
Charles University in Prague
Faculty of Mathematics and Physics

MASTER THESIS

Tomáš Brambora

Task Snapshotting in HelenOS

Department of Sotware Engineering

Supervisor: Mgr. Martin Děcký

Study Program: Computer Science, Software Systems

2010

2

I would like to thank my parents for their constant support that made writing
this thesis possible in the first place and my supervisor Mgr. Martin Děcký
for his valuable advice and guidance.

I would also like to thank Mgr. Jǐŕı Svoboda and Mgr. Jakub Jeřmář
for reviewing the final version of the thesis text.

I hereby declare that I have written this thesis myself, on my own and solely
using the cited sources. I give permission to loan this document.

Prohlašuji, že jsem svou diplomovou práci napsal samostatně a výhradně
s použit́ım citovaných pramen̊u. Souhlaśım se zap̊ujčováńım práce a jej́ım
zveřejňováńım.

V Praze dne 1. 8. 2010 Tomáš Brambora

Contents

1 Introduction 7
1.1 Motivation . 7
1.2 Goals . 7
1.3 Obtaining Source Code . 8
1.4 How to Read This Document 8

1.4.1 Style Conventions . 9

2 Checkpointing Overview 10
2.1 Motivation and Application 10
2.2 Approaches . 11

2.2.1 User Space Checkpointing 11
2.2.2 Kernel-assisted Checkpointing 12
2.2.3 Transparent Checkpointing 12
2.2.4 Application-driven Checkpointing 13
2.2.5 Compiler-assisted Checkpointing 13

3 HelenOS Overview 14
3.1 Architecture . 14
3.2 Scheduling Subsystem . 15
3.3 User Space Tasks . 15

3.3.1 Identifiers and Hashes 15
3.4 IPC Subsystem . 16

3.4.1 Low Level View . 16
3.4.2 User Space View . 18
3.4.3 Naming Service . 18

3.5 Udebug Framework . 18
3.5.1 Low Level View . 19

3

CONTENTS 4

4 Analysis 20
4.1 Choosing a Suitable Approach 21

4.1.1 Kernel-assisted vs. User Space 21
4.1.2 Application-driven vs. Transparent 22

4.2 Task State . 22
4.3 Internal State . 24

4.3.1 Ensuring Consistency 24
4.3.2 Accessing the Task’s State 26
4.3.3 Memory Areas . 26
4.3.4 Threads and Task Metadata 27
4.3.5 Synchronization Primitives 27

4.4 External State . 28
4.4.1 Distributed state . 28
4.4.2 Checkpointability . 29
4.4.3 Checkpoint Set . 31
4.4.4 Lazy vs. Eager Cooperation 34
4.4.5 IPC Calls . 37
4.4.6 Cooperation With the Checkpointer 41
4.4.7 Duplicate or Missing Server Issue 45
4.4.8 Open Files . 47
4.4.9 Shared Memory . 48
4.4.10 Task Identifiers . 50

5 Design and Implementation 51
5.1 Overview . 51

5.1.1 Checkpointer Service 52
5.1.2 Exposing New Kernel Functionality 53
5.1.3 Source Code . 53

5.2 Checkpointer Interface . 54
5.2.1 Taking a Snapshot 54
5.2.2 Restoring a Checkpointed Task 55

5.3 Internal State . 56
5.3.1 Stopping the Threads 56
5.3.2 Checkpointing Thread State 58
5.3.3 Restoring a Task From the Snapshot Image 59
5.3.4 Restoring Thread State 60
5.3.5 Thread and Task Metadata 63
5.3.6 Synchronization Primitives 63

CONTENTS 5

5.3.7 Memory Areas . 64
5.3.8 Current Working Directory 65

5.4 External State . 66
5.4.1 Checkpoint Set Construction 66
5.4.2 Registering With the Checkpointer 70
5.4.3 Checkpointer Cooperation 71
5.4.4 Cooperation at Checkpoint Time 72
5.4.5 Cooperation at Restore Time 75
5.4.6 Replacing Hashes by Identifiers 78
5.4.7 IPC connections . 80
5.4.8 IPC Calls . 82
5.4.9 Shared Memory . 86
5.4.10 Open Files . 87

5.5 Putting It Together . 88
5.5.1 Checkpointing Algorithm 88
5.5.2 Restoring Algorithm 89

6 Related Work 93
6.1 Linux – CRAK . 93
6.2 Fluke . 94
6.3 L4 . 95

7 Conclusion 96
7.1 Achievements . 96
7.2 Contributions . 96
7.3 Future Work . 97

Bibliography 98

A User Manual 100
A.1 Applications . 100

A.1.1 /app/chkpnt . 100
A.1.2 /app/rstr . 101

A.2 Step-by-step Tutorial . 101
A.2.1 Checkpointing a Task 102
A.2.2 Restoring a Task . 102

CONTENTS 6

Title: Task Snapshotting in HelenOS
Author: Tomáš Brambora
Department: Department of Software Enigneering, MFF UK
Supervisor: Mgr. Martin Děcký
Supervisor’s e-mail address: martin.decky@mff.cuni.cz

Abstract: HelenOS is a modern micro-kernel based operating system being
developed at the Faculty of Mathematics and Physics of the Charles Uni-
versity in Prague. Application checkpointing is a feature which is primarily
used for adding fault tolerance to computing systems, however, it can also
be used as a basis for process migration. HelenOS has not been developed
with support for application checkpointing in mind; the aim of this thesis is
to explore the possibilities of adding such support to HelenOS and provide
a prototype implemetation.

