
Charles University in Prague
Faculty of Mathematics and Physics

MASTER THESIS

Vojtěch Horký

Support for NUMA hardware in HelenOS

Department of Distributed and Dependable Systems

Supervisor: Mgr. Martin Děcký

Study Program: Software Systems

2011

I would like to thank my supervisor, Martin Děcký, for the countless advices
and the time spent on guiding me on the thesis. I am grateful that he
introduced HelenOS to me and encouraged me to add basic NUMA support
to it.

I would also like to thank other developers of HelenOS, namely Jakub
Jermář and Jǐŕı Svoboda, for their assistance on the mailing list and for
creating HelenOS.

I would like to thank my family and my closest friends too – for their
patience and continuous support.

I declare that I carried out this master thesis independently, and only with
the cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the
Act No. 121/2000 Coll., the Copyright Act, as amended, in particular the
fact that the Charles University in Prague has the right to conclude a license
agreement on the use of this work as a school work pursuant to Section 60
paragraph 1 of the Copyright Act.

Prague, August 2011 Vojtěch Horký

2

Název práce: Podpora NUMA hardwaru pro HelenOS
Autor: Vojtěch Horký
Katedra (ústav): Matematicko-fyzikálńı fakulta univerzity Karlovy
Vedoućı práce: Mgr. Martin Děcký
e-mail vedoućıho: decky@d3s.mff.cuni.cz

Abstrakt: Ćılem této diplomové práce je rozš́ı̌rit operačńı systém HelenOS o
podporu ccNUMA hardwaru.

Text práce obsahuje stručný úvod do problematiky ccNUMA, přehled
vlastnost́ı NUMA hardwaru a přehled vlastnost́ı HelenOS spojených s touto
problematikou (správa paměti, plánováńı atd.). Práce analyzuje rozhodnut́ı
při návrhu implementace podpory pro NUMA poč́ıtače – zavád́ı reprezen-
tace topologie do datových struktur jádra, zpř́ıstupněńı těchto informaćı do
uživatelské prostoru, afinita vláken k procesor̊um a uzl̊um, politiky alokace
paměti či vyvažováńı zátěže.

Práce též popisuje prototypovou implementaci podpory ccNUMA v He-
lenOsu na platformě AMD64 and stručné srovnáńı s podporou ccNUMA v
jiných monolitických i mikrojaderných operačńıch systémech.
Kĺıčová slova: HelenOS, NUMA, jádro, operačńı systémy

Title: Support for NUMA hardware in HelenOS
Author: Vojtěch Horký
Department: Faculty of Mathematics and Physics, Charles University
Supervisor: Mgr. Martin Děcký
Supervisor’s e-mail address: decky@d3s.mff.cuni.cz

Abstract: The goal of this master thesis is to extend HelenOS operating
system with the support for ccNUMA hardware.

The text of the thesis contains a brief introduction to ccNUMA hardware,
an overview of NUMA features and relevant features of HelenOS (memory
management, scheduling, etc.). The thesis analyses various design decisions
of the implementation of NUMA support – introducing the hardware topol-
ogy into the kernel data structures, propagating this information to user
space, thread affinity to cores and nodes, memory allocation policies, load
balancing, etc.

The thesis also contains a prototype implementation of ccNUMA support
in HelenOS for the AMD64 platform and a brief evaluation and comparison
with ccNUMA support in other monolithic and microkernel-based operating
systems.
Keywords: HelenOS, NUMA, kernel, operating systems

3

Contents

1 Introduction 7
1.1 Goals . 7
1.2 Text organization . 8

2 NUMA 9
2.1 Reasoning behind NUMA . 9
2.2 The NUMA architecture . 10
2.3 Terms . 11
2.4 Topology . 12
2.5 Advantages and disadvantages of the NUMA architecture . . . 13

3 HelenOS operating system 15
3.1 System architecture . 15
3.2 Kernel . 16

3.2.1 Memory management 16
3.2.2 Threads, tasks & scheduling 18

3.3 User space . 19
3.3.1 Passing information from kernel to user space 19

4 Analysis 20
4.1 Intended operating system usage 20

4.1.1 Home computer . 21
4.1.2 System for complex mathematical computations 21
4.1.3 Multimedia applications 22
4.1.4 Dedicated servers . 23
4.1.5 Continuous integration servers 24
4.1.6 Virtualization software 25

4.2 Hardware detection . 25
4.3 Memory management . 26

4.3.1 Allocation in kernel . 28
4.4 Load balancing . 29

4

4.5 Transparency with respect to user space vs. explicit control . . 31
4.6 Inter process communication 31
4.7 Benchmarking . 32
4.8 Summary . 33

5 Design and implementation 34
5.1 Overview . 34
5.2 Data structures used for storing NUMA configuration 35

5.2.1 Memory . 35
5.2.2 Processors . 35

5.3 Hardware detection . 36
5.3.1 Reading topology of a NUMA machine 36
5.3.2 Creating NUMA aware memory zones 36
5.3.3 Processor initialization 37

5.4 Memory management . 37
5.4.1 Slab allocator . 37

5.5 Affinity masks . 37
5.5.1 Behaviour for inherited masks 38
5.5.2 Memory allocation policies 38

5.6 Load balancing and page migration 39
5.7 Propagation of NUMA topology to user space 40
5.8 Letting user space tasks control resource placement 41
5.9 Prototype implementation of libnuma 42

5.9.1 Porting numactl . 43

6 Comparison with other operating systems 45
6.1 MINIX 3 . 45
6.2 GNU Hurd (Mach) . 45
6.3 K42 . 46
6.4 Linux . 47

7 Benchmarking 49
7.1 Benchmarks in HelenOS . 49
7.2 Measured parts of the system 50
7.3 Biases . 50
7.4 Kernel slab allocator . 51

7.4.1 Measuring access time 52
7.4.2 Measuring allocation speed 52
7.4.3 Conclusion for kernel slab allocator benchmark 53

7.5 IPC speed . 53
7.6 Simulated compilation . 54

5

7.7 Computing Levenshtein distance 57

8 Conclusion 61
8.1 Achievements, contribution to HelenOS 61
8.2 Future work – prototype improvements 62

A Benchmark results 64
A.1 Benchmarking machine . 64
A.2 Actual results . 64

B Contents of the CD, building the prototype 68
B.1 Building HelenOS . 68
B.2 Running HelenOS with QEMU 69
B.3 Building other applications . 70
B.4 Benchmark results . 71

C Prototype implementation – tools & API 72
C.1 Using numactl . 72

C.1.1 Example usage . 73
C.2 libnuma API . 74
C.3 Added system calls . 75

Bibliography 78

6

Chapter 1

Introduction

The endless effort of software and hardware engineers is aimed at improving
performance of computing machines. It started by adding secondary task on
mainframe computers in the fifties and sixties and ends with cluster com-
puting in the 21st century. When technology reached its speed limits, the
processing units were duplicated and tasks were computed in parallel.

On one side of the parallelism efforts are huge symmetric multiprocessors
(SMP) with hundreds of processing units. The other side of the spectrum is
occupied by distributed systems running on thousands of simpler and cheaper
machines. Somewhere in the middle (though closer to the SMP) are NUMA
– non uniform memory access – machines that try to tackle problems of huge
multiprocessors.

1.1 Goals
This thesis aims to analyse problems related to implementation of NUMA
support in operating systems. The thesis describes main advantages and
disadvantages of the NUMA architecture and analyses implementation and
design decisions authors of NUMA-aware operating systems shall take into
account.

To illustrate these decisions, prototype implementation of NUMA support
for HelenOS [1] – a portable microkernel-based operating system – would be
created.

The prototype implementation shall bring following improvements into
HelenOS.

• Detection of ccNUMA hardware on AMD-64 platform.

• Provide API to allow user space programs use NUMA resources explic-
itly.

7

• Provide tools for end users allowing them modify (run-time) behaviour
of programs without explicit support for NUMA.

1.2 Text organization
Below is an overview of the thesis structure and contents of individual chap-
ters.

Chapter 2 introduces the concept of NUMA hardware, providing motiva-
tion for supporting it in HelenOS.

Chapter 3 introduces the HelenOS operating system. The chapter focuses
on parts that are most relevant for the topic of this thesis.

Chapter 4 analyses the approaches and problems that need to be consid-
ered when extending operating system with support of NUMA hardware.

Chapter 5 describes the design and implementation decisions made during
programming of the prototype.

Chapter 6 compares the prototype with other operating systems.
Chapter 7 provides results of several benchmarks run above the prototype

implementation and reasoning of them.
Chapter 8 concludes the thesis.
Appendix A summarises benchmark results, B contains instructions for

building the prototype implementation. Appendix C describes command line
tools available in the prototype and short overview of the API.

8

Chapter 2

NUMA

This chapter serves as an introduction to NUMA hardware in general. It
describes some terms used in the following text and also explains why NUMA
was invented and what are the advantages of having explicit support for
ccNUMA in an operating system.

The terms NUMA and ccNUMA refer to a computer architecture or a
hardware setting of a computer. They are properly defined after short intro-
duction describing problems of symmetric multiprocessors.

2.1 Reasoning behind NUMA
From the start of computer history in the 1940s, there was always effort
to improve the performance of the computer machine. At the beginning,
higher speed was acquired by improving the hardware technology. When the
technology reached its (physical) limits, effort was shifted in other direction:
instead of making the components faster, components were duplicated and
the effort was invested into making the software capable of parallel process-
ing. NUMA hardware is another approach to this problem.

The reason for NUMA is that even the parallelism has its limits.
Typically, a multiprocessor machine consists of several processors con-

nected to the same memory using a shared bus. Schema of such computer is
shown in Figure 2.1.

For a small number of processors, the requests for memory reads or writes
could interleave without any performance degradation. That is due to the
fact that a full cache line is always loaded – satisfying several sequential
reads. Also various caches may decrease volume of the traffic on the bus –
let us omit the problem of keeping cache coherency now and focus solely on
situation when all processors request data from different parts of the memory.

9

Figure 2.1: Multiprocessor architecture with shared memory bus

CPU 1

CPU 3

CPU 0

CPU 2

Memory

However, when the number of processors is increased, the bus is not able
to satisfy all requests and the processors are forced to wait. This effectively
limits the maximum number of processors sharing the same memory bus.

The problem of a bus congestion can be postponed by introducing bigger
caches but that may introduce problems related to cache coherency – more
processors are competing over the same memory area. Another problem
with bigger caches is economical because such caches are more expensive
than ordinary memory. Other techniques can be used as well to improve the
performance – for example prefetching that can be done in times when the
traffic on the bus is lower. An extensive comparison of these techniques is
described in [2].

Because of these factors, the NUMA architecture was introduced. Al-
though NUMA does not solve all the problems (e. g. maintaining some kind
of coherency – either on hardware or software level – is an inseparable prob-
lem of any multiprocessor architecture) it provides an effective means for
achieving higher performance with reasonable costs.

2.2 The NUMA architecture
The non-uniform memory access architecture is a multiprocessor computer
architecture where individual processors have different access times to given
memory area – i. e. some memory is further away for some processors than
for others.

A schema of a simple NUMA machine is shown on Figure 2.2 (more
complex schema involving other components can be seen in Figure 4.1). The
machine has four processors and two memory banks. All processors can
access both memory banks but with different speed or latency. For example,
processor 0 can access memory 0 faster than memory 1.

Before moving on in describing the advantages and disadvantages of the
NUMA architecture, some terms need to be defined and explained.

10

Figure 2.2: Schema of NUMA architecture

Node interconnect

Memory 0

Memory 1

CPU 0 CPU 2

CPU 1 CPU 3

2.3 Terms
Node

Components with the same access time to a certain part of memory.
The conventions for what is a node may vary but typically a single
node consists of a memory bank and several processors connected to
the same bus.

Optionally, a node may also encapsulate other hardware chips, e. g. a
hard drive controller. In such case, the processors from other nodes may
not be able to access the controller directly but only with assistance
of the local processors. This may or may not be transparent to the
software.

Local memory
Memory on the same node. Access to this memory is the fastest and
optimally, a processor would access only the local memory.

Remote memory
Memory on a different node. Access to this memory is typically slower
than access to the local memory.

11

NUMA factor
Ratio between access time to local and remote memory. On PC plat-
form, the ratio is usually normalized to factor 10 (i. e. NUMA factor
for local memory is 10).

ccNUMA (cache-coherent NUMA)
Special case of NUMA architecture where the hardware by itself takes
care of cache coherency across all nodes. Optionally the ‘non-unifor-
mity’ might be transparent to the software. For example, physical
addresses may span across all nodes as a single continuous memory
area.

UMA (Uniform memory access)
‘Standard’ symmetric multiprocessor architecture where the distance –
either speed or latency – from a processor to memory is the same for
all addresses and for all processors.

2.4 Topology
Figure 2.2 displays a very simple NUMA machine where each processor can
(almost) directly access any memory. However, the machines might be more
complex and mutual resource access might be more restricted. The restriction
can be applied both on hardware and software level and in many cases makes
any strict division of NUMA machines very complicated or even impossible.

For example, when the nodes are attached in a square fashion as can
be seen in Figure 2.3, there are three situations how processor from node 0
might access memory on node 3.

1. Directly – hardware ensures proper redirection of memory access in-
structions. This denotes a typical ccNUMA machine where the hard-
ware provides high level of transparency.

2. Explicitly – software must issue some special instructions to access the
remote memory.

3. The processor might not be able to access the memory at all.

Another option for node connection is in a tree-like fashion. That could
be seen as a hardware equivalent of the ‘divide and conquer’ technique used
for many parallel computation tasks.

12

Figure 2.3: Schema of 4-node machine

0 1

2 3

2.5 Advantages and disadvantages

of the NUMA architecture
This section describes basic advantages and disadvantages of a NUMA ar-
chitecture in comparison with a ‘standard’ UMA design.

The main advantage of the NUMA architecture is the possibility of achiev-
ing higher degree of parallelism. As stated at the beginning of this chapter,
sharing the same bus can lead to bus congestion and performance degra-
dation. With NUMA, this problem is bypassed by lowering the number of
processors sharing the same bus and by increasing the number of separate
memory banks.

The higher degree of parallelism can be utilized in many applications and
itself could be treated as a reason important enough for introducing NUMA.
Actually, all other attributes of the NUMA architecture could be viewed
as disadvantages. However, these disadvantages can be minimised by using
‘smart’ software to such extent that the main advantage would prevail. This
is discussed in Chapter 4.

First disadvantage of the NUMA architecture is that the operating system
needs to recognise it. On PC platform with ccNUMA, the memory splitting is
almost transparent and an operating system without any support for NUMA
can use all resources. Different platforms and architectures may use different
settings and may leave node discovery to the operating system. Actually, it
might be sometimes difficult to say what is still NUMA and what is already
a cluster and the definitions may vary. This text will focus solely on cache
coherent NUMAs.

