and other FUSE file system

drivers and libraries

New files

uspace/lib/posix/libexfat/Makefile

uspace/srv/fs/fuse/exfat/Makefile

uspace/srv/fs/fuse/hello/Makefile

uspace/srv/fs/fuse/hello ll/Makefile

uspace/srv/fs/fuse/Makefile.common

uspace/srv/fs/fuse/null/Makefile

uspace/srv/fs/fuse/xmp/Makefile

Modified files

.bzrignore

bootuspace/Makefile.common

uspace/lib/c/arch/sparc64/Makefile.common

uspace/Makefile

uspace/Makefile.common

Files taken from the original driver and modified

uspace/lib/posix/libexfat/byteorder.h

uspace/lib/posix/libexfat/mount.c

uspace/lib/posix/Makefile

Files taken from the original driver

uspace/lib/posix/libexfat/cluster.c

uspace/lib/posix/libexfat/exfatfs.h

uspace/lib/posix/libexfat/exfat.h

uspace/lib/posix/libexfat/io.c

uspace/lib/posix/libexfat/log.c

uspace/lib/posix/libexfat/lookup.c

uspace/lib/posix/libexfat/node.c

57

uspace/lib/posix/libexfat/README

uspace/lib/posix/libexfat/time.c

uspace/lib/posix/libexfat/utf.c

uspace/lib/posix/libexfat/utils.c

uspace/lib/posix/libexfat/version.h

uspace/srv/fs/fuse/exfat/main.c

uspace/srv/fs/fuse/exfat/README

uspace/srv/fs/fuse/hello/hello.c

uspace/srv/fs/fuse/hello ll/hello ll.c

uspace/srv/fs/fuse/ntfs/aclocal.m4

uspace/srv/fs/fuse/ntfs/AUTHORS

uspace/srv/fs/fuse/ntfs/autogen.sh

uspace/srv/fs/fuse/ntfs/ChangeLog

uspace/srv/fs/fuse/ntfs/compile

uspace/srv/fs/fuse/ntfs/config.guess

uspace/srv/fs/fuse/ntfs/config.h

uspace/srv/fs/fuse/ntfs/config.h.in

uspace/srv/fs/fuse/ntfs/config.sub

uspace/srv/fs/fuse/ntfs/configure

uspace/srv/fs/fuse/ntfs/configure.ac

uspace/srv/fs/fuse/ntfs/COPYING

uspace/srv/fs/fuse/ntfs/COPYING.LIB

uspace/srv/fs/fuse/ntfs/CREDITS

uspace/srv/fs/fuse/ntfs/depcomp

uspace/srv/fs/fuse/ntfs/include/fuse-lite/fuse common.h

uspace/srv/fs/fuse/ntfs/include/fuse-lite/fuse.h

uspace/srv/fs/fuse/ntfs/include/fuse-lite/fuse kernel.h

uspace/srv/fs/fuse/ntfs/include/fuse-lite/fuse lowlevel compat.h

uspace/srv/fs/fuse/ntfs/include/fuse-lite/fuse lowlevel.h

uspace/srv/fs/fuse/ntfs/include/fuse-lite/fuse opt.h

uspace/srv/fs/fuse/ntfs/include/fuse-lite/Makefile.am

uspace/srv/fs/fuse/ntfs/include/fuse-lite/Makefile.in

uspace/srv/fs/fuse/ntfs/include/Makefile.am

uspace/srv/fs/fuse/ntfs/include/Makefile.in

uspace/srv/fs/fuse/ntfs/include/ntfs-3g/acls.h

uspace/srv/fs/fuse/ntfs/include/ntfs-3g/attrib.h

uspace/srv/fs/fuse/ntfs/include/ntfs-3g/attrlist.h