Keywords: checkpointing, snapshotting, HelenOS

Název práce: Task Snapshotting in HelenOS
Autor: Tomáš Brambora
Katedra (ústav): Katedra softwarového inženýrstv́ı, MFF UK
Vedoućı diplomové práce: Mgr. Martin Děcký
e-mail vedoućıho: martin.decky@mff.cuni.cz

Abstrakt: HelenOS je moderńım mikrokernelovým operačńım systémem
vyv́ıjeným na Matematicko-Fyzikálńı fakultě Univerzity Karlovy v Praze.
Checkpointing je technika běžně použ́ıvaná pro zajǐstěńı určité úrovně chy-
bové tolerance pro aplikace, může však být použita i jako stavebńı kámen
pro implementaci migrace proces̊u. HelenOS nebyl navržen s ohledem na
tuto funkčnost; ćılem této práce je proto prozkoumat možnosti, jak by se
tato technika dala do HelenOS přidat, a navrhnout a implementovat proto-
typ.

Kĺıčová slova: checkpointing, snapshotting, HelenOS

Chapter 1

Introduction

1.1 Motivation

In this thesis we analyze the possibilities of extending HelenOS, a modern
microkernel-based operating system developed at the Faculty of Physics and
Mathematics of the Charles University in Prague, with support for applica-
tion checkpointing – storing the state of a running process for the purposes
of later restoration.

Checkpointing is a useful technique that allows inserting fault tolerance
into a computing system. It can be used for various purposes, e.g. recovering
a long-running application after a system crash, system administration or
as a basis for process migration.

Extending a microkernel-based operating system with support for check-
pointing is a particularly interesting topic because of the complex inter-
process dependencies present in the system (compared to a system with a
monolithic kernel). Adding support for checkpointing to HelenOS is there-
fore not only technically demanding, but it requires thorough analysis as
well.

1.2 Goals

The aim of this thesis is to extend HelenOS with the support for checkpoint-
ing. HelenOS has not been designed with any support for checkpointing in
mind, therefore the thesis should present a detailed analysis of necessary
modifications to the system. The effort should result in the following:

7

CHAPTER 1. INTRODUCTION 8

• Analysis of the possibilities for adding checkpointing support to He-
lenOS.

• A prototype implementation of the checkpointing facility proposed in
the analysis.

The analysis should select the most suitable checkpointing approach to
be used in HelenOS and where relevant, discuss alternative solutions to
any problems encountered when extending the system with checkpointing
support. Finally, we should briefly discuss the similarities and differences
between our proposed solution and checkpointing facilities used in other
operating systems.

1.3 Obtaining Source Code

Source code for the HelenOS operating system with support for checkpoint-
ing is available from Launchpad repository located at:

lp:∼tomas-brambora/helenos/checkpoint

The files can be browsed online at:

http://bazaar.launchpad.net/∼tomas-brambora/helenos/checkpoint/

1.4 How to Read This Document

Here we provide a concise description of the thesis structure and contents of
the individual sections.

Chapter 2 explains the basic concepts of checkpointing, its applications
and presents an overview of the commonly used checkpointing approaches.

Chapter 3 introduces the HelenOS operating system. We focus on the
areas that are most relevant for the subject of this thesis.

Chapter 4 provides the analysis of the possibilities for extending He-
lenOS with a checkpointing facility.

Chapter 5 discusses details of the prototype implementation.
Chapter 6 presents related work. It attempts to provide a brief descrip-

tion of the checkpointing facilities used in other operating systems, both
microkernel-based and monolithic.

CHAPTER 1. INTRODUCTION 9

Chapter 7 concludes the thesis.

1.4.1 Style Conventions

The text of this thesis uses the following style conventions:

• We use italics to denote a special term, particularly if it is the first
occurrence of the term in the text.

• We use fixed-width font for code fragments, C function names and
pathnames.

• We use CAPITALIZED FIXED-WIDTH FONT for symbolic constants (such
as error constants or IPC message methods).

Chapter 2

Checkpointing Overview

Checkpointing is a technique that allows inserting fault tolerance into com-
puting systems. It provides a running application with means for creating a
snapshot image comprising the application’s actual state so that the appli-
cation can be restored from that image at a later point in time (and perhaps
on a different machine) and continue execution.