Other disadvantages arise when the software does not know that the
hardware is actually a NUMA one (such situation is possible on PC platform).

Threads can be scheduled on processors belonging to a different node
than the memory these threads access. Such problem can lead to worse per-
formance than using simple UMA architecture because the processors might

13

compete over the same bus and also might require assistance of controllers
from the remote node, thus slowing also access for all processors on the re-
mote node.

Another disadvantage is that UMA thread load balancing does not re-
spect incidence of the processors to the NUMA nodes. UMA load balancer
then might migrate threads across nodes, thus completely removing effects
of shared caches and memory locality.

Other closely related problem to load balancing is selection of initial pro-
cessor a thread would run on. While UMA architecture scheduler can select
the least loaded processor, NUMA aware scheduler might take also other
attributes into account, e. g. scheduling on a node that has enough free
memory.

The list of advantages and disadvantages of the NUMA architecture is
definitely not complete. It is a mere overview of problems that need to be
solved when designing a NUMA-aware operating system. These problems
will be described in more detail in Chapter 4 together with approaches for
their solving.

14

Chapter 3

HelenOS operating system

This chapter provides basic information about HelenOS operating system
with emphasis on parts that are relevant to the scope of this thesis. This in-
cludes a description of HelenOS memory management, scheduling and kernel
interface to user space.

3.1 System architecture
HelenOS is a microkernel, multiserver operating system running SPARTAN
kernel. The design of the kernel is very minimalist as it tries to push as
many things as possible from kernel to user space. That means that kernel
in HelenOS needs to take care of the following tasks only.

Memory management
This includes probing for existing memory, tracking of used and free
parts of the physical memory and providing a virtual memory abstrac-
tion to the tasks (processes).

Task management
This includes managing existing threads and tasks and their scheduling.

Inter process communication (IPC)
Communication between pair of user space tasks1.

Common abstraction level for user space applications
HelenOS is able to run on several different hardware architectures and
the last task of the kernel is to hide these hardware differences to allow

1 We adhere to use the phrase inter process communication for consistency with ter-
minology used in HelenOS, although the proper name shall be inter task communication
due to the microkernel nature of HelenOS.

15

programming of the user space applications without prior knowledge
of the target architecture.

Other functionality of the operating system – that is usually part of mono-
lithic kernel – is provided via user space servers. That includes a file system
service, network service, device drivers or a naming service for connecting to
other services.

3.2 Kernel
This section will focus on parts of HelenOS kernel that are relevant to the
scope of this text.

3.2.1 Memory management

To hide architectural differences of memory organization two layers of ab-
straction exist for memory management.

On the lowest level, memory is organized into memory zones, where each
zone represents a continuous block of a physical memory. Buddy allocator
controls allocations on each zone and also tracks free and used frames. The
buddy allocator is able to satisfy requests for allocating 2n physical frames.

However, working with the physical frames is hidden. User space tasks use
a virtual memory abstraction while the kernel uses its own memory allocator
– the slab allocator. Figure 3.1 displays hierarchy of memory management
abstractions in HelenOS. They are described in more detail in the following
sections.

Figure 3.1: Memory management structures hierarchy

. . . slabs

. . . frames

. . . zones

Memory zones

A memory zone in HelenOS is the first layer of abstraction above the hard-
ware memory banks. A single zone always represents a continuous block of
homogeneous2 physical memory, aligned to frame size.

2The word homogeneous refers to any attribute of the physical memory that might
differ across the whole memory. This might include access rights (e. g. the ROM with
BIOS or a firmware part) or a node boundary in a NUMA system.

16

Each zone contains information about its position in the physical address
space, zone flags (e. g. read/write access), information about each frame in
the zone and also service data for the buddy allocator.

Buddy allocator (frame allocator)

The buddy allocator [3] in HelenOS is used to retrieve physical frames in
power of two counts. The allocator itself does not need to know anything
about the actual memory and merely serves as an allocator that satisfies the
requests by returning free frame number.

Kernel memory allocator

To avoid direct access to physical frame structures when the kernel needs
to dynamically allocate memory, a special kernel memory allocator exists.
HelenOS uses slab allocator that is briefly described in the following para-
graphs.

The concept of a slab allocation was first introduced in [4]. HelenOS slab
allocator is closely modelled after allocator in Solaris [5] and is described
here in more detail because the prototype NUMA implementation introduced
several changes to it.

The goal of the slab allocator is to prevent memory fragmentation and
to speed up object allocation and deallocation. That is based on two ob-
servations. First, memory fragmentation is caused by sequencing allocation
requests for different sizes after each other. Second, many objects are initial-
ized and destroyed in a complicated manner but reusing objects is trivial.

The memory fragmentation is remedied by allocating objects of the same
size from a memory area called slab. Typically, the slab is backed by several
consecutive frames, their number is chosen to minimize overhead of unused
memory.

The problem with frequent initialization and destruction of objects is
remedied in the magazine layer. A magazine is an array of objects that are
fully (or almost fully) initialized but not used. When the kernel needs such
object, it is taken from the magazine. If a magazine is empty, the object is
allocated from the slab and initialized. Object disposal means putting them
back to ‘their’ magazine. When there are too many objects, they are fully
deallocated and returned to the slab. The slab then returns them back to
the frame allocator.

To maximize the positive effects of CPU caches, each CPU has its own
pair of magazines from where it allocates the objects.

The structure of the whole allocator is best described by Figure 3 in [5].

17

Virtual memory and address spaces

The kernel is also responsible for creating a virtual memory illusion – sep-
arate address spaces for individual tasks. Virtual memory management is
hierarchically higher than NUMA layer and is mentioned here only to define
terms used in HelenOS.

Address space in HelenOS is a wrapper that groups together address space
areas – regions in the address space that share common configuration. Each
address space area consists of one or more pages (backed by physical frames
of the same size). An address space area can be shared by several tasks.

The actual contents of the area is obviously stored in the physical memory
but HelenOS provides several memory backends with different capabilities
(e. g. the ELF backend maps contents of an ELF image file into the memory
while the anonymous backend is used for arbitrary data). All backends use
the buddy allocator to allocate physical frames holding the actual data.

The address space area is the smallest entity user space task can operate
with when managing its address space.

Figure 3.2 schematically displays relations between task, threads, address
space and address space areas.

Figure 3.2: Task, threads, address space and address space areas

Task Thread

Address space AS area

3.2.2 Threads, tasks & scheduling

HelenOS uses explicit tasks that are wrappers grouping together threads
as the executing entities and a single address space providing a memory
backend. The tasks are also endpoints for inter process communication – it
is not possible to send a message to a certain thread but only to a certain
task.

The scheduling uses round robin scheduler with several priorities, each
thread is scheduled separately and independently regardless of a number of

18

threads in the containing task. There is a separate instance of the scheduler
for each processor.

Load balancing of the thread queues on individual processors is performed
by special kernel threads. Each such thread is wired (i. e. cannot be migrated)
to a single processor and monitors queues on other processors and occasion-
ally ‘steals’ a thread, migrating it to its own processor.

Unlike Unix systems, new tasks are not created with the fork(), exec()
pair but by a call to a loader. Loader is a special program that is cloned
by the kernel and that starts a new program. Task wishing to start a new
one calls the loader via IPC and new task is started without any binding to
the original one. The IPC is wrapped inside task spawnvf() function. As
a result, no explicit child – parent relationship is established among tasks.
Also, the mentioned system calls that are vital for any Unix system are not
present in HelenOS and their implementation would be rather problematic.

3.3 User space
The user space environment in HelenOS consists of client applications and
system servers providing services of the operating system. Their description
is beyond the scope of this text because support for NUMA was added at
the kernel level. The only exception – how HelenOS passes information from
kernel to user space – is described in the following section.

3.3.1 Passing information from kernel to user space

Although the aim of a microkernel based operating system is to move as much
functionality to user space as possible, there will always be information that
only kernel has access to.

The question is how to propagate such information to user space. In
HelenOS, these information include list of running tasks, size of free mem-
ory or number of available processors. HelenOS uses so called sysinfo that
provides a hierarchical way to convey information to user space. Each item
is referenced by a path string and its value can be either statically assigned
or computed dynamically at the time the value is actually read.

19

Chapter 4

Analysis

The idea of adding support for NUMA hardware into an operating system is
quite easy to grasp – detect such hardware configuration and use this infor-
mation to enhance the system performance. This chapter analyses in more
detail what changes shall be done in the operating system to improve perfor-
mance when running on NUMA hardware. It does not focus on a concrete
implementation but rather provides set of problems each implementation
must deal with.

The analysis begins with decision of what kind of operating system is
being extended and continues with low level problems such as hardware de-
tection onto more high level problems, such as load balancing. The analysis
covers what information shall be propagated to user space programs. Dis-
cusses what would be handled by the operating system itself and what would
be left on the end-user applications. The analysis also briefly touches bench-
marking of a concrete implementation and requirements for the software
running in user space.

4.1 Intended operating system usage
The first question before implementing NUMA hardware aware operating
system is the intended usage of the system. Demands on a system targeted
at running complex mathematical (parallel) computations are different than
on system used as a database server and are different than requirements for
a server running continuous integration tests.

Although the variety of tasks computers are used to solve is enormous, it
is possible to select few representative samples and analyse requirements of
an operating system for them.

For analysis of requirements for NUMA aware operating system the fol-
lowing representatives were chosen. First, a home computer. Next, a com-

20

puter running complex mathematical computations and system for multi-
media applications. And finally server oriented applications. They include
‘general purpose “multi” server’ (typical settings for a smaller firm where
the single machine serves as a web server, a database and an authentication
server) and machines dedicated for a single task – web servers and database
servers are typical examples. Somewhat special is also machine used for
running large continuous integration tests and also a virtualization software
running hundreds of emulated machines.

4.1.1 Home computer

Requirements of a home computer operating system are rather slim. Personal
computer is today used typically for three different purposes. First, as a
platform to run a web browser or some text processing tools. Next, as a
multimedia platform for viewing and even editing videos and music. Last,
as an entertainment tool used for playing computer games.

It is important to realise that actual efficiency of the system as a whole
is usually not relevant here. The user requests low reaction latency and the
focus must be shifted towards more subjective aspects.

Running a web browser or a text processor efficiently does not require
NUMA architecture at all. The computer is used by a single person and
computers today are far more powerful than it would be needed for running
such applications, even on UMA machines. Moreover, most of the time the
applications merely wait for some user input and running them on NUMA
hardware would only increase the expenses for buying such machine.

Computer games are usually the only pieces of software that stress the
home computer to its limits because game producers are trying hard to pro-
vide more realistic game, resulting in higher demand of a computer power.
However, they are limited by the power of the computers that are currently
on the market and could not go beyond their limits. The author is of opinion
that computer games would not be targeted at NUMA machines unless their
price would be low enough to motivate people invest in them.

The requirements for a computer as a multimedia platform are described
later in 4.1.3.

4.1.2 System for complex mathematical computations

Under the term ‘complex mathematical computations’ are meant computa-
tions of mathematical problems that are not difficult in the principle but
difficult because of the scope of the problem. For example, solving a sys-
tem of linear equations is principally very simple but challenge arises when
the system has thousands or millions of unknowns. Some of these problems

21

are easily parallelized and are solved using huge multiprocessors. For such
problems NUMA might bring significant boost of performance.

However, for authors of NUMA aware operating system demands of such
programs are the easiest to satisfy. The reason is that authors of these
applications must understand very well the mathematics behind and are able
to specify precisely the requirements on resource allocation – both processor
and memory. Also these programs exist for a long time and their behaviour is
well known. Usually, these programs explicitly query the system to describe
its resources (or are written with fixed configuration for a concrete piece of
hardware) and then explicitly divide the task onto the processors.

Extending these programs for NUMA architecture means identification of
jobs that would profit by running on the same node. This could be done by
the author or by the operating system itself. For the former, the operating
system must supply means to get information about processor - node binding
and also means to allocate memory from a given node. For the latter, the
system must have means for monitoring access patterns.

Access pattern monitoring can be done both in hardware and software. In
the hardware, with of help of memory breakpoints or performance counters.
In an operating system by monitoring page faults (they mark the first access
to a given page). But both of these approaches degrade the performance
heavily. And not only by adding some instrumentation code. Hardware
breakpoints and page faults almost always involve exception (interrupt) han-
dling which is generally slow.

The question is whether running some automatic monitoring based on
techniques described above would actually improve overall performance when
the results would have been applied to the scheduling and allocation poli-
cies. Certainly not for short-lived tasks – and the operating system, unless
being instructed by an operator, has no knowledge of the run length of the
task. And even for longer tasks there is no guarantee that the ‘guess’ by the
operating system – no matter how sophisticated – would be accurate.

However, having option to monitor these accesses would be helpful for
development purposes. Especially for a software where the relations between
individual subtasks are more complex.

4.1.3 Multimedia applications

Multimedia applications can be divided into two basic groups. In the first
group are applications for viewing videos (and listening music) and in the
second one are applications for their editing.

Multimedia players usually work in the following pattern – retrieve the
encoded multimedia stream from a hard disk (or a network), decode it and
display it on the screen. This pattern does not provide any means to improve

22

the performance by introducing NUMA hardware. For optimal performance,
the graphics card and the disk shall be connected to the same node, thus
rendering any other node useless. Furthermore, most of the processing is
done on the graphics card and primary goal becomes fast transfer of the
multimedia data from the storage to the card.

On the other hand, multimedia editing might profit from the NUMA
architecture. For example, video recoding can be run in parallel with almost
linear speed-up [6]. The bottle-neck then may become access to the storage
media – e. g. the hard disk. Using more hard disks with stripped content
and having them connected to different nodes might decrease the negative
impact.

4.1.4 Dedicated servers

The base requirement for any server is scalability. An ideal server and oper-
ating system would double performance when the number of processors and
size of the RAM are doubled. Such scalability is very difficult to achieve on
UMA system (because of congestion of the shared memory bus) but NUMA
system has higher probability of increasing the performance in linear fashion
when more nodes are added.

For this, the software itself (i. e. the server) must be able to scale eas-
ily. That is usually achieved by creating multithreaded programs where
each thread processes its own requests with minimal interaction with other
threads. Interaction is needed only when querying shared queue of requests
and the queue might be hierarchical to minimise the number of competing
threads.

For the operating system, the requirements come in two flavours – mem-
ory allocation and thread migration due to load balancing.

Memory allocation

The server threads typically do not interact among themselves and thus it
is the best policy to allocate all memory locally. That is the part of the
problem with obvious solution. Not so obvious is what shall be done when
there is no free memory on the node.

All of three possible responses from the operating system – ‘out of mem-
ory’, allocate on different node or swap to disk – might be correct as well as
disastrous to the overall performance. The software might be smart enough
to run its own balancing routines and returning ‘no memory’ could help it to
rebalance. While allocating from somewhere else might corrupt its internal
records about resource placement. On the other hand, for simpler software
allocation elsewhere might be the solution that is ‘good enough’.