uspace/srv/fs/fuse/ntfs/include/ntfs-3g/bitmap.h

uspace/srv/fs/fuse/ntfs/include/ntfs-3g/bootsect.h

uspace/srv/fs/fuse/ntfs/include/ntfs-3g/cache.h

uspace/srv/fs/fuse/ntfs/include/ntfs-3g/collate.h

uspace/srv/fs/fuse/ntfs/include/ntfs-3g/compat.h

uspace/srv/fs/fuse/ntfs/include/ntfs-3g/compress.h

uspace/srv/fs/fuse/ntfs/include/ntfs-3g/debug.h

uspace/srv/fs/fuse/ntfs/include/ntfs-3g/device.h

uspace/srv/fs/fuse/ntfs/include/ntfs-3g/device io.h

uspace/srv/fs/fuse/ntfs/include/ntfs-3g/dir.h

uspace/srv/fs/fuse/ntfs/include/ntfs-3g/efs.h

58

uspace/srv/fs/fuse/ntfs/include/ntfs-3g/endians.h

uspace/srv/fs/fuse/ntfs/include/ntfs-3g/index.h

uspace/srv/fs/fuse/ntfs/include/ntfs-3g/inode.h

uspace/srv/fs/fuse/ntfs/include/ntfs-3g/layout.h

uspace/srv/fs/fuse/ntfs/include/ntfs-3g/lcnalloc.h

uspace/srv/fs/fuse/ntfs/include/ntfs-3g/logfile.h

uspace/srv/fs/fuse/ntfs/include/ntfs-3g/logging.h

uspace/srv/fs/fuse/ntfs/include/ntfs-3g/Makefile.am

uspace/srv/fs/fuse/ntfs/include/ntfs-3g/Makefile.in

uspace/srv/fs/fuse/ntfs/include/ntfs-3g/mft.h

uspace/srv/fs/fuse/ntfs/include/ntfs-3g/misc.h

uspace/srv/fs/fuse/ntfs/include/ntfs-3g/mst.h

uspace/srv/fs/fuse/ntfs/include/ntfs-3g/ntfstime.h

uspace/srv/fs/fuse/ntfs/include/ntfs-3g/object id.h

uspace/srv/fs/fuse/ntfs/include/ntfs-3g/param.h

uspace/srv/fs/fuse/ntfs/include/ntfs-3g/realpath.h

uspace/srv/fs/fuse/ntfs/include/ntfs-3g/reparse.h

uspace/srv/fs/fuse/ntfs/include/ntfs-3g/runlist.h

uspace/srv/fs/fuse/ntfs/include/ntfs-3g/security.h

uspace/srv/fs/fuse/ntfs/include/ntfs-3g/support.h

uspace/srv/fs/fuse/ntfs/include/ntfs-3g/types.h

uspace/srv/fs/fuse/ntfs/include/ntfs-3g/unistr.h

uspace/srv/fs/fuse/ntfs/include/ntfs-3g/volume.h

uspace/srv/fs/fuse/ntfs/include/ntfs-3g/xattrs.h

uspace/srv/fs/fuse/ntfs/INSTALL

uspace/srv/fs/fuse/ntfs/install-sh

uspace/srv/fs/fuse/ntfs/libfuse-lite/fuse.c

uspace/srv/fs/fuse/ntfs/libfuse-lite/fuse i.h

uspace/srv/fs/fuse/ntfs/libfuse-lite/fuse kern chan.c

uspace/srv/fs/fuse/ntfs/libfuse-lite/fuse loop.c

uspace/srv/fs/fuse/ntfs/libfuse-lite/fuse lowlevel.c

uspace/srv/fs/fuse/ntfs/libfuse-lite/fuse misc.h

uspace/srv/fs/fuse/ntfs/libfuse-lite/fuse opt.c

uspace/srv/fs/fuse/ntfs/libfuse-lite/fusermount.c

uspace/srv/fs/fuse/ntfs/libfuse-lite/fuse session.c

uspace/srv/fs/fuse/ntfs/libfuse-lite/fuse signals.c

uspace/srv/fs/fuse/ntfs/libfuse-lite/helper.c