2.1 Motivation and Application

Checkpointing can be used for numerous purposes. The most common uses
are:

• Crash recovery. Checkpointing is particularly useful for long-running
applications such as scientific computations. The application can be
checkpointed periodically and the resulting snapshot image moved to
a persistent storage. If the application is forced to stop before fin-
ishing its computation (e.g. because of power outage, hardware error
not related to the persistent storage, accidental system restart etc.), it
can be restored from the last snapshot image and continue execution.
That way, the lost computing time only equals the time that passed
since the last snapshot had been taken.

In a way, this could be compared to the concept of insurance – the user
pays the price by lenghtening the overall time the application needs to
finish (because taking the snapshot takes some time too), but in case
of a critical situation the consequences are less severe.

10

CHAPTER 2. CHECKPOINTING OVERVIEW 11

• System administration. System administrators can use checkpoint-
ing to take snapshots of the processes running on a machine before the
machine is shut down (e.g. for maintenance reasons or because of a
system upgrade) and then restart the processes when the machine is
started again (or perhaps on a different machine).

• Process migration. Checkpointing can be used to move running
processes from one host to another in order to achieve load balancing
or generally better resource utilization.

2.2 Approaches

In order for an application to restore its state from a snapshot image, the
stored image needs to contain some essential information – relevant parts of
the application’s memory and the “program state”, i.e., information about
the application’s threads (their register contents, stack etc.) and possibly
information about the opened files and network sockets etc. as well.

There are various approaches that can be used by the checkpointing
facility to obtain this data. We present the common classification below1.

2.2.1 User Space Checkpointing

The user space approach exports the application’s state using standard sys-
tem interface, e.g. POSIX. The user-visible state of the process is usually
obtained by requesting a core dump - a file – commonly used for post-mortem
process debugging – created by the operating system containing information
about the application’s state (memory areas, stack, heap, program counter
value etc.). To keep track of the kernel state of the checkpointed process, the
checkpointing facility usually uses a technique called system call augmenta-
tion – the checkpointing facility acts as a “man in the middle” (creates a
special layer between the standard library and the system interface) and
tracks the system calls made by the application. System call augmentation
is usually achieved by linking the application with the checkpointing library
or modifying the ELF image.

The advantages of user space checkpointing lie primarily in its porta-
bility – there are no changes to the kernel code whatsoever, therefore the

1We have adopted the terminology used in the classification from [5].

CHAPTER 2. CHECKPOINTING OVERVIEW 12

snapshotting framework is supposed be portable among systems that share
the same standard interface. In addition to that, this method may be the
only way to go when there is no option of modifying the kernel or at least
adding a kernel module, e.g. because the operating system is closed source.

The downside of this approach is worse overall speed of the application’s
execution because of the system call augmentation which is necessarily caus-
ing some overhead. Also, as we have mentioned before, it requires relinking
or modifying the process image, therefore worsening the checkpointing trans-
parency.

2.2.2 Kernel-assisted Checkpointing

When modifications to the kernel are possible, we can extend its interface to
provide special routines for our checkpointing needs. The advantage is that
we do not have to use a mechanism that is not primarily meant for providing
checkpointing support (which is the case of the user space approach). For
example, we do not need any system call augmentation because we are able
to add new functionality to the kernel that allows us to export the required
information.

On the other hand, adding support for checkpointing to the kernel code
inherently makes the checkpointing framework less portable (compared to
the user space checkpointing approach, which relies on the standard API
which is not supposed to change often). However, this disadvantage is made
up for by no overhead during the application’s normal execution and better
transparency (no recompiling, relinking or binary image modifications are
necessary).

2.2.3 Transparent Checkpointing

When using the transparent approach, the checkpointed application is not
aware of the existence of any checkpointing facility at all; the checkpointing
facility takes care of the whole process of taking the snapshot. As a result,
snapshotting can be added later as an afterthought without any changes to
the application whatsoever.

Transparency is naturally very convenient for the application developer
as he does not need to insert checkpointing-related logic to the application
code. Unfortunately, because the application does not know that a check-
pointing operation is taking place, the checkpointing facility has to guarantee

CHAPTER 2. CHECKPOINTING OVERVIEW 13

that the checkpointed process is in a consistent state at the moment of the
snapshot creation – the process could e.g. be in the middle of an I/O oper-
ation or IPC, which could possibly lead to an inconsistent application state
at restore time. This complicates the design of the checkpointing facility.
Yet another price paid for the transparency is the lower speed of the check-
pointing operation – the checkpointing facility does not have the knowledge
required to exclude unnecessary parts of the application state (such as un-
used parts of its mapped memory), therefore a lot of state information must
be saved within the snapshot image.

2.2.4 Application-driven Checkpointing

The opposite of transparent checkpointing is the application-driven approach.
This technique leaves the decision when the snapshotting should take place
and what exactly should be stored in the created image up to the applica-
tion itself. During the restoring process, the application uses the contents
of the snapshot image to restore its state to the point where it can resume
execution. A well known example of application-driven checkpointing is e.g.
saving the state in a computer game.