23

Thus, the operating system should provide means to specify where mem-
ory shall be allocated from when there is no free memory available. The
problem is further complicated by the fact that most operating systems ac-
tually allocate the memory when the program accesses it for the first time,
thus making the option for returning ‘no memory’ almost unavailable. The
operating system might still provide means to specify whether to swap to
disk or fallback to other nodes, for example.

Thread migration between processors

Servers might distribute the requests among the threads by its own balancing
rules and the best policy for the operating system might be to leave the load
balancing alone – i. e. perform no balancing at all. However, the server is
typically not the only process running and the operating system must main-
tain some load balancing checks. Because the emphasis is on the performance
of the server software, the operating system might be more conservative and
migrate threads only when the differences are extremely high. And migration
between nodes can be turned-off completely.

4.1.5 Continuous integration servers

Operating system running software for continuous integration (CI) testing
must be able to cope with bursty nature of load when the server spawns a
lot of new processes in a quite short period of time. Some might be running
for a very short period of time while others might execute for several hours.
The variability of demands for such server could be very high.

The following is a quite common scenario for continuous integration test-
ing. It clearly shows that operating system intended as a backend for such
job must be able to handle several ‘load patterns’.

The first step of CI is usually a checkout from some repository. That
could be from a network storage and network cards usually use some kind of
DMA for transfers and it is vital that such memory is physically close to the
network card and to the processor that will process the downloaded data.
And also close to the hard disk drive the files will be stored on.

Next step is compilation. For large projects this phase might include
manipulation with thousands of files. In a NUMA system a hard drive might
be connected to a single node only and processors from other nodes might
access it only with a ‘help’ of the local processors. In a microkernel system,
tasks servicing file system operations thus shall run on such node.

For the compilation, most of the source files has to be loaded into memory.
Because the compilation can run in parallel, the initial placement of a new
thread must take into account load of the processors and also amount of free
memory. Compilation tasks run usually for a short time – compiling (without

24

linking) a single file is a quite short operation. Thus it might be better to
find the node with most free memory first and then search for least loaded
processor on that node only.

After compilation usually comes the phase of unit tests. By nature of
unit test, this phase has very similar pattern as the compilation one.

After unit tests come tests on higher level (e. g. integration ones). They
can run for longer time and the operating system might put more weight
on balancing evenly the load on processors than on memory. Because these
tasks run for longer time, the operating system may migrate pages together
with the tasks.

Last phase is a clean-up which is somewhat similar to the checkout phase
because it brings higher load on the disk drives.

From the described scenario it is clear that running CI requires trans-
parency of NUMA hardware towards user space tasks. The programs run
during CI typically do not gain better performance by executing on a NUMA
machine. Also, the CI server software itself do not ‘need’ NUMA (after all, it
is ‘merely’ a process launcher). The performance is expected to be improved
by more effective parallel execution of the individual jobs.

The overall performance is thus determined by the ability of the operating
system to balance the load evenly and effectively. However, the CI server may
be able to provide hints about the requirements of the launched processes to
help the operating system in resource allocation decisions. For example, a
‘short lived’ hint could be interpreted by the operating system as an order to
minimise task migration among processors and to disable internode migration
totally.

4.1.6 Virtualization software

The demands of virtualization software depends on kind of virtualization
the software wants to provide. However, except for full virtualization when
the virtualized system could access all components of the real machine, the
demands on the operating system are the same as for a dedicated server.

It would be highly useful that threads belonging to the same virtual ma-
chine would execute on the same node to minimise inter-node communication.

4.2 Hardware detection
The hardware detection is a vital precondition for supporting any special
piece of hardware at all. Each architecture has its own way to provide infor-
mation about available hardware but for some hardware components merely
having the drivers is not enough – they have to be available at very early
stages of booting and may need to run under special conditions.

25

The biggest problem of NUMA detection is the need to break following
cycle.

1. The information about the topology must be placed into some kernel
structures.

2. Unless the configuration is static (i. e. known at compilation time),
storing such information may require memory allocation.

3. In order to have working memory allocation, memory subsystem must
be initialized.

4. Memory subsystem can be initialized after it knows the memory con-
figuration of the machine.

Obviously, such cycle can be broken (e. g. by reading the topology informa-
tion twice or by splitting memory initialization into more parts) but it is
an issue that must be addressed and that might affect boot process of the
operating system significantly.

But the hardware detection does not end by discovering placement of the
memory. Typically, it just needs to be detected first. Detection of placement
of other resources, e. g. processors or hard disk drives, can be postponed.
For example, to have wrong information about binding between processors
and nodes can lead to cache misses but thread can be later migrated to the
correct one. But not knowing node boundaries can lead to allocation across
them and once a kernel object is allocated, it may not be possible to move it.
This problem may arise on ccNUMA machine where nodes are transparent
and hardware provides illusion of a continuous physical address space.

4.3 Memory management
NUMA was introduced to speed up memory access and any operating system
with ambitions to use NUMA hardware effectively must ensure that running
tasks will use the memory effectively.

No matter whether the system lets user space tasks specify where to
allocate memory or it decides it by itself (see discussion in 4.5) it is necessary
that it has means how to specify from which node to allocate memory. Such
simple requirement can be used in number of different cases and its presence
(as opposite to having only operation ‘allocate from whatever node where
is enough memory’) can significantly boost performance. And it is not only
the common case to allow task allocate memory that is local for processor
the task currently executes on. Other case is for example allocating memory

26

for DMA transfers. The hardware configuration may place a network card
closer to one of the nodes.

Diagram in Figure 4.1 show possible settings for a two node system. The
picture was greatly inspired by the ‘Melody’ machine shipped with the Sim-
Now simulator [7]. It is clearly visible that operating system with ambitions
to use the NUMA configuration properly should allow allocation of memory
blocks for DMA for network card and for DVB-T card from different (close)
nodes to minimise inter-node communication.

Figure 4.1: Example of a NUMA machine on AMD-64 architecture

SMB

Mem Mem

NB NB

CPU CPU CPU CPU

PCIX SB

PCI PCI PCI

ROM

NIC VGA DVB

The schema displays two node
ccNUMA machine with two proces-
sors on each node. Network card
and DVB card are attached via PCI
to different nodes.

The frames surrounds components
that forms a single node.

In a broader sense, every device
connected to node’s Northbridge
can be considered part of that node.

CPU Processor
Mem Memory module
SMB System management bus hub

NB Northbridge controller
SB Southbridge controller

PCIX PCI-X controller
PCI PCI bus
NIC Networking card

DVB DVB card
VGA Graphics card
ROM ROM chip with BIOS

The requirements of the software might be more complex. For example
software running a complex computations in parallel. The usual pattern for

27

most parallel tasks is that the task is divided into workers at the beginning,
each worker then run on its own and the task concludes by joining results
from individual workers. The joined results are typically copied into single
area and post-processed. Allocating this target area on a single node can
lead to memory congestion. However, if the operating system offers means
to specify that certain memory should be interleaved across more nodes,
such congestion could be avoided with minimal efforts on the side of the
application programmer.

There are more patterns of parallel computing where operating system
intervention can help a lot. An application might mark certain data as read
only (without the possibility to revert that flag) and ask operating system to
duplicate them on all nodes. Such duplication can be done on the application
level as well but shifting such actions to kernel enables other options. The
operating system can perform the copying lazily (i. e. during page fault)
or may use special instructions for the copying that are available only in
privileged mode of the processor.

4.3.1 Allocation in kernel

Almost all kernel objects are allocated dynamically during the life of the
operating system. Some of them exist since boot and are never deallocated.

But many of these objects are temporary and exist for a very short period
of time. Such short-lived objects are then accessed only from a single thread.
Thus it is very probable that the thread would not be migrated and that
allocating strictly on a local node would not degrade (if not improve) the
performance.

Other objects could be considered as mid-length with respect to their
lifespan from allocation to deallocation. For example, an object representing
a running thread. Such object would be typically accessed from the context
of the represented thread and it makes good sense to allocate this object in
the local memory. Although the thread may be migrated, the load balancer
might minimise the inter-node migration thus minimising the need to migrate
the object.

It is important to state problems involved in migrating a kernel object.
First, kernel might use some kind of a slab allocation and migrating a whole
page would lead to unnecessary migration of other objects. The obvious rem-
edy is to migrate the single object only. But that means that the address of
the object would change and the kernel may have no means to find all refer-
ences to the original pointer. That renders single object migration unusable.
And even migrating whole page with several objects is not without risks.
Kernel may use identical mapping, thus effectively addressing with physical
address, and such migration would change the address.

28

The conclusion is that kernel shall allocate objects locally because it
would be optimal in most situations and shall not cause serious performance
degradation in general.

4.4 Load balancing
The purpose of load balancing is to ensure an even load on all resources of
the same kind available in the system in order to get the best performance.
In a symmetric multiprocessing, the load balancing is degraded to balancing
load on individual processors. These processors are usually identical and
thus migration of a process from one processor to another one does not lead
to any serious performance loss. Of course, there is the loss of the processor
caches but due to shared caches on multicore processors the disadvantages
are rather small in comparison with an idling processor.

On a NUMA system, there is the problem of symmetrical load balancing
on each node but also the problem of balancing between nodes. And balanc-
ing between individual nodes has to take into account both processors and
memory, thus making any ‘optimal’ solution even more complicated.

Load balancing for a UMA machine is typically done by balancing queues
of ready threads on each processor. When the queue on one processor is
longer than a queue on another one, the thread is taken from the longer
queue and appended to the shorter one. Migrated thread is then marked as
‘just migrated’ to prevent starvation.

On a NUMA machine, the same technique can be used for balancing load
within single node. But migrating a process to another node shall take into
account how much memory the process allocated on the original node. It
is possible that the process allocated only a small amount of memory and
the overhead by accessing remote memory would be minimal. But it is also
possible that the process is a long running one and allocated huge memory
blocks and moving it to another node would cause performance degradation
much higher than leaving one node with higher load.

An option for inter-node migration is to move the process memory as
well. This possibility can improve the performance as well as degrade it. For
a young process, the amount of memory is small and moving it would be
a quick operation. Moreover, such moving can be done in a lazy manner.
On the other hand, a process that is about to terminate would not benefit
from memory migration. Such memory migration might involve copying of
hundreds of pages of data, thus producing higher load on the inter node bus
than accessing the memory remotely.

Principally, the operating system does not have any knowledge what
would be the requirements of the running process and the best it can do

29

is to offer the administrator tools to balance the long running tasks manu-
ally. This could involve both thread and page migration.

Another factor influencing the migrating decision is the node distance.
When the nodes are attached in a circular fashion (as shown for example in
Figure 2.3), moving the memory to any other than immediately neighbour
node can be completely out of question. Such moving may involve assistance
of the nodes ‘on the path’, hurting the performance seriously.

The strategy might use NUMA factors to filter out too remote nodes.
However, balancing the system locally only can create huge differences be-
tween more distant nodes. This difference can hurt the performance much
more than an occasional migration between distant nodes only. Consider the
simplest scenario: two node machine with high number of processors on each
node. The policy to not migrate between nodes at all can lead to perfect
load balance on both nodes – first node has running thread on every second
processor while the second node has four threads per each processor. But it
is unlikely that the computer is used effectively.

The thread load balancer can thus choose from several strategies. Below
is a short overview of the basic ones.

No migration at all
This approach could be very useful for short lived processes because it
minimizes extra traffic on the system bus. The operating system must
ensure that the initial placement is on the node with the lowest load.

Migration between processors of the same node only
Possibility for running long term processes accessing memory a lot.
Operator intervention might be needed for initial placement.

Inter-node migration
Useful when accessing remote memory produces smaller overhead than
memory copying.

Full inter-node migration – threads and memory
Useful when it is cheaper to move the memory once to other node than
to access a remote memory.

The strategy can be either system wide or each thread might use different
setting that the load balancer respects. This setting might be automatic,
manual or combination of both. User may manually specify the strategy for
special tasks. The operating system may change the strategy automatically
by observing the task ‘behaviour’. For example, it might make the strategy
more conservative if the task runs for a long time of if it allocates a lot of
memory.

30

4.5 Transparency with respect to user space

vs. explicit control
Once the operating system knows how to control and use the NUMA hard-
ware by itself, it needs to allow user space tasks take the advantage of it as
well. There are two opposite approaches to this problem. First, make the
non-uniformity of memory access completely transparent for user space pro-
grams and use some heuristics to get ‘optimal’ usage of available resources.
Second, leave all the decisions on user space programs and concentrate purely
on executing their demands for using selected resources. Because both ap-
proaches to the problem might be useful under certain conditions, general
purpose operating system must combine both to be able to satisfy various
demands.

Making the non-uniformity transparent to the user space applications is
almost a base requirement of any operating system. Even if the target appli-
cation (e. g. mathematical computation) is built for NUMA machine explic-
itly, there would be always helper programs that do not need NUMA. Obvi-
ously it is possible that a shell would use in the code numa alloc local()

instead of malloc() but the time investment for porting these applications
would be too high. This hiding of the non-uniformity can be done by a sys-
tem library but has to be present somehow. Exception is an application that
runs on the bare hardware – i. e. the operating system is not needed or is
part of the application – but that is a very special case.

Allowing user space programs query the NUMA configuration and ex-
plicitly allocate resources is vital for highly parallel computational problems
where the author of the program knows in advance the requirements. These
programs shall know as much as possible about the actual hardware config-
uration.

Thus the operating system must at least allow the programs to query the
configuration – number of nodes, number of processors and binding between
processors and nodes. The operating system then must give means to allocate
memory on a given node and specify on which processors (or nodes) a thread
may execute. The operating system can provide extra information – that
could include placement of other components (hard disk drives, for example)
or NUMA factors.

4.6 Inter process communication
Previous sections could be well applied to any operating system. Microker-
nel based operating systems has one more demand that is crucial for good
performance – quick inter process communication.

31

Obviously, tasks running on the same node would have faster IPC be-
cause the transferred data are stored on node that is local to both processors.
Grouping communicating tasks on the same node would probably speed up
the IPC. Of course, this cannot be achieved system wide because it would
effectively move all tasks to a single node. However, for tasks interchanging
huge blocks of memory, such grouping might improve performance signifi-
cantly.

For example, moving task with hard disk driver closer to the node to
which is the disk connected sounds like a good idea. The data needs to
be transferred to the node anyway but it is questionable whether wiring a
certain task to a certain node wouldn’t actually hurt the overall performance.

Nevertheless, the operating system must provide means for such actions
because they might be worth doing under certain circumstances.

Another option might be to make system servers (such as virtual file
system server) multithreaded and distribute the threads on all nodes. The
client would then connect to the closest thread to minimize the inter node
communication. Downside is higher number of threads and thus possibly
longer queues on the processors.