uspace/srv/fs/fuse/ntfs/libfuse-lite/Makefile.am

uspace/srv/fs/fuse/ntfs/libfuse-lite/Makefile.in

uspace/srv/fs/fuse/ntfs/libfuse-lite/mount.c

uspace/srv/fs/fuse/ntfs/libfuse-lite/mount util.c

uspace/srv/fs/fuse/ntfs/libfuse-lite/mount util.h

uspace/srv/fs/fuse/ntfs/libntfs-3g/acls.c

uspace/srv/fs/fuse/ntfs/libntfs-3g/attrib.c

uspace/srv/fs/fuse/ntfs/libntfs-3g/attrlist.c

uspace/srv/fs/fuse/ntfs/libntfs-3g/bitmap.c

uspace/srv/fs/fuse/ntfs/libntfs-3g/bootsect.c

uspace/srv/fs/fuse/ntfs/libntfs-3g/cache.c

59

uspace/srv/fs/fuse/ntfs/libntfs-3g/collate.c

uspace/srv/fs/fuse/ntfs/libntfs-3g/compat.c

uspace/srv/fs/fuse/ntfs/libntfs-3g/compress.c

uspace/srv/fs/fuse/ntfs/libntfs-3g/debug.c

uspace/srv/fs/fuse/ntfs/libntfs-3g/device.c

uspace/srv/fs/fuse/ntfs/libntfs-3g/dir.c

uspace/srv/fs/fuse/ntfs/libntfs-3g/efs.c

uspace/srv/fs/fuse/ntfs/libntfs-3g/index.c

uspace/srv/fs/fuse/ntfs/libntfs-3g/inode.c

uspace/srv/fs/fuse/ntfs/libntfs-3g/lcnalloc.c

uspace/srv/fs/fuse/ntfs/libntfs-3g/libntfs-3g.pc.in

uspace/srv/fs/fuse/ntfs/libntfs-3g/libntfs-3g.script.so.in

uspace/srv/fs/fuse/ntfs/libntfs-3g/logfile.c

uspace/srv/fs/fuse/ntfs/libntfs-3g/logging.c

uspace/srv/fs/fuse/ntfs/libntfs-3g/Makefile.am

uspace/srv/fs/fuse/ntfs/libntfs-3g/Makefile.in

uspace/srv/fs/fuse/ntfs/libntfs-3g/mft.c

uspace/srv/fs/fuse/ntfs/libntfs-3g/misc.c

uspace/srv/fs/fuse/ntfs/libntfs-3g/mst.c

uspace/srv/fs/fuse/ntfs/libntfs-3g/object id.c

uspace/srv/fs/fuse/ntfs/libntfs-3g/realpath.c

uspace/srv/fs/fuse/ntfs/libntfs-3g/reparse.c

uspace/srv/fs/fuse/ntfs/libntfs-3g/runlist.c

uspace/srv/fs/fuse/ntfs/libntfs-3g/security.c

uspace/srv/fs/fuse/ntfs/libntfs-3g/unistr.c

uspace/srv/fs/fuse/ntfs/libntfs-3g/unix io.c

uspace/srv/fs/fuse/ntfs/libntfs-3g/volume.c

uspace/srv/fs/fuse/ntfs/libntfs-3g/win32 io.c

uspace/srv/fs/fuse/ntfs/libntfs-3g/xattrs.c

uspace/srv/fs/fuse/ntfs/ltmain.sh

uspace/srv/fs/fuse/ntfs/m4/libtool.m4

uspace/srv/fs/fuse/ntfs/m4/lt obsolete.m4

uspace/srv/fs/fuse/ntfs/m4/ltoptions.m4

uspace/srv/fs/fuse/ntfs/m4/ltsugar.m4

uspace/srv/fs/fuse/ntfs/m4/ltversion.m4

uspace/srv/fs/fuse/ntfs/Makefile

uspace/srv/fs/fuse/ntfs/Makefile.am

uspace/srv/fs/fuse/ntfs/Makefile.in

uspace/srv/fs/fuse/ntfs/missing

uspace/srv/fs/fuse/ntfs/NEWS

uspace/srv/fs/fuse/ntfs/ntfsprogs/attrdef.c

uspace/srv/fs/fuse/ntfs/ntfsprogs/attrdef.h

uspace/srv/fs/fuse/ntfs/ntfsprogs/boot.c