The advantages of this approach are the overall efficiency – small size
of the snapshot image (no unnecessary data is stored) and checkpointing
speed resulting from this – and possible portability between heterogeneous
environments. However, application-driven checkpointing is by definition
non-transparent to the application and therefore it always complicates the
design of the application up to some point.

2.2.5 Compiler-assisted Checkpointing

Another approach to creating a snapshot is compiling the application using
a special checkpointing-aware compiler2. The compiler decides what should
be included in the snapshot image and when the snapshot should be taken.

Compiler-assisted checkpointing possibly generates snapshots that can
be restored in heterogeneous environments (i.e., on a different hardware
architecture than the snapshot was taken on). However, it requires the ap-
plication to be compiled with a special compiler, therefore the transparency
is worse than e.g. when using the kernel-assisted approach.

2The compiler-assisted approach is beyond the scope of this thesis, we however mention
it for the sake of completeness.

Chapter 3

HelenOS Overview

HelenOS is a microkernel-based operating system developed mostly by fac-
ulty members and former and contemporary students of the Faculty of Math-
ematics and Physics at the Charles University in Prague. It builds on top of
SPARTAN microkernel written in 2001–2004 by Jakub Jermář as a school
assignment. Later in 2004, SPARTAN was extended into a software project
called HelenOS and ported to several different platforms. HelenOS com-
prises the SPARTAN microkernel and user space libraries, services and ap-
plications.

The most notable features of HelenOS are a large number of supported
architectures, small amount of architecture-dependent code (which makes
the operating system highly portable) and high coding standards.

3.1 Architecture

HelenOS is designed as a relatively small microkernel with a set of user
space system servers and drivers. The kernel provides scheduling, memory
management and IPC services and contains the essential device drivers (e.g.
the system clock). The user space layer comprises tasks with different roles
and capabilities, some of which serve as device drivers, naming services or
managers of various kinds, which abstract the access to system resources,
while others are ordinary user programs. Tasks communicate with the kernel
via a set of system calls and with each other by using kernel-provided IPC
services.

A detailed documentation of HelenOS features is provided in [1]. Here
we present a brief overview of the features relevant to the topic of this thesis

14

CHAPTER 3. HELENOS OVERVIEW 15

– extending HelenOS with the support for checkpointing.

3.2 Scheduling Subsystem

The smallest unit of execution flow recognized by HelenOS kernel is a thread.
The relation between kernel and user space threads can be denoted as 1:1:n –
there can be several user space pseudothreads (called fibrils) running within
each user space thread, which is mapped to one kernel thread. Threads
are grouped together according to their functionality into entities called
tasks. Tasks provide linkage to address space and serve as a communication
endpoint to IPC (see Sec. 3.4).

3.3 User Space Tasks

There is no such thing as a fork operation commonly used on POSIX systems
in HelenOS. Every task is created from scratch having an empty address
space and address space areas are mapped into it (usually one for the code
segment, one for the data segment and one for the stack). The kernel keeps
a list of so-called init-binary images, which it executes during the booting
process. The resulting tasks are called init tasks.

3.3.1 Identifiers and Hashes

In HelenOS, user space tasks can refer to resources managed by the kernel
using IDs or hashes. IDs are 64-bit unsigned integers and are assigned
sequentially starting from 1. Hashes are implemented simply as pointers
to memory. The main difference is that IDs are not recycled, while hashes
(i.e., memory pointers) can get reused quite often – each time kernel uses an
address that has been freed for a new structure. A task can therefore access
wrong resources if it uses a stale hash.

This is an especially important observation for the checkpointing facility
because at the time of task restoration, all its hashes are most likely to be
stale.

CHAPTER 3. HELENOS OVERVIEW 16

3.4 IPC Subsystem

Because of the multiserver design of HelenOS, emphasis has been put on
developing an efficient IPC mechanism.

All the communication between tasks in HelenOS is achieved via sending
IPC messages or memory sharing (which is however initiated by sending
an IPC message too). No other way of IPC – such as signals, pipes or
semaphores – is currently implemented in HelenOS.

3.4.1 Low Level View

HelenOS implements an asynchronous1 messaging system based on a meta-
phore of phones and answerboxes. Tasks communicate with each other via
sending fixed-length messages, dubbed calls. Each task has a number of
phones at its disposal and an answerbox serving as a message queue. A task
refers to its phones using task-unique identifiers (in this sense, the phone
identifiers are analogous to UNIX-like file descriptors).

The IPC subsystem consists of one-way communication channels created
by connecting a phone to an answerbox. From the low-level point of view
an IPC message is just an array of six machine words - the first element of
the array is called method number in the requests and return value in the
responses and is the only part of the message interpreted by the kernel. The
remaining five words are called payload arguments. Messages are sent via
the phones to the target answerboxes.