4.7 Benchmarking
The final problem of each implementation of a NUMA aware operating sys-
tem is to show that the support for such hardware actually improves the
performance. There are many areas that could be benchmarked and com-
pared: from overall performance, onto performance gains during run of a
concrete program ending with synthetic measurements of small operations
typical for given operating system.

As with any benchmarking it is very important to correctly interpret the
results. Below is a short list of problems that could lead to misinterpretation
and misunderstanding of the results.

1. Caching. Performance of programs working with small chunks of data
at a time is more influenced by CPU caches than by anything else.

2. ccNUMA is more like a bigger UMA than workstation cluster. The
difference between accessing local and remote memory can be extremely
small and might be perceptible only when processing huge amounts of
data.

3. NUMA adds extra resource layer. Thus the OS needs to iterate over
one more layer and for very short benchmarks this might obscure the
effects of local and remote memory.

32

4.8 Summary
This chapter listed several aspects author of NUMA aware operating system
shall take into account to create a powerful system. Initial requirements
on the operating system are guided by expected usage of the system that
can vary much. However, the requirements can be applied to the following
observations that roughly fit any target usage of the system.

Transparency
Operating system shall provide means to hide the NUMA nature of the
hardware for applications that do not want to take advantage of it.

Topology propagation
Operating system shall provide detailed information about the hard-
ware to allow applications use it in the best possible way.

Resource placement
Operating system shall give applications possibility to specify where to
allocate memory from and where to execute a running thread.

Tools
Operating system shall provide tools to change placement of already
allocated (existing) resources.

33

Chapter 5

Design and implementation

This chapter describes design decisions made during implementation of the
prototype. We will see how requirements analysis from Chapter 4 was used
for prototyping support for ccNUMA hardware into HelenOS.

5.1 Overview
The prototype implementation extended HelenOS in the following areas re-
garding support for NUMA.

• data structures

• hardware detection

• memory management

• affinity masks for resource allocation

• load balancing

• propagation of hardware configuration information to user space pro-
grams

• letting user space tasks control NUMA-related settings of their execu-
tion

• implementation of libnuma (library to utilize NUMA resources)

34

5.2 Data structures used for storing NUMA

configuration

This section describes how information about NUMA configuration (e. g.
information about memory sizes on individual nodes or number of processors
on the nodes) is stored in the prototype implementation.

5.2.1 Memory

HelenOS uses zones (see Chapter 3) for storing information about available
memory. When adding support for NUMA, there were two options: either
extend current zone structure (zone t) with node number specifying the node
to which the zone belongs or add extra layer above zones.

The first option has the advantage of leaving most of the existing code
untouched. The disadvantage of this approach is that for getting information
about single NUMA node, all zones’ information have to be read.

The second option represents the reality more clearly – each node can
consist of several zones. For example, ROM part of the memory has its own
zone that would typically belong to one of the nodes.

It was decided that the first option would be sufficient and also easier to
implement. Running the prototype revealed that most of the nodes consists
of a single zone only which partially justifies the abstraction shortcut. Usu-
ally, the only node with several zones is node zero to which belongs memory
area with ROM and BIOS firmware.

5.2.2 Processors

Information about existing processors are stored in cpu t structure and using
the same reasons as with memory (see above), no extra layer for nodes was
created.

Although the CPU numbers (indexes) might not be sequential per each
node (actually, it seems that it is far more typical that the numbering goes
across all nodes evenly), the disadvantage – for example when looking for
‘siblings’ – shall not create serious performance degradation that would jus-
tify creating more complex data structures.

Another reason for simplicity is that there are not many situations that
would motivate a need for extra abstraction layer.

1. Reading the NUMA topology itself is not expected to be a critical part
of any program to justify optimisation for.

2. Load-balancing needs to know which processors are closer but this in-
formation is not expected to change during the life of the operating

35

system. Thus it can be computed beforehand and in long term has no
or very little performance impact.

5.3 Hardware detection
This section describes how the detection of a NUMA hardware was imple-
mented in the prototype.

The prototype implementation is targeted at PC platform where hardware
detection can use ACPI [8] – advanced configuration and power interface.

5.3.1 Reading topology of a NUMA machine

The actual retrieval of topology description from ACPI tables is straightfor-
ward and is mentioned here only for completeness.

The basic topology is described in a SRAT table – system (static) re-
source affinity table [9, p. 124]. Nodes’ distances (i. e. the NUMA factor)
are then read from a SLIT table – system locality distance information ta-
ble [9, p. 127]. While the SRAT table is crucial for establishing abstraction
of the actual hardware topology, the SLIT table is optional – it refines infor-
mation retrieved from SRAT.

5.3.2 Creating NUMA aware memory zones

The creation of zones divided on node boundaries during boot phase of
HelenOS is one of the most trickiest part of preparing a NUMA aware system.

The problem is that the operating system needs to read the topology (i. e.
read the ACPI tables) prior creating memory zones because zone splitting
might not be possible later. But that means that the memory management
is not yet initialized (e. g. kernel malloc() is not yet available) and thus
there is no possibility to store the information in some dynamically allocated
memory. Also, since page mapping is initialized after zones initialization,
some provisional mapping needs to be available because ACPI tables are
part of the physical memory.

The early stages of SPARTAN boot are divided into logical subgroups
that initialize individual subsystems. However, for proper initialization of the
zones, ACPI initialization needed to be injected before memory management
initialization (in current mainline it happens after initialization of the page
mapping).

For portability issues, it was decided that SRAT table would be parsed
into a static structure that would be later read during zone creation. The
main reason was to reduce calling of architecture-specific functions in generic
code. See Chapter 8 for discussion of possible improvements.

36

Once zones are created, the whole memory subsystem is initialized and
NUMA detection is complete from the memory point of view.

5.3.3 Processor initialization

NUMA-related initialization of processors only assigns node numbers to them
and this assigning is part of standard HelenOS procedure for symmetric mul-
tiprocessor initialization.

Once this is done, the hardware detection of a NUMA machine is consid-
ered complete.

5.4 Memory management
This section describes changes to HelenOS memory management in the pro-
totype implementation. The changes include creating allocation policies for
address space areas or improvements of the slab allocator.

5.4.1 Slab allocator

The design of the kernel memory allocator was explained in Chapter 3. The
original allocator present in HelenOS expected a single node system. Sec-
tion 4.3.1 explained that kernel allocator is often used for short-lived objects
and memory locality is vital for good performance.

Because of that extra layer was added to the slab allocator. This layer
represents individual nodes and allows allocation from local memory. The
original allocator gets free memory frames by asking the memory backend
for any memory. The new version specifies from which memory node the
memory shall be. When such request fails, request for any memory is used
as a fallback.

For benchmarking reasons, the NUMA aware allocator usage is a compile
time option.

5.5 Affinity masks
Current mainline version of HelenOS does not offer any means to specify
on which processors a certain task (or a thread) may execute. All threads
can execute on all processors and allocate memory from any node. One of
the points considered in Chapter 4 was allowing threads to specify which
resources (namely processors and memory) they would use.

To achieve this, new attribute was added to each thread and each task.
The attribute is a bitmask specifying on which processors the thread may
execute. New tasks starts with a ‘full’ mask (i. e. all bits are set) and a newly
created thread inherits the mask of the containing task. The mask held in

37

task t exists only as a template for new threads and is not actively used
because task is not an executing entity.

The template exists because user may want to bind task to certain node
which implies that all of its threads shall be scheduled on that node only.

Similar attribute – bitmask – was also added to address spaces and ad-
dress space areas. For them, it specifies from which nodes can be allocated
frames backing the virtual memory. The policy of inheritance and initial
value is the same as with threads’ processors masks.

Address spaces and their areas has one more attribute that is related to
resource allocation. This attribute is called allocation policy and determines
behaviour of the page allocator when new frame is being allocated. This
policy is described later, in Section 5.5.2.

Last thing that needs to be explained is effect of changing the mask of
a container (i. e. task or address space) on the active entity (i. e. thread or
address space area).

5.5.1 Behaviour for inherited masks

For tasks and threads, it is possible to specify whether the new container
mask shall be copied into members or whether existing threads are left un-
touched. Actually, instead of direct copying, logical bit conjunction is used.
Such approach fulfills two most common requirements – move the whole task
to another processor (including all its threads) and spawn groups of threads
with the same mask.

With address spaces areas, the situation is a little bit more complicated.
Migrating a thread to a different processor is always possible unconditionally
(omitting marginal case such as hardware failure of the processor). It may
cause worse performance (due to uneven load) but the thread will eventually
execute. On the other hand, migrating a whole address space area to a
different node may not be possible at all (e. g. due to insufficient space at the
target node). Because of that, changing mask of address space does not affect
existing address space areas and such effect must be achieved by migrating
areas explicitly.

5.5.2 Memory allocation policies

Idea of memory policies was borrowed from Linux [10] and specifies from
which nodes are allocated physical frames backing a certain virtual memory
area.

Available policies in the prototype implementation are

First touch
Allocate from node where current thread is executing (i. e. to which

38

node belongs the processor the thread is running on). Because pages
are allocated after actual access to them (i. e. as a remedy to page
fault), the ‘first touch’ policy does not imply that all backing frames
are from the same node – consider migrated thread.

In Linux, this policy is called ‘local’.

Interleaved
Allocate from all nodes in an interleaved manner. For example, when
machine has two nodes, all even pages will be backed by memory on
node 0 and all odd pages by memory on node 1.

Preferred
Allocate from specified node when possible, otherwise fallback to allo-
cating from any node with sufficient memory.

The policy can be set for each address space area. By default, allocation
policy is ‘first touch’.

5.6 Load balancing and page migration
The prototype offers several different load balancing strategies that are se-
lectable at compile time. They are based on strategies listed in 4.4.

The strategy can be found under the CPU load balancing option in the
configuration menu. Following kinds of load-balancers are available.

None
No migration at all. Thread remains on the processor where it was
placed during its creation.

Default
Use the original load balancer. This load balancer ignores NUMA nodes
and expects a symmetric multiprocessor machine.

On node only
Do not migrate threads to different nodes.

When load balancer is used, it is possible to choose whether automatic page
migration shall occur (Page seizure on thread migration).

The automatic page migration works in a lazy manner to avoid copying
huge amounts of data at once. When the thread is about to be migrated,
the load balancer prepares some of the pages for migration. It iterates over
address space areas where the policy is ‘first touch’. Then it marks pages
backed by frames from the original node (i. e. the one from where the thread

39

is being migrated away) as not present. Pages from shared memory areas are
not marked for migration at all.

When the thread accesses the missing mapping, the standard HelenOS
page fault handler is executed. The generic page handler then calls a backend-
specific page handler for given address space area. This one then decides what
to do. If the page is accessed again from the original node, it only removes
the ‘not present’ flag. Accessing from different node results in allocation of
a new frame, copying of the data and replacing the page mapping. Then the
flag is also dropped.

HelenOS uses futexes (fast user space mutexes) for mutual exclusion in
user space programs. They are closely modeled after their Linux counter-
parts [11]. Futex implementation relies on using physical address for their
identification in the kernel. Thus the physical address shall not change after
first usage of the futex. To prevent migration of pages containing futexes,
a special flag was added marking the frame as fixed. This flag is added
when futex kernel code is executed and is checked by the backend page fault
handler.

Preventing migration of futex-backing pages shall not mean performance
degradation. If the task is multithreaded, it would be accessed possibly from
more nodes and then no placement can be thought of as ‘optimal’. For
single threaded, but potentially multi-fibril1 task, the futex usage do not
enter kernel space – due to cooperative nature of fibrils – and thus the frame
would not be marked as fixed at all.

5.7 Propagation of NUMA topology to user

space
In order to allow tasks use computer resources effectively, they must learn
about them. This section describes what approach was used in the prototype
implementation to forward information about NUMA topology to user space
tasks.

HelenOS has a simple mechanism for passing information from kernel to
user space called sysinfo (see 3.3.1). This mechanism was used for passing
information about NUMA topology from kernel to user space.

Although it would be possible to avoid asking kernel completely – by
implementing another detection (as described in 5.3.1) in user space – it was
decided that sysinfo would be used. The first reason is simplicity. Proper
solution would require implementing standalone task that would read these

1HelenOS uses concept of fibrils for user space servers. Fibril is, in simple terms, a
cooperatively scheduled thread living purely in user space. Fibrils are backed by kernel
threads (in m : n relation).

40

Table 5.1: NUMA-related sysinfo entries

sysinfo path entry description (C type)

system.numa.aware Whether HelenOS was compiled with
NUMA support (bool).

system.numa.max nodes Maximum number of nodes supported
by HelenOS (sysarg t).

system.numa.nodes Information about individual
nodes (mostly memory sizes)
(stats numa node t[]).

system.numa.distances Distance table between individual
nodes (NUMA factors) (uint8 t[][]).

system.cpus Added information about node
to which the processor belongs
(stats cpu t).

information and pass them to other tasks via IPC to minimize number of
tasks with special privileges. The second reason is that kernel may not be
able to reflect the actual hardware configuration properly or that (which is a
more likely situation) the user space task would not be able to reflect running
kernel configuration (e. g. placement of kernel image to one of the nodes etc.).

Although the idea of creating a special task for querying hardware con-
figuration sounds promising, it is questionable whether such task would ever
do such probing of NUMA configuration by itself at all. Such information
is needed at very early stages of boot and needs to be implemented in the
kernel. Thus, it is useless to create another implementation of the same
functionality when the topology can be passed via sysinfo.

NUMA information is passed in system.numa subtree or was added to
already existing entries. Table 5.1 summarizes information provided by kernel
about NUMA configuration.

5.8 Letting user space tasks control resource

placement
Once the kernel has ability to specify where a thread can execute and from
which nodes it can allocate memory (see 5.5) it is important to allow control
of such placement even from user space.

Although the microkernel nature of HelenOS could lead to implementing
a special service controlling resource allocation, more straightforward ap-
proach was implemented. All functions for setting masks (both for allowed

41

processors and allowed memory nodes) and policies are backed by system
calls that change directly the underlying kernel structures.

Because HelenOS does not offer a fine grained mechanism for granting
permissions, such service would anyway only forward requests from clients
to kernel, using the same set of system calls.

The number of system calls that were added is quite high but the author
thinks that it is easier to implement and maintain more simple system calls
than a single complex one.

The system calls are described in more detail in C.3.

5.9 Prototype implementation of libnuma
One of the points in Chapter 4 was that an operating system shall give
the user space tasks ability to control resource usage. On NUMA system
it means allowing tasks to decide where to allocate memory from and on
which processors to execute. Such functions were implemented and are part
of HelenOS implementation of base C library.

To show that the set of NUMA related functions is complete, it was
decided that already existing library with this purpose would be ported to
HelenOS. The library chosen was libnuma [12], originally intended for Linux
based operating systems [13]. Reason for choosing libnuma was that it is
an open source library and also because HelenOS is in the guise of a Unix
operating system (at least in used terms and naming conventions).