uspace/srv/fs/fuse/ntfs/ntfsprogs/boot.h

uspace/srv/fs/fuse/ntfs/ntfsprogs/cluster.c

uspace/srv/fs/fuse/ntfs/ntfsprogs/cluster.h

uspace/srv/fs/fuse/ntfs/ntfsprogs/list.h

uspace/srv/fs/fuse/ntfs/ntfsprogs/Makefile.am

60

uspace/srv/fs/fuse/ntfs/ntfsprogs/Makefile.in

uspace/srv/fs/fuse/ntfs/ntfsprogs/mkntfs.8.in

uspace/srv/fs/fuse/ntfs/ntfsprogs/mkntfs.c

uspace/srv/fs/fuse/ntfs/ntfsprogs/ntfscat.8.in

uspace/srv/fs/fuse/ntfs/ntfsprogs/ntfscat.c

uspace/srv/fs/fuse/ntfs/ntfsprogs/ntfscat.h

uspace/srv/fs/fuse/ntfs/ntfsprogs/ntfsck.c

uspace/srv/fs/fuse/ntfs/ntfsprogs/ntfsclone.8.in

uspace/srv/fs/fuse/ntfs/ntfsprogs/ntfsclone.c

uspace/srv/fs/fuse/ntfs/ntfsprogs/ntfscluster.8.in

uspace/srv/fs/fuse/ntfs/ntfsprogs/ntfscluster.c

uspace/srv/fs/fuse/ntfs/ntfsprogs/ntfscluster.h

uspace/srv/fs/fuse/ntfs/ntfsprogs/ntfscmp.8.in

uspace/srv/fs/fuse/ntfs/ntfsprogs/ntfscmp.c

uspace/srv/fs/fuse/ntfs/ntfsprogs/ntfscp.8.in

uspace/srv/fs/fuse/ntfs/ntfsprogs/ntfscp.c

uspace/srv/fs/fuse/ntfs/ntfsprogs/ntfsdecrypt.c

uspace/srv/fs/fuse/ntfs/ntfsprogs/ntfsdump logfile.c

uspace/srv/fs/fuse/ntfs/ntfsprogs/ntfsfix.8.in

uspace/srv/fs/fuse/ntfs/ntfsprogs/ntfsfix.c

uspace/srv/fs/fuse/ntfs/ntfsprogs/ntfsinfo.8.in

uspace/srv/fs/fuse/ntfs/ntfsprogs/ntfsinfo.c

uspace/srv/fs/fuse/ntfs/ntfsprogs/ntfslabel.8.in

uspace/srv/fs/fuse/ntfs/ntfsprogs/ntfslabel.c

uspace/srv/fs/fuse/ntfs/ntfsprogs/ntfsls.8.in

uspace/srv/fs/fuse/ntfs/ntfsprogs/ntfsls.c

uspace/srv/fs/fuse/ntfs/ntfsprogs/ntfsmftalloc.c

uspace/srv/fs/fuse/ntfs/ntfsprogs/ntfsmove.c

uspace/srv/fs/fuse/ntfs/ntfsprogs/ntfsmove.h

uspace/srv/fs/fuse/ntfs/ntfsprogs/ntfsprogs.8.in

uspace/srv/fs/fuse/ntfs/ntfsprogs/ntfsresize.8.in

uspace/srv/fs/fuse/ntfs/ntfsprogs/ntfsresize.c

uspace/srv/fs/fuse/ntfs/ntfsprogs/ntfstruncate.c

uspace/srv/fs/fuse/ntfs/ntfsprogs/ntfsundelete.8.in

uspace/srv/fs/fuse/ntfs/ntfsprogs/ntfsundelete.c

uspace/srv/fs/fuse/ntfs/ntfsprogs/ntfsundelete.h

uspace/srv/fs/fuse/ntfs/ntfsprogs/ntfswipe.c

uspace/srv/fs/fuse/ntfs/ntfsprogs/ntfswipe.h

uspace/srv/fs/fuse/ntfs/ntfsprogs/sd.c

uspace/srv/fs/fuse/ntfs/ntfsprogs/sd.h

uspace/srv/fs/fuse/ntfs/ntfsprogs/utils.c

uspace/srv/fs/fuse/ntfs/ntfsprogs/utils.h

uspace/srv/fs/fuse/ntfs/README

uspace/srv/fs/fuse/ntfs/src/lowntfs-3g.c

uspace/srv/fs/fuse/ntfs/src/Makefile.am

uspace/srv/fs/fuse/ntfs/src/Makefile.in