Server application is notified every time a call arrives to its answerbox
and it pulls messages from several queues associated with it (see Fig. 3.12).
After the requested action has been completed, the server sends a reply back
to the answerbox of the originating task. The task is also given the option
of forwarding a received call via any of its open phones to another task;
this mechanism is used e.g. for opening new connections to services via the
Naming Service.

The communication between two tasks – for simplicity we shall call them
A and B in the following text – looks as follows (see Fig. 3.1).

1. A sends a message via its phone to B’s answerbox, the call is stored
in B’s incoming queue.

1Both synchronous and asynchronous communication is actually possible in HelenOS,
but it is safe to say that primarily it is asynchronous.

2The image has been taken from [1].

CHAPTER 3. HELENOS OVERVIEW 17

Notifications

Incoming

Dispatched

Answers

Answerbox

Task A

Notifications

Incoming

Dispatched

Answers

Answerbox

Task B

IPC Phones IPC Phones

IPC Call

Answer

Processing

Figure 3.1: Low level IPC.

2. B fetches the call for processing, the call is moved to the dispatched
queue.

3. B answers the message, the call is moved to A’s answers queue.

4. A fetches the answer, the call is removed from its answers queue.

When a task closes an outgoing connection, the target answerbox receives
a hangup message IPC M HANGUP. Closing an incoming connection is done
by responding to any incoming message with a EHANGUP error code. The
client phone identifier is not reused until the client closes his own side of the
connection.

Every message that has been sent must be eventually answered (with the
single exception of notifications described below). The system keeps track
of all calls so that it can answer them with an appropriate error code in case
any of the connection parties fails unexpectedly.

To facilitate kernel-to-user communication, special notification messages
are provided. Contrary to normal messages, there is no need to respond to
notification calls as there is no party that could receive such response.

CHAPTER 3. HELENOS OVERVIEW 18

3.4.2 User Space View

In a multithreaded application (or even in an application with a single
thread, but multiple fibrils) it would be quite difficult to keep the concept of
a connection without any library support – should more (pseudo)threads be
waiting for a call, it would be a matter of coincidence, which thread would
receive which message.

For this reason, HelenOS provides a simple and comprehensible layer
over the low level IPC library functions – the asynchronous framework.
The framework makes extensive use of fibrils and allows issuing multiple
asynchronous requests in multiple threads concurrently and guarantees that
responses are delivered to the correct recipients waiting for the reply.

3.4.3 Naming Service

In HelenOS, it is not possible for a task to connect to another task directly
(e.g. using the task’s PID). For this purposes HelenOS provides a special
server, called Naming Service. Each task is connected to the Naming Service
when it is launched. If the task wants to act as a server (i.e., make itself
visible and let other tasks connect to it), it registers with the Naming Service
by sending a special message CONNECT TO ME. When it wishes to connect
to another task, it sends another special message CONNECT ME TO, which is
propagated by the Naming Service to the other task and if the task accepts
the connection attempt, a new connection is opened and a phone identifier
representing the connection is returned in the response.

3.5 Udebug Framework

HelenOS provides a user space debugging facility called udebug ; in this sec-
tion we will outline its most important features. A detailed description of
the udebug framework can be found in [3].

The udebug facility allows a task (a “debugger”) to stop the execution
of another task running in the system and enter a debugging session with it
allowing the debugger to – among other things – gain read/write access to
its memory areas.

CHAPTER 3. HELENOS OVERVIEW 19

3.5.1 Low Level View

HelenOS IPC mechanism is used by the udebug facility to manage the de-
bugging operation. A special kernel answerbox (so called kbox) is created
for the debugged application by a special system call ipc connect kbox and
one of the debugger’s IPC phones is connected to it. The debug operations
(such as reading memory from a certain address or letting the task run until
a breakpoint is reached) are executed by sending an IPC message specifying
one of the debug methods via the phone connected to the kbox. Because the
HelenOS kernel does not allow accessing memory areas of a task from out-
side the context of the task, udebug launches a special kernel thread (called
kbox thread) that runs in the context of the debugged application allowing
the debugger to access the requested memory areas.

The task’s execution is stopped (and the debugging session started) when
kbox receives a UDEBUG M BEGIN message. The stopping mechanism utilizes
so called stoppable sections – in every blocking system call, the section where
the thread that executes the call actually gets blocked is wrapped by a pair of
udebug stoppable begin and udebug stoppable end function calls which
ensure that if a udebug session is currently active (i.e., a UDEBUG M BEGIN

call has been received) the thread will not leave the stoppable section (i.e.,
get past the udebug stoppable end function call), but will block on a spe-
cial kernel udebug waiting queue instead. Apart from the blocking system
calls, a stoppable section is also present at the beginning and the end of
syscall handler which is the top-level routine for handling system calls
and in the clock function, which is called when a thread is preempted (a
check is made to stop the thread’s execution when it is preempted from
running in the user space only).