After viewing sources of the original libnuma, it was decided that the
HelenOS version would be written from scratch and only the API would
remain the same where possible. The problem is that Linux libnuma reads
the configuration by reading the sysfs entries while in HelenOS sysinfo is
used. Also, Linux libnuma expects a Linux version of libc (e. g. because of
the sched setaffinity() function).

The actual implementation was then straightforward. Some of the library
functions are merely wrappers of functions from libc, others need to convert
between different formats expected by libnuma and HelenOS version of libc.

Although effort was focused on providing fully compatible API, it was
not possible with some functions. Reason is that Linux does not distinguish
much between threads and processes [14] while in HelenOS, a thread is the
executing unit and the task is merely a not-executing wrapper. Thus, original
libnuma operates purely on processes and expects a fork model of creating
new ones. When threads are used, a special converter gettid() [15] from
thread to process identification must be used.

42

Thus, several non-portable functions were added (always bearing the np

suffix) to bypass these problems while keeping the expected behavior of the
‘standard’ ones.

The library itself is in /uspace/lib/numa. The header file numa.h is then
in include/ subdirectory. Most important functions are described in C.2.

5.9.1 Porting numactl

Part of the libnuma distribution package is also a numactl utility. Its purpose
is to launch new processes with changed settings of their NUMA policy [16].
According to the manual [17] for libnuma it is apparent that libnuma shall
be used only in special cases.

For setting a specific policy globally for all memory allocations
in a process and its children it is easiest to start it with the nu-
mactl(8) utility. For more finegrained policy inside an application
this library can be used.

The numactl is implemented using libnuma functions and the author
thought that porting it would be matter of minutes needed to change some
include paths and similar trivial problems. But the problem in porting this
application was more fundamental. To understand it it is necessary to de-
scribe how this utility works.

numactl parses the command line arguments that specify the policy for
the new process. That includes specification of nodes or CPUs where the
process may execute and where from it can allocate memory. The utility
can be used also for creating shared memory segments but this feature is not
supported in HelenOS and will not be discussed here.

Once the parsing is done, the utility changes the policy for current process
(i. e. for itself). After that, the new program is started using the exec()

system call, thus replacing numactl with an image of the started program.
As was mentioned in 3.2.2, HelenOS does not have an exec() equiva-

lent that is a key feature for seamless porting of the original numactl. A
wrapper simulating the exec() would be easy to create (it would consist of
task spawnv() and exit() only) but such implementation would have no
possibility to actually pass the NUMA policy to the new task.

The problem has to be solved at the loader level during creation of the
new task. Two possible approaches for ‘injection’ of the NUMA policy to
the new task were considered. The first option would mean adding a new
method(s) to the loader through which it would be possible to specify the
NUMA policy. The second one adds a hook to the task spawnvf() that is
called as soon as the structure for the new task is created in the kernel. This
hook can then change the policies.

43

The prototype implementation uses the second approach because that
one was easier to implement and is in some ways more versatile. The first
one has definitely cleaner concept because the loader can apply the policies
at proper times (e. g. apply the CPU mask during creation of the kernel
structure instead of rewriting it later) and is also safer. It does not give the
user a handle to a task that is not in fully consistent state.

The ported numactl does not have all the functionality provided by the
original one but can be used without limitations to perform the following
tasks.

1. Display hardware configuration.

2. Display current NUMA policy.

3. Start a new task with changed policy.

4. Change NUMA policy of already existing task. This feature is not
available in the original utility.

The HelenOS version of the utility is not able to change settings of shared
memory and differs in behavior for interleaved memory setting. HelenOS does
not use a separate node mask for interleaved policy and thus changes to the
‘interleave mask’ are translated to the address space mask.

The sources of the utility can be found in /uspace/app/numactl.
Command line options are described in C.1.

44

Chapter 6

Comparison with other
operating systems

In this chapter we will compare the prototype implementation with imple-
mentations used in other operating systems.

HelenOS is a microkernel and thus the most relevant comparison would be
with another microkernel based operating system. However, the focus of the
prototype implementation is in the kernel part of the system and there are
many aspects that are comparable even with monolithic operating systems.
For example, memory and task/process management are usually integral
parts of a kernel, no matter whether a microkernel one or a monolithic one.

6.1 MINIX 3
MINIX is probably the best known microkernel operating system and the
author feels that it needs to be mentioned although it has no support for
NUMA at all. The true is that MINIX is targeted at ‘Single-chip, small-
RAM, low-power’ [18] and NUMA machines are definitely not of that kind.

6.2 GNU Hurd (Mach)
The GNU Hurd project wants to replace existing Unix kernels with a mi-
crokernel one while preserving existing APIs and ABIs. Project website [19]
states that

The GNU Hurd is the GNU project’s replacement for the Unix
kernel. It is a collection of servers that run on the Mach micro-
kernel to implement file systems, network protocols, file access
control, and other features that are implemented by the Unix
kernel or similar kernels (such as Linux)

45

Hurd is based on Mach microkernel that can be briefly described as [20]:

Mach is a first-generation microkernel.
Mach’s basic abstractions include virtual address spaces in the

form of tasks, execution contexts in the form of threads, IPC, ca-
pabilities in the form of ports, and memory objects, which enable
Mach’s external pager mechanism.

Controlling tasks, their virtual address space, threads, and
other system objects in Mach is implemented by using ports, as
opposed to other kernels’ system call interface: almost all of the
Mach API is implemented by sending messages to ports. Device
drivers that reside in kernel space are controlled by ports, too.

The [21] (from 1992) states that

The virtual memory system is designed for uniprocessors and
shared memory multi-processors of a moderate number of proces-
sors. It has been ported to non-uniform access memory architec-
tures, although optimal support for these architectures [. . .] is
still being investigated.

However, the author was not able to find any reference to a NUMA ar-
chitecture in the source codes of Hurd and Mach. That is probably because
GNU/Hurd is able to run on IA-32 architecture only. On the other hand,
the concept of external pager mechanism [22] allows easy addition of NUMA-
aware memory managers.

As K42 (see 6.3), Mach has moved the memory management issues more
into user space thus allowing more modular design.

No benchmarking comparison was done with HelenOS.

6.3 K42
K42 is a research microkernel operating system targeted at 64bit architecture.
Citing from project website [23],

The K42 group is developing a new high performance, open
source, general-purpose research operating system kernel for ca-
che-coherent multiprocessors. We are targeting next generation
servers ranging from small-scale multiprocessors that we expect
will become ubiquitous, to very large-scale non-symmetric mul-
tiprocessors that are becoming increasingly important in both
commercial and technical environments. By designing the sys-
tem from the start for multiprocessors, we achieve a high degree
of spatial and temporal locality in code and data.

46

reveals that K42 is actually aimed at NUMA technology.
K42 is designed with high modularity in mind resulting in a very small

kernel. HelenOS kernel is a small one and offers only the basic functionality
(as mentioned in 3.1) but K42 goes several steps further and reduces kernel
‘duties’ even more. For example, thread scheduling and page fault handling is
moved into user space [24]. The modularity allows replacing individual com-
ponents very easily and the author thinks that adding support for ccNUMA
machines for AMD-64 architecture would be rather simple. Currently, only
PowerPC and MIPS are supported as NUMA platforms.

Memory management in K42 [25] is based on regions and file caching
manager (FCM) . The FCM can be compared to the memory backends in
HelenOS but K42 also offers a disk file backend. Adding such backend to
HelenOS would not be a trivial job because HelenOS so far does not have
any means to serve page fault from user space. Here the K42 offers easier
implementation because all necessary routines are already in user space.

K42 wants to preserve Linux API and ABI and thus is more limited
in implementation details than HelenOS that has more benevolent approach.
Also K42 was designed for 64-bit architectures only while HelenOS is running
on 32-bits as well.

HelenOS is being developed as a hobby kernel by enthusiasts and its
pride is in clean design and high portability. K42 was developed as high-
performance solution and the author believes that K42 would probably run
better in benchmarks. The author does not have access to 64-bit NUMA
machine supported by K42 to actually measure the difference (for example,
the Levenshtein benchmark mentioned in 7.7 would be easily portable due
to usage of Linux ABI & API).

6.4 Linux
Linux is a monolithic kernel supporting many different architectures and
different kinds of deployment. One of them are large servers and Linux
has many optimisations to provide as high performance as possible. These
optimisations are usually part of architecture or even product specific code
and HelenOS could not compete with Linux in terms of efficiency or range of
supported hardware. However, Linux can be used for comparison as it can
show which direction the development of HelenOS can proceed (or which
approach is bad).

Support for NUMA technology exists in Linux since 2004 and is being
constantly refined in current 2.6/3.x series [26].

From user point of view is NUMA support in HelenOS very similar to
Linux. The most important tool for controlling NUMA – numactl – was

47

reimplemented in HelenOS and also the NUMA policy setting library – lib-
numa – is available in HelenOS. Actually, the needs of the mentioned library
partially guided the development of several features in the prototype.

Support for CPU masks (cpusets in Linux) and memory area policies are
almost the same in both systems. Both systems use dedicated system calls
to change CPU masks or allocation policies. Linux checks permissions in
kernel, HelenOS does not use any permission checking at all. In the future,
HelenOS might be extended with some access control mechanism and system
calls might be replaced with IPC (see 8.2).

Linux originally used slab allocator (as HelenOS) but today SLUB allo-
cator [27] is used. SLUB uses different organization of the caches and can
reduce their number by combining objects of similar sizes into a single cache.
It also provides better performance. HelenOS might eventually use different
allocator but for Linux efficient kernel allocator is more important than for
microkernel HelenOS.

48

Chapter 7

Benchmarking

This chapter provides concrete results of benchmarks run on the prototype
implementation and analysis of their results.

7.1 Benchmarks in HelenOS

Although HelenOS kernel could be considered complete (or at least stable
enough to build applications above it), the user space part is still very spar-
tan, especially in number of existing libraries. Practically it makes library
or application porting very time consuming due to lack of the basic libraries.
Even the base system library – libc – is not complete and moreover does not
want to be POSIX compliant. This complicates porting even more.

Unfortunately, this means that it is very difficult to measure performance
of real-world applications and compare it to other operating systems.

As a matter of fact, the author of the prototype implementation tried to
port several user space memory allocators to HelenOS without much success.
Either they depended on special functions that were not implemented in
HelenOS so far or expected certain thread model.

The most limiting factor was time. HelenOS itself is mature enough to
allow porting of many libraries but the time investment would be too high.

Because of these problems, most of the benchmarks are focused on com-
paring HelenOS with and without support for NUMA hardware. Because
NUMA support is an optional kernel and user space feature, selectable at
compile time, the comparison will be between same versions of HelenOS and
thus shall give valid results. Also, as larger libraries for real problems are
not available, most of the benchmarks described later are very synthetic ones
focusing on a small part of the system.

49

7.2 Measured parts of the system
This section describes what features of the system were measured in the
described benchmarks and why.

Chapter 4 described what parts of the system must be changed to support
NUMA hardware. The performance is then affected the most by changes to
memory allocators and load balancing entities.

HelenOS is a microkernel operating system and it makes sense to measure
everything in user space. Actually, release build of HelenOS would offer no
other choice. However, in debug build HelenOS provides a kernel console and
thus it was possible to do some measuring in kernel directly. Nevertheless,
except for synthetic benchmark of kernel slab allocator, all benchmarks were
run from user space where they could be programmed more easily and with
greater flexibility.

Measured parts of HelenOS included

• kernel slab allocator

• IPC between tasks

• wall clock time of a task spawning process

• computation of Levenshtein editing distance

Following sections describes each of the parts in more detail, together
with analysis of the results. Tables in these sections show only the average
values, complete results are part of Appendix A. The benchmarks were run on
different configurations of HelenOS – e. g. with and without NUMA support
or with different thread load balancer.

7.3 Biases
The benchmarks were designed to be as objective as possible. Also it was
expected that the measuring would happen many times to provide precise re-
sults. Unfortunately, actual results showed several problems that the author
was not able to resolve.

First, the benchmarking was run on a single machine (see A.1) because
the author does not have access to any other ccNUMA machine. The de-
velopment of the prototype was done in QEMU [28] emulator that is able
to simulate NUMA. But QEMU emulator does not simulate different access
times to memory and is completely useless for benchmarking purposes.

The second problem is even more severe. The actual results shown big de-
viations from their average. For example, the ‘Levenshtein benchmark’ (7.7)

50

running with 1 MB and 100 KB files took between 39.5 s and 43.7 s – the
difference is about 10 % of the actual run time. That is too much to allow
reliable conclusions, especially when the differences on GNU/Linux were less
than 1 %.

The reason for this difference is not known to the author. Possible expla-
nation could be that Linux is far more optimised – source codes of HelenOS
do not contain extra code to boost performance while Linux ones are ‘pol-
luted’ with architecture specific hacks to utilise power of the machine as
much as possible. Another reason might be in a very simple approach to-
wards power saving in HelenOS. In HelenOS, idle processor is halted while
Linux uses frequency scaling to provide more fluent behavior. That means
that the huge differences could be explained as scheduling anomalies.

Despite these problems actual results are presented. The conclusions shall
not be taken as completely accurate, though.

The results use simple mean average and the complete tables in Ap-
pendix A display this average and the standard deviation only. Because is
was unlikely that the differences would balance themselves out after perform-
ing hundreds of measurements, only about ten runs of each benchmark were
executed. The actual results can be found on the attached CD, see B.4.
Notice that for many benchmarks the number is actually lower because the
author manually removed results that were totally out of bounds. For exam-
ple when the measured time was twice as long as the average of the remaining
values and thus would completely disrupt the computation. This selective
removal was needed for both Linux and HelenOS.

7.4 Kernel slab allocator
The slab allocator used in HelenOS is described in Chapter 3 and changes to
it are described in Chapter 5. There were done two benchmarks above the
slab allocator. Both were run directly in kernel, from the kernel console.

The first benchmarks is concerned only with the result of the allocation
and could be considered as a proof that access to a memory on the remote
node is slower than access to a memory on the local node.

The second benchmark does the exact opposite. It completely ignores the
result of the allocation and measures only the time needed to perform the
allocation.

The benchmarks start with a ‘calibration’ phase when approximate num-
ber of loops is computed. The ‘action part’ of the benchmark is run repeat-
edly until the run time length exceeds given minimum. The counted number
of loops is then used for all parts of the benchmark. This simplifies measur-

51

ing and development – it is possible to develop in an emulator and run on a
real machine where the differences are in order of magnitude.

7.4.1 Measuring access time

The test spawns as many threads as there is processors and each thread is
then wired to a single CPU. Before the measuring, each thread allocates
several objects and their addresses are inserted into a global array. Once the
objects are allocated, each thread selects some objects from the global array
and will access them during the measured period of time.

The object selection is the decisive factor (we assume that the selection
is symmetrical for all threads). If the thread takes back its own objects, they
shall be on the local node and access to them shall be very quick. If the
thread selects one object from every other thread, it will be accessing both
local and remote objects and the time shall be longer.