uspace/srv/fs/fuse/ntfs/src/ntfs-3g.8.in

uspace/srv/fs/fuse/ntfs/src/ntfs-3g.c

61

uspace/srv/fs/fuse/ntfs/src/ntfs-3g common.c

uspace/srv/fs/fuse/ntfs/src/ntfs-3g common.h

uspace/srv/fs/fuse/ntfs/src/ntfs-3g.probe.8.in

uspace/srv/fs/fuse/ntfs/src/ntfs-3g.probe.c

uspace/srv/fs/fuse/ntfs/src/ntfs-3g.secaudit.8.in

uspace/srv/fs/fuse/ntfs/src/ntfs-3g.usermap.8.in

uspace/srv/fs/fuse/null/null.c

uspace/srv/fs/fuse/xmp/fusexmp.c

62

	Introduction
	Development context
	HelenOS architecture summary
	Filesystem in HelenOS
	Standard library
	VFS server
	Libfs library
	Block device drivers in HelenOS

	Developing a file system with FUSE
	FUSE architecture in Linux
	FUSE in other operation systems
	NetBSD
	OS X
	FreeBSD
	Solaris

	Analysis
	Decision whether to use a FUSE server or a library
	Layer selection
	High level interface
	Low level interface
	Kernel channel interface
	Summary of the selected solution

	Separate task for each file system driver instance
	Reading directories
	Mounting FUSE file systems
	Accessing block devices
	POSIX functions rewrite
	Block device file system server
	VFS output protocol support in block device drivers
	Conclusion

	Implementation
	Integration with libfs
	Mapping operations
	Reply functions from the low level interface
	Mounting
	Mounting other file systems under FUSE
	Storage for data about opened files
	Multithread support
	File indexes
	Creating and renaming files

	High level interface
	Reused code from Linux FUSE
	Block devices access
	Block device file system server
	VFS output interface in block device drivers
	Other patch notes

	Other necessary changes in HelenOS
	HelenOS and POSIX return codes
	Open error in libfs library
	Pread and pwrite functions
	POSIX prefix defines collision
	Comparison between native and FUSE drivers on HelenOS

	Development using distributed version control system

	Ported FUSE file systems
	ExFAT
	NTFS
	Examples from FUSE package
	Hello world in high level interface
	Hello world in low level interface

	Estimation of difficulty to port other file systems

	Conclusion
	Bibliography
	List of Tables
	Appendices
	CD-ROM content
	User Documentation
	ExFAT
	NTFS
	Compiling from sources

	List of files
	FUSE high and low level library
	New VFS server input operations (pread and pwrite)
	Block device file system
	New features of the POSIX library
	ExFAT, NTFS and other FUSE file system drivers and libraries