To allow a stopped thread to resume execution, the udebug facility offers
the UDEBUG M GO method, which allows a specified stopped thread to resume
execution until a specified debugging event occurs (e.g., the thread reaches
a breakpoint, enters or leaves a system call handler etc.). Such thread is
said to be marked Go.

The debugging session ends when the kbox receives a UBEBUG M END

method. All threads then resume execution.

Chapter 4

Analysis

Considered from the high level point of view, the idea of checkpointing is
quite simple. Basically, it comprises two steps – first, we choose the task
to be checkpointed and obtain the information about its state at the given
point of time (we may then save this information to a persistent storage,
send it over a network connection etc.); the second stage is the restoration
of the process – this is where we use the previously obtained data to resume
the execution of the task from the point it has been checkpointed at.

However, when designing a checkpointing facility for a specific operating
system, we have to adapt its design to fit the system’s unique features. In
this chapter we will focus on the features of HelenOS (i.e., a microkernel-
based multiserver system) described earlier and analyze them in the context
of checkpointing.

The intent of this chapter is not to provide a description of a concrete im-
plementation, but rather analyze the general problems we have to face when
designing a checkpointing facility for HelenOS and present our solutions.
Most of the ideas described in this chapter apply generally to checkpointing
a microkernel-based multiserver operating system. The low-level implemen-
tational details (i.e., the description of a prototype implementation) are then
presented in Section 5.

We will begin the analysis by discussing which checkpointing approach is
the most suitable to be used in HelenOS. Then we will focus on the concept of
the task state and explain that it can be divided into two mutually exclusive
parts – the internal state and the external state. Next, we will present an
analysis of the internal state and a discussion on what is needed to achieve
consistency when taking a snapshot of a single task. The last part of this

20

CHAPTER 4. ANALYSIS 21

chapter then focuses on the external state and answers the questions what
tasks have to participate in the checkpointing operation in order to generate
a snapshot image for a given task, how to obtain the external state of a given
task and deals with the problem of consistency of the whole checkpointing
operation.

4.1 Choosing a Suitable Approach

As has already been mentioned in Section 2, there are a number of possible
approaches to checkpointing. When designing a checkpointing facility for a
selected system, some of those approaches might be forbidden to us because
of certain conditions that we are unable to change – for example if we do not
have access to the kernel source code nor can we add any kernel modules,
we are unable to use kernel-assisted checkpointing. However, in most of the
cases the design decisions are up to us to be made.

Those decisions play an essential role in the process of designing the
checkpointing facility, therefore our analysis should begin by choosing the
most suitable checkpointing approach.

4.1.1 Kernel-assisted vs. User Space

Choosing between kernel-assisted and user space checkpointing was rather
a straightforward decision for HelenOS – as we have described in Sec. 2.2.1,
user space checkpointing cannot do entirely without kernel support; it just
does not add any new functionality to the kernel and makes use of an existing
standard interface – e.g. POSIX – to export necessary parts of the check-
pointed process state instead. However, this approach is not completely
transparent to the process: recompiling, relinking or generally altering the
binary image of the process is necessary. Moreover, the system call augmen-
tation technique inevitably introduces some overhead to each invocation of
a system call, thus slowing down the whole application.

It is advantageous to choose the user space checkpointing technique if
we desire the framework to be portable among different operating systems
sharing the same API or if we are not allowed to modify the kernel code (or
even add kernel modules); then it is actually our only choice.

However, this is not the case with HelenOS – it does not adhere to any
widely used standard API and its kernel code is open source. Furthermore,
adding some new functionality to the kernel is necessary anyway in order to

CHAPTER 4. ANALYSIS 22

allow the checkpointing framework to export the task state (e.g. undelivered
IPC calls; details are given further in the thesis). For these reasons we have
decided to use the kernel-assisted approach.

4.1.2 Application-driven vs. Transparent

The question whether to make the checkpointing process as transparent for
the application as possible or on the contrary choose to design an application-
driven snapshotting framework is a more difficult one as both options are
feasible to be implemented in HelenOS.

Making such a choice is always a compromise. While application-driven
checkpointing tends to exhibit better performance (it usually stores less in-
formation, therefore it is faster), it also bestows the implementational burden
of checkpointing on each application that wants to use it thus complicating
its design. Transparent checkpointing on the other hand allows the applica-
tion to be completely ignorant of the fact that any checkpointing framework
exists, however, the snapshot image generally contains more information
which makes the checkpointing operation slower and perhaps somewhat less
flexible (as we have to make certain decisions for the application instead of
the application itself).

In general, we can say that application-driven checkpointing is more
suitable when the overall speed of the checkpointing operation is a major
factor – e.g. for adding fault tolerance to high availability services where
downtime must be kept as low as possible – while transparent approach is
a better choice for allowing process migration (as we can expect that most
of the ordinary tasks running in the system will not be designed to support
checkpointing).

Because we believe that task migration is currently more probable to be
implemented in HelenOS than high-availability services support, we have
decided to focus on the transparency of our checkpointing facility.