For the measuring, all threads used symmetric settings. Assume the
number of processors (and threads) is n, each thread will create n objects
and store them into the global array, starting at n · i index (where i is the
CPU index). Taking back own objects is trivial, taking single object from
each other thread is also very simple (thread i takes every i-th object from n-
long block).

Expected result from this test is that the NUMA-aware kernel shall have
very similar access times on all CPUs in any symmetric object selection
(assuming the hardware itself is symmetric and the system is not low on
memory). The original kernel should show differences as some allocations
that should be node-local were actually done on a remote node.

This test is available from kernel console as test numaslab1, results are
in A.2.

7.4.2 Measuring allocation speed

Unlike the previous test, this test focuses solely on the speed of the allo-
cator without accessing the allocated memory. The purpose of the test is
to determine whether it is worth to use the NUMA-aware version of slab
allocator.

Obviously, the NUMA version would be slower as there is extra layer in
the allocator. However, if the slow down would be very small, it would be
worth using the new version as the time lost would be outweighed by faster
access to the memory.

This test is available from kernel console as test slab3, results are
in A.2.

52

Table 7.1: Deviations in object access speed

Configuration Local (512K)a [‰] Remote (512K)b [‰]

Normal slab allocator 7.8 17.6
NUMA-aware slab allocator 0.7 9.9

aObject allocated by the same thread
bObject allocated by thread executing on different node

7.4.3 Conclusion for kernel slab allocator benchmark

As can be seen in tables in A.2, the NUMA-aware slab allocator leads to
more evenly balanced access times from all processors (see standard deviation
values) or summary Table 7.1. The test runs with several block sizes but it
is apparent that the test is useless for very small blocks. The processor
cache size on the benchmarking machine plays the major role in (repetitive)
access speed. Thus only results for blocks of several kilobytes shall be taken
seriously. The small difference even for bigger blocks only confirms caching
effect.

As was expected, the modified slab is slower.
The question whether to prefer higher access speed or faster allocation

routines is quite difficult to answer and more long-term benchmarks would
probably be needed. The author thinks that HelenOS would rather profit
from faster allocator than from faster access. The reason is that kernel objects
are not accessed that often and that the NUMA factors are rather small.
However, in monolithic systems, the situation might be reversed – objects
representing, for example, open file nodes, would be typically accessed many
times. In microkernel systems, such objects exist in user space where different
allocators could be used.

7.5 IPC speed
Speed of IPC was measured using already existing applications in HelenOS.
The tester application provides a simple IPC test that pings the naming
service for several seconds.

This test was extended a little bit by migrating the pinging thread to
all processors. Placement of the naming service was changed using numactl.
For larger data blocks, the ‘compilation’ benchmark (7.6) can be used better.

It is worth mentioning that this benchmark revealed a problem in the
implementation related to CPU masks and thread migration. The problem
was a combination of starvation (the scheduler respected the CPU mask and
migrated the thread to different processor prior running it) and a migration

53

Table 7.2: IPC speed benchmark summary

Configuration Anya [rt/s] Localb [rt/s] Remotec [rt/s]

No NUMA supportd 35717 – –
NUMA support 32842 35052 25843

aNaming service can execute on any CPU
bNaming service was restricted to CPUs on the same node
cNaming service could not execute on the same node
dWithout NUMA support, the numactl is not usable and there is currently no other

way to change the affinity, thus results are not available.

to a halted processor (empty scheduler queues make a perfect choice for
overloaded processor but also causes the idle processor to halt).

The problem was solved as could be seen the in Table 7.2. The original
results has differences in order of magnitude, mostly because of the halted
processor where the thread had to wait until next clock interrupt.

The benchmark contains a calibration part that first measures how many
pings are possible within several seconds (rounded to thousands) and the
actual measuring happens using this number. The results shown in the table
are then normalized to round trips per second.

The results show that there is no clear relation between IPC speed and
node positioning. Actual times varied a lot and the author thinks that the
negative effect of halting and waking-up idle processor was not totally re-
moved. Thus, the speed is more influenced by timer setting than by node
distance. The IPC is measured more realistically as a side product in the
simulated compilation benchmark, see next section.

7.6 Simulated compilation
Chapter 4 mentioned that one of typical usages of a server is running a
continuous integration testing. The actual pattern differ depending on kind
of software that is being tested but usually it involves a compilation stage
that is somewhat similar for all projects. Thus, a benchmark simulating a
compilation stage was created.

The benchmark is only a simulation because HelenOS does not contain a
compiler to allow running a real compilation. To bypass this principal prob-
lem, a run of GCC was recorded by monitoring function calls and the record
was used to create a new C program without any branching that performs
roughly the same operations as the original compilation. Because not all li-

54

braries needed by GCC are available in HelenOS, only certain functions from
the original run were used.

It is very important that these functions are vital for program perfor-
mance and their performance is (or might be) affected by running on a NUMA
machine. Obvious candidates are functions allocating and freeing memory
(e. g. group of malloc(), calloc() and free()). Other candidates could
be any functions that might involve any inter process communication. In an
operating system with monolithic kernel, there are not many functions like
that. For example, GCC running above Linux kernel does not communicate
through IPC at all. But in a microkernel operating system, number of such
functions can be very high.

However, compilation is ‘merely’ a reading from a file, parsing this input,
converting it somehow and writing output to the file. Of course, the con-
version is a very sophisticated process but does not involve any IPC. Thus,
another group of functions worth recording are any functions involving op-
erations on files (e. g. open() or read()).

Because compilation is not an interactive process, there are no other
services the compilation task would communicate with.

The original idea was to record compilation of HelenOS in GNU/Linux.
As a matter of fact, the author tried several methods to record the run – over-
writing relevant functions using LD PRELOAD, using strace and ltrace

or using SystemTap – but none of them printed all the information needed or
conversion of the log into a C program was too complicated. Finally, dtrace
was used on OpenSolaris and compilation of several sources of GNU make
utility was recorded.

The output from dtrace was translated into C program that was then
compiled for HelenOS. The dtrace script also followed forked processes –
this situation was translated to a thread creation. To simulate file accesses,
random files were created in HelenOS disk image and actual filenames were
translated to these ones (new, smaller, files were used to save up space). This
leads to proper simulation of communication with file server in HelenOS.

The actual simulation consists of a special task – hmake – controlling
launch of other ones. It can be thought of as a make command. This program
has a statically prepared tree of dependencies, where each dependency is a
launch of some other program.

The dependencies simulate the following scenario.

• Components of type A needs to be generated first and their generation
can run in parallel.

• Components of type B and C requires A and also can run in parallel.

55

Table 7.3: Summary of simulated make benchmark

The table shows results when each component has 20 instances (thus 100
tasks were launched, some of them multithreaded).

Load balancer UMAa [s] NUMAb [s]

Default 33.6 31.6
Node only – 46.8

aWithout NUMA support
bWith NUMA support, including NUMA-aware slab allocator

• Components of type D requires C.

• Components of type E requires B and D.

The dependencies are shown in a graphical form in Figure 7.1. The ver-
tices descriptions on the right side refer to commands issued during compi-
lation of GNU make. Those who know how to compile the make utility from
sources shall not have any problems identifying the actual commands. Notice
that the graph does not follow the real scenario fully.

Figure 7.1: Graph of simulated compilation dependencies

A

B

C D

E

A gcc -c glob.c ...

B gcc -c implicit.c ...

C gcc -c fnmatch.c ...

D ar cru ...

E gcc -o make ...

Generating each item means calling the simulated compilation. Number
of components of each type can be specified at run-time. At run-time it is
also possible to specify maximum number of concurrent jobs.

Table 7.3 summarizes the results. More detailed results are available
in A.2.

The author expected that running this benchmark without any load bal-
ancer would provide better results than with some load balancer present.
But the measuring showed that turning-off or restricting the load balancer
prolonged the run by almost one half. That is probably due to the naive

56

implementation of placement of a newly created thread. The current imple-
mentation simply searches all processors and selects the least loaded one –
processor with lowest number of ready threads. However, for short tasks that
number is very volatile and as can be seen is useless as a pointer for least
loaded processor. Even the ‘node only’ balancer failed to compare with the
default one, probably for similar reasons.

The benchmark marks the run on NUMA-aware HelenOS as slightly
faster. The difference is not in order of magnitude but shows that allo-
cating local memory (instead of any) can have positive impact on the overall
performance.

7.7 Computing Levenshtein distance

Levenshtein editing distance is [29]

[. . .] a metric for measuring the amount of difference between
two sequences (i.e. an edit distance). The term edit distance is
often used to refer specifically to Levenshtein distance.

The Levenshtein distance between two strings is defined as
the minimum number of edits needed to transform one string
into the other, with the allowable edit operations being insertion,
deletion, or substitution of a single character.

[. . .]
Computing the Levenshtein distance is based on the observa-

tion that if we reserve a matrix to hold the Levenshtein distances
between all prefixes of the first string and all prefixes of the sec-
ond, then we can compute the values in the matrix by flood filling
the matrix, and thus find the distance between the two full strings
as the last value computed.

But contrary to [29], even the simplest implementation can be easily par-
allelized with good results. The prototype implementation used for bench-
marking scaled almost linearly with number of parallel sub-tasks used.

The data dependency in the matrix is the same for each cell, except for
cells in first row and column – their values are statically assigned. Before
computing a cell, cells that are above and to the left of it needs to be already
computed (see Figure 7.2).

For parallel computation, there are several approaches. The first one is
based on the fact that cells in a diagonal do not have any dependencies and
can be computed in arbitrary order. The big disadvantage of this method is
complex implementation that is error prone due to nontrivial index comput-
ing.

57

Figure 7.2: Data dependencies in matrix used for computing Levenshtein
editing distance

a b

c d

d :=

{
a same symbol
min (a, b, c) + 1 otherwise

The second approach is based on a simple observation. In order to be able
to (i. e. have data ready) compute second half of a certain row, it is necessary
to have computed all previous rows and the first half of that row. With two
threads running in parallel, each could compute its half of the matrix and
the only limitation is that the thread computing the right half of the matrix
must be delayed by one row. Obviously, this can be done recursively up to
the number of processors available to allow maximum usage of the computing
power. Figure 7.3 schematically summarizes the computation for a very small
matrix with two worker threads.

The advantage of this approach is its simpler implementation. In this
version of the algorithm, it is clear that each thread would work most of the
time on local data – the row that is currently being computed. And a task-
shared data boundary column. This observation allows to prepare a program
that explicitly asks for local memory and that uses interleaved memory for
shared data.

The program was implemented in three versions that differ in memory
allocation requests.

malloc
For all memory requests was used standard malloc().

mmap
All memory allocations were done using mmap() resembling POSIX
interface. The purpose was to use pages not controlled by the standard
malloc/free allocator.

58

Figure 7.3: Parallel computation of Levenshtein distance

⇓

Statically assigned

Already computed

‘Current’ rows

To be computed

⇓ Shared column

Thread 1 Thread 2

C
om

p
u
tation

d
irection

Table 7.4: Summary of Levenshtein benchmark (100k and 1M files)

Operating system malloc [s] mmap [s] numa [s]

Linux 2.6.35 (Fedora 14) 37.4 37.6 39.7
HelenOS, NUMA 40.8 44.1 47.5
HelenOS, no NUMA 41.5 46.2 –

numa
Explicit requests for local and interleaved memory were issued through
libnuma API.

The prototype implementation was compiled for Linux and for HelenOS and
measured with the same data on both Linux and HelenOS.

The program speed was not compared when run on a UMA machine be-
cause the author does not have access to a UMA machine with characteristics
similar to the NUMA machine the program was run on.

Table 7.4 summarizes the results. More detailed results are available
in A.2.

The table clearly shows that Linux is faster than HelenOS in this bench-
mark. The difference of more than 10% cannot be set aside as error in
measuring. On the other hand, that is to be expected. Linux is being op-
timised for high performance by thousands of developers while HelenOS is

59

more targeted at academic environment and is developed by a small group of
volunteers. It is necessary to point out that HelenOS with NUMA support
was slightly faster than without it but still lagging behind Linux a lot.

What is surprising is that the simplest version of the program, using
malloc() is the fastest. One would expect that using functions from lib-
numa would improve the performance significantly. But the opposite is true.
The first reason might be wrong understanding of the problem itself – for
example allocating the shared columns with interleaved policy. They are
accessed twice (once for reading, once for writing) and such optimisation is
probably not needed at all. Second reason is probably increased complexity
of kernel structures. Each allocation creates new address space area, increas-
ing number of objects to iterate when modifying address space (for example
checking for overlaps when adding address space area).

60

Chapter 8

Conclusion

This chapter provides summary of achieved goals related with this thesis. It
also describes areas of possible future work to improve existing implementa-
tion.

The aim of this text was to analyse requirements for operating systems
that are supposed to run effectively on NUMA machines. Part of the ef-
fort was also invested into prototype implementation of NUMA support into
HelenOS operating system.

8.1 Achievements, contribution to HelenOS
The thesis fulfilled all goals outlined in 1.1 and refined in 4.8.

The analysis covered wide spectrum of decisions any author shall take
into account when adding support for NUMA hardware. Some of them were
mentioned only briefly – for example, analysis of effective load balancing can
be thought of as a standalone topic where load balancing on NUMA archi-
tecture is only a subtopic. But all the most important problems were listed
and described in enough detail to allow implementation of the prototype.

The prototype dealt with the three most important problems related with
NUMA support. The following list summarizes them.

1. Detect NUMA hardware.

2. Make NUMA hardware transparent by default.

3. Provide API for explicit work with NUMA.

The prototype is able to detect ccNUMA hardware on AMD-64 platform
and store information about it in the kernel structures. The non uniformity
of the machine is hidden by default from user space applications and no
changes to them are needed. The base system library – libc – was extended

61

with functions for querying NUMA topology and with functions for explicit
placement of used resources.

The prototype implementation goes beyond these basic requirements –
see the following list.

1. NUMA-aware kernel memory allocator.

2. Simple, yet functional, support for different load balancing.

3. Implementation of existing API for working with NUMA machines –
bringing libnuma to HelenOS.

4. Reimplementation of numactl – bringing well known tool from Linux
operating system to HelenOS.

5. Implementation of several synthetic benchmarks.

Benchmark results do not offer plain answer whether the prototype im-
plementation has better performance than HelenOS without any support for
NUMA hardware. However, that was partially expected – it is a prototype
implementation that was run on a single real machine with set of rather
synthetic benchmarks. But it provides a base for further development that
could include other architectures or support for not cache-coherent NUMAs.

The text analyses problems such extending could bring to the authors and
offers possibilities for further improvements. HelenOS is an active project
and improvements of the prototype and its inclusion into the mainline are
not precluded.

8.2 Future work – prototype improvements
The prototype implementation can be improved in several ways that are
beyond scope of this text or were not possible with version of HelenOS the
prototype was built above.