4.2 Task State

Let us now descend to a somewhat lower level of the analysis and focus
on the actual checkpointing process, i.e., saving and restoring the selected
task’s state.

Analyzing the state shows us that it comprises various different parts:
open files, virtual memory areas, information about threads, IPC connec-

CHAPTER 4. ANALYSIS 23

tions and many others. An important observation is that those items differ
somehow in “quality” – for example the information about an open file is not
as essential for restoring a task from the snapshot as is information about
the task’s virtual memory (a properly written application may be able to
deal with a missing file, but it cannot deal with an invalid memory excep-
tion). Generally speaking, each part of the task’s state falls into one of two
mutually exclusive categories:

• Internal state comprises the parts of the task’s state that must be
included in the snapshot image as any missing part would render suc-
cessful restoration of the task impossible (or it is impossible for the
task to recover from the errors caused by the missing part). In other
words – storing all the parts of task’s internal state is mandatory in
order to carry out a successful checkpointing operation.

In HelenOS internal state comprises task’s virtual memory areas, the
state that the task’s threads have been stopped in (i.e., stack contents
and register contents for each thread), task’s metadata, metadata for
each thread and finally, information about the synchronization primi-
tives.

• External state contains those parts of the state that are not essential
for a successful restoration in the strict sense of the word – i.e., the task
will be able to resume execution without them – however should any
of the parts of the external state be missing in the snapshot image, the
task may not be able to continue normal operation after being restored
(e.g. because of a missing file or lost IPC message).

In HelenOS, external state consists of open files, task identifier, shared
memory areas and IPC connections (including the task state kept by
the system services)1.

The snapshot image must contain all the parts of the internal state of
the checkpointed task and as much of the external state as feasible. In
the following parts of this chapter we provide a detailed analysis of the
possibilities for exporting both parts of the task’s state in HelenOS.

1The networking subsystem and sockets have not yet been fully implemented at the
time this thesis is being written, therefore are not addressed by this thesis.

CHAPTER 4. ANALYSIS 24

4.3 Internal State

As we can see, task’s internal state is a non-trivial concept consisting of vari-
ous parts. Exporting the state cannot therefore be achieved atomically (with
respect to the regular operation of the system); in order to take a snapshot,
the checkpointed task must not be running for the time the checkpointing
operation needs to finish – otherwise various inconsistencies might occur
rendering the resulting snapshot useless.

4.3.1 Ensuring Consistency

A good opportunity to stop a thread is the next time it gets preempted.
However, this is not an option when the thread is processing a system call
and is running in the kernel – for example, if we stopped the thread during
processing a system call that sends an IPC message, we could not be sure
whether the message had already been sent at the moment the snapshot was
taken or not.

Follows that to ensure that the checkpointing operation produces a con-
sistent result, we need to be granted some control over the time when the
checkpointing operation takes place. There are four states an active2 thread
can be in:

• Running in user space.

• Processing an interrupt.

• Processing a system call.

• Blocked in a system call.

As for the first two states, we can stop the thread the next time it
is preempted by the scheduler (it is guaranteed that no thread can block
indefinitely while processing an interrupt).

If the thread is processing a non-blocking system call, we can either stop
it before it starts processing the call or right after the processing is finished.

The most difficult situation is when the thread is sleeping inside a block-
ing system call. We cannot checkpoint the thread right away, because it
could have e.g. mapped some memory which would then not be mapped at

2i.e., not finished and waiting to be detached

CHAPTER 4. ANALYSIS 25

the restore time causing a memory exception. On the other hand we cannot
wait until the system call finishes because there is no guarantee this would
happen anytime soon (there is actually no guarantee that the call will return
at all).

Therefore the only option we have is to undo the changes the system call
processing has caused so far (e.g. free the mapped memory) and restart the
system call – then we can stop the thread before it starts re-processing the
system call and gets an opportunity to change anything.

For this reasons, we have to impose the following fundamental condition
on every kernel operation:

• Every kernel operation must be either atomic or restartable,

as seen from the checkpointer’s point of view. That means that the thread
may get preempted while carrying out an atomic kernel operation, but it
must not be stopped by the checkpointer. When this condition is met,
storing the state of each thread is relatively straightforward – we just stop
it at one of the previously described consistent locations and store its kernel
stack and register contents. Restoring the state of a thread in the restored
task is then merely a question of stopping it (in a consistent state again)
and overwriting its state with the checkpointed data.

Of course, ensuring that the thread will not be scheduled when it is
being checkpointed does not mean that the thread’s state cannot change
at all (e.g. the checkpointed task might get killed while the checkpointing
operation is in progress or an IPC message might arrive). The only way
of preventing any change to the thread whatsoever would be to lock all the
relevant synchronization primitives for the whole time that the checkpointing
operation needs to finish – but that is undesirable as we do not want to block
any other tasks than those that are being checkpointed.

If the checkpointed task is killed during the checkpointing process, there
is not much we can do as we cannot prevent a task from being terminated
– we just abort the checkpointing operation for the task and signal failure.