1. Adding support for other platforms than Intel/AMD. This may include
changes to the initialization order of the memory subsystem.

2. Improve the user space allocator (see discussion in 7.1), not only for
NUMA-specific situations.

3. Introduce permission checking when changing allocation policies or
affinity masks of another task. The permission checking could be done
by introducing a new task that would be the only one having kernel
capability to change the settings. Other tasks would contact it through
IPC and it would verify the permissions with some security service.

62

4. Allow changing thread balancing policy at runtime or make it a thread
attribute.

5. Port some parallel processing framework (such as OpenMP or TBB) to
HelenOS.

6. In parallel with development of the prototype was added base support
for memory reservations. Memory reservations shall ensure that task
cannot ask for more memory than is currently available. The NUMA
support shall extend reserves to be node-properties rather than system
ones.

7. Literally days before submission, Portable C Compiler [30] was partially
ported to HelenOS as a part of Google Summer Of Code project. Its
presence would render the simulated compilation benchmark useless. It
would be interesting to measure compilation of HelenOS inside HelenOS
once PCC would have that capability.

63

Appendix A

Benchmark results

All benchmarks were run on the same two-node NUMA machine equipped
with eight processors. Full hardware configuration is described below. See
Section 7.3 for discussion about credence of the results. The oscillation of
individual results invalidates any deeper conclusions and together with low
number of measures makes other results than mean average and standard
deviation useless.

A.1 Benchmarking machine

Machine identification is copied from GNU/Linux. NUMA identification
learned with numactl --hardware is in Table A.1. Information about pro-
cessors obtained from /proc/cpuinfo is in Table A.2 (all processors are of
the same kind).

A.2 Actual results
Actual results of individual benchmarks can be seen in the following tables.
The tables always shows mean averages together with standard deviation
(number in braces). Original data are on attached CD (see B.4). See discus-
sion in 7.3 for number of performed measurements.

Following list explains used configurations.

Table A.1: Machine used for benchmarking – node information

Node 0 Node 1

CPU binding 0, 2, 4, 6 1, 3, 5, 7
Memory size 8190 MB 8192 MB
Distance to neighbour 20 20

64

Table A.2: Machine used for benchmarking – processor information

Vendor AuthenticAMD
Model Quad-Core AMD Opteron(tm) Processor 2356
Speed 2294.424 MHz

Cache size 512 KB
TLB size 1024 4 K pages

UMA
HelenOS without NUMA support and with default load balancer.

NUMA
HelenOS with NUMA support, with default load balancer.

NUMA, node LB
HelenOS with NUMA support, with node-only load balancer.

NUMA, no LB
HelenOS with NUMA support, without any load balancer.

NUMA, slab
HelenOS with NUMA support including NUMA-aware slab (kernel)
allocator, with default load balancer.

Linux 2.6
Linux with 2.6.35 kernel, Fedora 14 distribution (with NUMA support).

Following tables contains results for individual benchmarks.

Kernel slab allocator
Tables A.3 and A.4.

IPC speed
Table A.5.

Levenshtein editing distance
Table A.6.

Simulated compilation
Table A.7.

65

Table A.3: Slab allocator speed (no object access)

Settings NUMA NUMA,
slab

UMA

Batched 6717.17 5268.54 6609.91
Random 7514.12 6023.39 7529.94

(all results are in op/s)

Table A.4: Slab allocator – object access (read/write) speed

Settings NUMA NUMA,
slab

16B buffer (× 1000), ‘local’ 4218.06
(1246.5)

5498.00
(765.6)

8KB buffer, ‘local’ 17279.83
(32.4)

17285.66
(30.7)

512KB buffer, ‘local’ 128.16
(1.0)

129.99
(0.1)

8KB buffer, ‘remote’ 16645.12
(48.2)

17274.04
(40.2)

512KB buffer, ‘remote’ 130.48
(2.3)

131.33
(1.3)

(all results are in access/s)

Table A.5: IPC speed

Settings NUMA UMA

Ping, any node 32842.50
(10044.6)

35717.98
(14704.0)

Ping, local node 35052.83
(11474.9)

–

Ping, remote node 25843.64
(416.9)

–

Buffer 4096B, any node 23245.74
(7855.9)

26993.01
(10600.7)

Buffer 4096B, local node 24395.56
(8341.2)

–

Buffer 4096B, remote node 19117.23
(697.6)

–

(all results are in rt/s)

66

Table A.6: Levenshtein editing distance

Settings Linux 2.6 NUMA UMA

1M and 100k, malloc 37413.88
(70.1)

40814.00
(866.7)

41503.33
(1319.0)

1M and 100k, mmap 37553.66
(53.3)

44165.71
(3860.3)

46226.66
(3133.2)

1M and 100k, libnuma 39667.55
(929.9)

47536.25
(4092.2)

–

100k and 100k, malloc 3661.44
(4.2)

6680.00
(1285.8)

6933.75
(1075.1)

100k and 100k, mmap 3668.22
(7.8)

6902.00
(1335.1)

6340.00
(1393.1)

100k and 100k, libnuma 3799.33
(78.9)

7661.00
(1257.1)

–

(all results are in ms)

Table A.7: Simulated compilation

Settings NUMA NUMA,
node LB

NUMA,
no LB

UMA

hmake -j 8, -n 20 31677.14
(995.9)

46813.33
(272.7)

47028.33
(314.1)

33615.00
(1616.7)

hmake -j 32 -n 20 33545.71
(1302.6)

46703.33
(43.1)

46876.66
(40.3)

33111.66
(1235.1)

(all results are in ms)

67

Appendix B

Contents of the CD, building
the prototype

The attached CD contains sources of the prototype implementation, sources
of the benchmark programs and scripts to compile them. The compilation is
described later in this section. Below is a list of directories on the CD with
their content.

prototype/
Source codes of HelenOS with the prototype implementation of NUMA
support and ISO images with built HelenOS for AMD-64. This direc-
tory also contains scripts for installing cross-compiler for actual build-
ing of HelenOS.

leven/
Sources of the program for computing Levenshtein editing distance.

simake/
Sources for simulated compilation.

bench/
Raw benchmark results.

Following sections contains instructions for building. They assume that
they are executed on Unix-like operating system such as GNU/Linux. For
other operating systems, the actual commands may differ.

B.1 Building HelenOS
HelenOS cannot be built using the normal compiler shipped with the operat-
ing system but rather with a special cross-compiler. The cross-compiler can

68

be built automatically using the toolchain.sh script from prototype/tools

directory. Parameter is target architecture, amd64 is needed for the proto-
type. The cross-compiler is installed into /usr/local/cross/amd64 and the
script typically needs to be run with superuser privileges.

Once the cross-compiler is installed, one can proceed to building HelenOS.
First it is necessary to configure HelenOS. The configuration allows user to
select target architecture and other features. The configuration menu is
launched by executing

make config

from prototype/ directory.
The menu contains a lot of options but the correct configuration can be se-

lected by loading so called ‘Preconfigured defaults’. Choosing ‘amd64’ is the
right choice for the prototype. Several lines from the top are positioned items
relevant for NUMA build. The first is actual support for NUMA (‘NUMA
support’) followed by more fine-grained options such as ‘Kernel NUMA-aware
slab allocator’. Near the top of the menu is also possible to select load bal-
ancer (‘CPU load balancing’). Once the user is satisfied with the selection,
he or she can confirm it by selecting ‘Done’.

The actual compilation is started by running GNU make:

make

The compilation may take a while and a successful one is terminated by
creation of image.iso file – a bootable ISO image with HelenOS operating
system.

This ISO can be passed directly to QEMU emulator or burned onto a
CD.

If a user wants to insert other files to the ISO that are not part of HelenOS
build, these files has to be copied to uspace/dist directory prior compiling
(or HelenOS has to be recompiled by issuing make again).

The sources are also available on-line at Launchpad repository
lp:∼vojtech-horky/ helenos/ numa

The repository has also an on-line browser at
https:// code.launchpad.net/ ∼vojtech-horky/ helenos/ numa

B.2 Running HelenOS with QEMU
This section describes how to use QEMU to emulate a NUMA machine and
how to boot the prototype in it. The obvious prerequisite is to have QEMU
installed. KVM support is not needed.

Starting QEMU without NUMA emulation is very easy:

qemu -system -x86_64 -cdrom image.iso

69

lp:~vojtech-horky/helenos/numa
https://code.launchpad.net/~vojtech-horky/helenos/numa

Typically a user might want to specify more details about the machine.
Memory size is controlled via -m option, number of processors via -smp op-
tion. Following command launches 8 processor machine with 2048 MB of
memory (still a UMA machine):

qemu -system -x86_64 \

-cdrom image.iso \

-m 2048 -smp 8

NUMA is emulated by using -numa option on the command line when
starting QEMU. The parameter is used to specify memory size and CPU
binding. Simplest machine with two nodes (each 64 MB memory) and two
CPUs can be started with command

qemu -system -x86_64 \

-cdrom image.iso \

-m 128 -smp 2 \

-numa node ,mem=64,cpus=0 \

-numa node ,mem=64,cpus=1

Larger NUMA machine with four nodes where each node has 512 MB
memory and 4 processors can be started with the following command. It
is necessary to mention that emulating such machine will exercise the host
machine a lot.

qemu -system -x86_64 \

-cdrom image.iso \

-m 2048 -smp 16 \

-numa node ,mem=512, cpus=0-3 \

-numa node ,mem=512, cpus=4-7 \

-numa node ,mem=512, cpus =8-11 \

-numa node ,mem=512, cpus =12 -15

B.3 Building other applications
Both leven/ and simake/ directories contains Makefiles for compiling of
both programs. The default target builds all required versions at once.

The program for computing Levenshtein editing distance is shipped with
sample data that were used for the benchmarking.

The simulated compilation is shipped as a trace from Solaris dtrace

together with PERL script for conversion into a C code. Notice that the
generated C program is large and can compile for unusually long time.

The dtrace scripts are in the simake/ directory as well.

70

B.4 Benchmark results
The CD also contains source data for benchmarks presented in this text. The
bench/ directory contains several plain text files where each file belongs to
certain HelenOS configuration.

The file contents is line oriented, each line starts with benchmark name
and is followed by space-separated list of measured times.

71

Appendix C

Prototype implementation –
tools & API

This chapter gives a brief overview of API and tools that are part of the
prototype implementation. First, it describes numactl and gives a few ex-
amples of its usage. Follows a list of the most important functions from
the libnuma library. Last section lists system calls that were added in the
prototype implementation.

C.1 Using numactl

The numactl is a tool to change NUMA policies of existing tasks or to launch
new tasks with explicitly set NUMA policies. GNU/Linux offers program of
the same name and the HelenOS version of it tries to mimic the behavior as
much as possible (see 5.9.1).

The tool is a command-line program controlled purely by switches. Below
is a description of them. Several arguments accepts a mask (either of CPUs
or nodes). The mask can be entered either as a list of individual members
(i. e. numbers) (0,2,5) or as an interval (1-4 or !0-1 for inversion) or as a
combination of both – e. g. 0,4-5,8.

--help

Displays short help and exits.

--hardware

Displays hardware configuration of the machine and exits.

--task

Specifies id of the task the new policies would affect.

This option does not have equivalent in the GNU/Linux version.

72

--show

Shows current NUMA policy (i. e. policies of the running numactl

instance) or policy of a given task (when --task specified).

--cpunodebind MASK

Binds the task to CPUs on given nodes only.

--physcpunodebind MASK

Binds the task to given CPUs only.

--membind MASK

Allows allocation from given nodes only.

--bind MASK

Alias for --cpunodebind and --membind.

This option is not available in the GNU/Linux version.

--interleaved MASK

Sets allocation policy to interleaved on given nodes.

--local

Sets allocation policy as local (first touch).

--preferred NODE

Sets allocation to preferred from given node (single one).

When the task (--task) is not specified and none of --help, --show

or --hardware options are present, any remaining arguments are treated as
a path and arguments to a program that shall be launched with specified
NUMA policies. See next section for examples.

C.1.1 Example usage

Learn information about the machine:

/ # numactl --hardware

Available nodes: 4

Node 0 CPUs: 0 1 2 3

Node 0 memory: 524236 KiB (495272 KiB free)

Node 1 CPUs: 4 5 6 7

Node 1 memory: 524288 KiB (512660 KiB free)

Node 2 CPUs: 8 9 10 11

Node 2 memory: 524288 KiB (519164 KiB free)

Node 3 CPUs: 12 13 14 15

73

Node 3 memory: 524276 KiB (519152 KiB free)

Distance table:

| 0 1 2 3

---+----------------

0 | 10 16 16 16

1 | 16 10 16 16

2 | 16 16 10 16

3 | 16 16 16 10

Run the tester application (memory allocation test selected) on node 0
only. The output of tester is not shown.

/ # numactl --bind 0 tester malloc1

Display current policy. The first command displays the default policy be-
cause it is run inside shell that does not change policy of launched tasks. The
second command launches another instance of numactl to actually display
the new policy. Notice the explicit -- to separate arguments of the launched
task. The third example shows a rather useless policy where memory is
preferably allocated from node 1 while threads shall execute on node 2.

/ # numactl --show

Allocation policy: first touch.

Task CPU mask: ################.

/ # numactl --bind 0 -- /app/numactl --show

Allocation policy: first touch.

Task CPU mask: ####------------.

/ # numactl \

--preferred 1 --membind 1 --cpunodebind 2 \

-- /app/numactl --show

Allocation policy: preferred (1).

Memory bind mask: -#--.

Task CPU mask: --------####----.

C.2 libnuma API
The API is described in more detail in the sources in form of Doxygen com-
ments. Below is a short list of the most important functions only.

numa available

Initializes the library, checks that the OS is running on NUMA ma-
chine.
This function must be called prior calls to any other function in lib-
numa.

74

numa max node

Tells number of nodes in the system.

numa allocate cpumask

Allocate bitmask for setting CPU affinity. The bitmask can be changed
with group of numa bitmask * functions. The bitmask is then freed
with numa bitmask free.

numa allocate nodemask

Allocate bitmask for setting node affinity. Changing the created mask
is possible with functions mentioned above.

numa alloc

Allocate page-aligned block of memory using default task policy. The
implementation creates new address space area to allow different policy
settings.
Allocated memory must be deallocated using numa free.

numa alloc local

Allocate memory from local node. Like numa alloc, the returned block
is page aligned.

numa alloc interleaved

Allocate interleaved memory. Like numa alloc, the returned block is
page aligned.

numa run on node

Execute current thread only on given NUMA node (i. e. on any CPU
from that node).

numa task run on node np

Non-portable function that sets CPU mask for the whole task. It is
possible to specify whether existing threads shall be affected or not.

numa set membind

Sets from which nodes the task may allocate memory from.

C.3 Added system calls
Below is a list of added or changed system calls. The description also specifies
parameters, details can be found as Doxygen comments in the source code.

75

SYS TASK SET CPU AFFINITY

Set CPU affinity mask of the the whole task. The parameters are task
id, length of the bitmask and actual bitmask as an array of bytes. Last
argument is a boolean flag whether the new mask shall be propagated to
existing threads as well (see discussion in 5.7). See 5.8 for explanation
why it is currently possible that any task can change CPU mask of any
other task.

SYS TASK GET CPU AFFINITY

Retrieve CPU affinity mask of the whole task. The parameters is also
task id, length of the prepared mask and pointer to allocated array.
Kernel returns actual length of the bitmask as an extra parameter.
That is used in library wrapper for more comfortable usage of this
system call (see below).

SYS THREAD SET CPU AFFINITY

Set CPU affinity mask of a single thread. Parameters has similar mean-
ing as with call for changing affinity of the whole task.

SYS THREAD GET CPU AFFINITY

Get CPU affinity mask of a single thread. Counterpart of SYS TASK -

GET CPU AFFINITY on thread level.

SYS AS SET AFFINITY

Set node affinity mask and allocation policy of whole address space.
The parameters are task id (user space has no other means to identify
an address space) bitmask, allocation policy (see 5.5.2) and index of
preferred node (when applicable).

SYS AS GET AFFINITY

Returns affinity mask and allocation policy of whole address space. Pa-
rameters are very similar to SYS AS SET AFFINITY but here the kernel
writes the information user space later reads. Extra argument is again
actual length of the bitmask.

SYS AS AREA SET AFFINITY

Set node affinity mask and allocation policy of a single address space
area. Parameters are the same as for SYS AS SET AFFINITY, address
space area is specified with virtual address from within the area.

SYS AS AREA GET AFFINITY

Get node affinity mask and allocation policy of a single address space
area.

76

SYS AS AREA MIGRATE

Migrate address space area to different node. Parameters are virtual
address from the area that is supposed to be migrated and two node
numbers. The first number marks the original node, the second one
the target node. Frames from other than the original node are not
migrated.

SYS PAGE FIND MAPPING

Tells physical address of a frame backing a virtual page. This system
call was extended to return node number as well.

SYS PAGE MIGRATE

Migrate single page to a different node. Argument is virtual address of
the page and target node.

All the calls returns success as the return value from the SYSCALL macro.
Standard HelenOS error codes are used, EOK meaning success (having value
of zero).

Obviously, the system calls are not called directly by the programmer
but rather using a library wrapper. These wrappers are part of the base C
library and provide more high-level approach.

For example, system calls for reading affinity bitmask expects that the
caller prepares memory block big enough to allow kernel store the bitmask
in it. The library wrapper does this automatically and returns allocated
memory to the user. The implementation uses simple feature of ‘get affinity’
system calls that passing NULL as address where to store the bitmask is
interpreted as a valid call that does not copy any bitmask but merely sets
number of bits needed. The library then allocated the memory and executes
the system call once more.

77

Bibliography

[1] HelenOS homepage [on-line]. 2011-06-17 [cited 2011-07-15]. Available
on-line: 〈http://www.helenos.org〉

[2] Aleksandar Milenković. Achieving High Performance in Bus-Based
Shared-Memory Multiprocessors. University of Belgrade, July 2000. Also
available on-line: 〈http://www.ece.uah.edu/∼milenka/docs/milenkovic
conc00.pdf〉

[3] Buddy memory allocation – Wikipedia, the free encyclopedia [on-line].
2011-05-22, revision 430428327 [cited 2011-07-15]. Available on-line:
〈http://en.wikipedia.org/wiki/Buddy memory allocation〉

[4] Jeff Bonwick. The Slab Allocator: An Object-Caching Kernel Mem-
ory Allocator. USENIX Summer 1994 Technical Conference, Boston.
1994-06-06 – 1994-06-10. Also available on-line: 〈http://www.usenix.
org/publications/library/proceedings/bos94/bonwick.html〉

[5] Jeff Bonwick, Jonathan Adams. Magazines and Vmem: Extending the
Slab Allocator to Many CPUs and Arbitrary Resources. Proceedings of
the 2001 USENIX Annual Technical Conference, Boston. 2001-06-25
– 2001-06-30. Also available on-line: 〈http://www.usenix.org/event/
usenix01/bonwick.html〉

[6] A. Rodriguez, A. González, M. P. Malumbres. Performance eval-
uation of parallel MPEG-4 video coding algorithms on clusters
of workstations. Technical University of Valencia, 2004-06-25.
Also available on-line: 〈http://ppl.stanford.edu/cs315a/pub/Main/
CUDAEncoderProject/Performance Evaluation of Parallel MPEG-4
video encoing algorithms on clusters of workstations.pdf〉

[7] Advanced Micro Devices, Inc.. AMD SimNowTM Simulator — AMD
Developer Central [on-line]. 2011 [cited 2011-07-15]. Available on-line:
〈http://developer.amd.com/cpu/simnow/〉

[8] ACPI – Advanced Configuration and Power Interface [on-line].
2010-08-23 [cited 2011-07-15]. Available on-line: 〈http://www.acpi.info〉

78

http://www.helenos.org
http://www.ece.uah.edu/~milenka/docs/milenkovic_conc00.pdf
http://www.ece.uah.edu/~milenka/docs/milenkovic_conc00.pdf
http://en.wikipedia.org/wiki/Buddy_memory_allocation
http://www.usenix.org/publications/library/proceedings/bos94/bonwick.html
http://www.usenix.org/publications/library/proceedings/bos94/bonwick.html
http://www.usenix.org/event/usenix01/bonwick.html
http://www.usenix.org/event/usenix01/bonwick.html
http://ppl.stanford.edu/cs315a/pub/Main/CUDAEncoderProject/Performance_Evaluation_of_Parallel_MPEG-4_video_encoing_algorithms_on_clusters_of_workstations.pdf
http://ppl.stanford.edu/cs315a/pub/Main/CUDAEncoderProject/Performance_Evaluation_of_Parallel_MPEG-4_video_encoing_algorithms_on_clusters_of_workstations.pdf
http://ppl.stanford.edu/cs315a/pub/Main/CUDAEncoderProject/Performance_Evaluation_of_Parallel_MPEG-4_video_encoing_algorithms_on_clusters_of_workstations.pdf
http://developer.amd.com/cpu/simnow/
http://www.acpi.info

[9] Advanced Configuration and Power Interface Specification (revi-
sion 3.0). Hewlett-Packard Corporation, Intel Corporation, Microsoft
Corporation, Phoenix Technologies Ltd., Toshiba Corporation, 2004-
09-02. Also available on-line: 〈http://www.acpi.info/spec30.htm〉

[10] Linux Programmer’s Manual : mbind – Set memory policy for a
memory range [man]. 2008-08-15. Available in GNU/Linux shell:
〈man -s 2 mbind〉

[11] Hubertus Franke, Rusty Russell, Matthew Kirkwood. Fuss, Futexes
and Furwocks: Fast Userlevel Locking in Linux. Proceedings of the Ot-
tawa Linux Symposium. 2002-06-26 – 2002-06-29. Also available on-line:
〈http://www.kernel.org/doc/ols/2002/ols2002-pages-479-495.pdf〉

[12] Wickman Cliff, Lameter Christoph. SGI - Developer Central Open
Source — numactl and libnuma [on-line]. [cited 2011-07-27]. Available
on-line: 〈http://oss.sgi.com/projects/libnuma/〉

[13] Andi Kleen. An NUMA API for Linux. SUSE Labs, August 2004. Also
available on-line: 〈http://halobates.de/numaapi3.pdf〉

[14] Jonathan de Boyne Pollard. The known problems with threads on
Linux [on-line]. 1999 – 2003, 2010 [cited 2011-07-15]. Available on-line:
〈http://homepage.ntlworld.com./jonathan.deboynepollard/FGA/
linux-thread-problems.html〉

[15] Linux Programmer’s Manual : gettid – Get thread identification [man].
2008-04-14. Available in GNU/Linux shell: 〈man -s 2 gettid〉

[16] Linux Administrator’s Manual : numactl – Control NUMA pol-
icy for processes or shared memory [man]. March 2004. Available in
GNU/Linux shell: 〈man -s 8 numactl〉

[17] Linux Programmer’s Manual : numa – NUMA policy library [man].
December 2007. Available in GNU/Linux shell: 〈man -s 3 numa〉

[18] The MINIX 3 Operating System [on-line]. 2011-04-28 [cited 2011-07-15].
Available on-line: 〈http://www.minix3.org/〉

[19] GNU Hurd [on-line]. 2011-03-31 [cited 2011-07-15]. Available on-line:
〈http://www.gnu.org/software/hurd/〉

[20] mach [on-line]. 2010-12-21 [cited 2011-07-15]. Available on-line: 〈http:
//www.gnu.org/software/hurd/microkernel/mach.html〉

[21] Keith Loepere. Mach 3 Kernel Principles. Open Software Foun-
dation, Carnegie Mellon University, 1992-07-15. Also available
on-line: 〈http://www.cs.cmu.edu/afs/cs/project/mach/public/doc/
osf/kernel principles.ps〉

79

http://www.acpi.info/spec30.htm
http://www.kernel.org/doc/ols/2002/ols2002-pages-479-495.pdf
http://oss.sgi.com/projects/libnuma/
http://halobates.de/numaapi3.pdf
http://homepage.ntlworld.com./jonathan.deboynepollard/FGA/linux-thread-problems.html
http://homepage.ntlworld.com./jonathan.deboynepollard/FGA/linux-thread-problems.html
http://www.minix3.org/
http://www.gnu.org/software/hurd/
http://www.gnu.org/software/hurd/microkernel/mach.html
http://www.gnu.org/software/hurd/microkernel/mach.html
http://www.cs.cmu.edu/afs/cs/project/mach/public/doc/osf/kernel_principles.ps
http://www.cs.cmu.edu/afs/cs/project/mach/public/doc/osf/kernel_principles.ps

[22] Free Software Foundation. external pager mechanism [on-line].
2011-02-17, revision bdd896e0b81cfb40c8d24a78f9022f6cd1ae5e8c
[cited 2011-07-15]. Available on-line: 〈http://www.gnu.org/software/
hurd/microkernel/mach/external pager mechanism.html〉

[23] IBM, Research. K42 [on-line]. March 2006 [cited 2011-07-15]. Available
on-line: 〈http://www.research.ibm.com/K42/〉

[24] Jonathan Appavoo, Marc Auslander, Maria Butrico, Dilma Da Silva,
Orran Krieger, Mark Mergen, Michal Ostrowski, Bryan Rosenburg,
Robert W. Wisniewski, Jimi Xenidis. K42: an Open-Source Linux-
Compatible Scalable Operating System Kernel. IBM T. J. Watson Re-
search Center, 2005. Also available on-line: 〈http://www.research.ibm.
com/K42/papers/open-src.pdf〉

[25] Jonathan Appavoo, Marc Auslander, Dilma DaSilva, David Edelsohn,
Orran Krieger, Michal Ostrowski, Bryan Rosenburg, Robert W. Wis-
niewski, Jimi Xenidis. Memory Management in K42. IBM T. J. Wat-
son Research Center, August 2002. Also available on-line: 〈http://www.
research.ibm.com/K42/white-papers/MemoryMgmt.pdf〉

[26] Christoph Lameter. Local and Remote Memory: Memory in a Lin-
ux/NUMA System. Silicon Graphics, Inc., 2006-06-20. Also avail-
able on-line: 〈http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.
1.138.7986&rep=rep1&type=pdf〉

[27] Jeff Corbet. The SLUB allocator [on-line]. 2007-04-11 [cited 2011-07-15].
Available on-line: 〈http://lwn.net/Articles/229984/〉

[28] About – QEMU [on-line]. 2011-07-19, revision 1439 [cited 2011-07-20].
Available on-line: 〈http://wiki.qemu.org/Main Page〉

[29] Levenshtein distance – Wikipedia, the free encyclopedia [on-line].
2011-04-07, revision 422831210 [cited 2011-07-15]. Available on-line:
〈http://en.wikipedia.org/wiki/Levenshtein distance〉

[30] pcc – pcc portable c compiler [on-line]. 2011-05-14, revision 1.25
[cited 2011-07-26]. Available on-line: 〈http://pcc.ludd.ltu.se/〉

80

http://www.gnu.org/software/hurd/microkernel/mach/external_pager_mechanism.html
http://www.gnu.org/software/hurd/microkernel/mach/external_pager_mechanism.html
http://www.research.ibm.com/K42/
http://www.research.ibm.com/K42/papers/open-src.pdf
http://www.research.ibm.com/K42/papers/open-src.pdf
http://www.research.ibm.com/K42/white-papers/MemoryMgmt.pdf
http://www.research.ibm.com/K42/white-papers/MemoryMgmt.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.138.7986&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.138.7986&rep=rep1&type=pdf
http://lwn.net/Articles/229984/
http://wiki.qemu.org/Main_Page
http://en.wikipedia.org/wiki/Levenshtein_distance
http://pcc.ludd.ltu.se/

	Introduction
	Goals
	Text organization

	NUMA
	Reasoning behind NUMA
	The NUMA architecture
	Terms
	Topology
	Advantages and disadvantages of the NUMA architecture

	HelenOS operating system
	System architecture
	Kernel
	Memory management
	Threads, tasks & scheduling

	User space
	Passing information from kernel to user space

	Analysis
	Intended operating system usage
	Home computer
	System for complex mathematical computations
	Multimedia applications
	Dedicated servers
	Continuous integration servers
	Virtualization software

	Hardware detection
	Memory management
	Allocation in kernel

	Load balancing
	Transparency with respect to user space vs. explicit control
	Inter process communication
	Benchmarking
	Summary

	Design and implementation
	Overview
	Data structures used for storing NUMA configuration
	Memory
	Processors

	Hardware detection
	Reading topology of a NUMA machine
	Creating NUMA aware memory zones
	Processor initialization

	Memory management
	Slab allocator

	Affinity masks
	Behaviour for inherited masks
	Memory allocation policies

	Load balancing and page migration
	Propagation of NUMA topology to user space
	Letting user space tasks control resource placement
	Prototype implementation of libnuma
	Porting numactl

	Comparison with other operating systems
	MINIX 3
	GNU Hurd (Mach)
	K42
	Linux

	Benchmarking
	Benchmarks in HelenOS
	Measured parts of the system
	Biases
	Kernel slab allocator
	Measuring access time
	Measuring allocation speed
	Conclusion for kernel slab allocator benchmark

	IPC speed
	Simulated compilation
	Computing Levenshtein distance

	Conclusion
	Achievements, contribution to HelenOS
	Future work – prototype improvements

	Benchmark results
	Benchmarking machine
	Actual results

	Contents of the CD, building the prototype
	Building HelenOS
	Running HelenOS with QEMU
	Building other applications
	Benchmark results

	Prototype implementation – tools & API
	Using numactl
	Example usage

	libnuma API
	Added system calls

	Bibliography