On the other hand, with a certain degree of cooperation from the tasks
involved in the checkpointing operation, we are able to achieve the required
consistency (i.e., except for task’s termination its state will not be modified)
for the duration of the snapshotting process. This is further described in
Sec. 4.4.6.

CHAPTER 4. ANALYSIS 26

4.3.2 Accessing the Task’s State

Generally speaking, there are two approaches to exporting a task’s internal
state.

• In-context approach. The state is accessed and exported by the
checkpointed task itself.

• Auxiliary approach. The state is accessed and exported by an ex-
ternal task.

In HelenOS we need to combine both these ways. The whole checkpointing
operation is carried out by a special task. The reason for this is that – as
has already been mentioned in Sec. 3.1 and is elaborated more in Sec. 4.4 –
the state of a task in HelenOS is inherently distributed among various user
space tasks and using an auxiliary task makes it easier to take a consistent
snapshot across multiple processes.

On the other hand, HelenOS does not provide any means for accessing
address spaces of other tasks (this is an intentional design feature). There-
fore, if we want to export the user space memory areas of the checkpointed
task, we have to access them from the task itself. However, if the task is
not running during the checkpointing operation how can we do that? Fortu-
nately, this issue has already been addressed by the udebug framework – a
dedicated kernel thread is launched in the context of the checkpointed task
enabling us to access its memory contents.

4.3.3 Memory Areas

Memory areas of the checkpointed task comprise one of the biggest parts
of the data saved in the snapshot image; it is therefore advantageous to
use certain optimizations to speed up the checkpointing process. The most
common optimization is leaving out the non-volatile parts of the memory
– it is not necessary to include all the contents of the checkpointed task’s
memory in the snapshot image – only the areas whose contents might be
changed while the task is running must be stored. Hence we can exclude
the code segment – it is mapped from the binary image and does not change
during the application’s execution.

Of course, this implies the necessity of having access to the application
binary on the machine where the task is going to be restarted. However,

CHAPTER 4. ANALYSIS 27

this can easily be circumvented by distributing the binary together with the
snapshot image (which increases the total amount of the data needed for
successful restoration, but it does not make checkpointing any slower).

As for the dynamically loaded libraries3, we can either include them in
the snapshot or leave them for the checkpointer to link them back to the
task at the time of restoration. The former approach increases the snapshot
image size; on the other hand, we do not have to worry about the correct
versions of the libraries present in the system the task is going to be restored
on. For this reason, we prefer dynamically loaded libraries to be included
within the image; however, the decision should be made according to a user-
defined option.

Restoring the memory areas is then a relatively simple task – it is just a
question of recreating the memory areas stored in the snapshot image and
overwriting their contents with the data stored either in the snapshot image
or in the binary image of the task.

HelenOS does not provide support for memory-mapped files yet, there-
fore they are not addressed by this thesis.

4.3.4 Threads and Task Metadata

An important observation to be made when considering exporting the threads
and task metadata is that all the threads have been stopped in well-defined
and consistent positions. Therefore, we can be sure that they neither have
been carrying out any operations that could cause inconsistency at the time
of the checkpoint nor – for the time it takes the checkpointing operation
to finish – they will. This means that the necessary amount of information
that has to be exported has been reduced to the minimum.

Exporting the metadata is then simply a question of copying the impor-
tant fields from each kernel thread structure and from the structure repre-
senting the task; restoring is the opposite process.

4.3.5 Synchronization Primitives

Thanks to our policy of atomic/restartable system operations, we do not
have to care about the state of the synchronization primitives used in ker-

3HelenOS does not provide support for dynamically loaded libraries in the main de-
velopment branch yet; however, for the sake of completeness, we shall discuss them here
too.

CHAPTER 4. ANALYSIS 28

nel, because we can be sure that they are in a consistent state at the time
the snapshot is taken (more specifically – no kernel lock is held by any
checkpointed thread).

Therefore the only type of synchronization primitive left for us to handle
is the user space futex4. The only problematic situation here is when the
futex is shared; then we have to ensure the shared memory area that the
futex structure lies in is in a consistent state with regard to the other tasks
that participate in the sharing prior to storing the information. This issue
is described in Section 4.4.9 and more generally in Section 4.4.

4.4 External State

The major and most obvious difference between checkpointing a process
in a system using a monolithic kernel and a microkernel lies in exporting
the external state of a task. As has been mentioned, microkernel systems
make generally much heavier use of IPC than their monolithic relatives –
therefore the issues related to communication with other processes running
in the system form a major part of analysis when designing a checkpointing
facility for HelenOS.

In this part of the thesis, we focus on the problems that we have to face
when checkpointing the external state of a task.

4.4.1 Distributed state

In the traditional (monolithic) kernels most of the information needed to
export the state of a given process is contained within the kernel or di-
rectly in the process’s user space. Unlike that, HelenOS – being a part
of the microkernel-based multiserver family – distributes this information
throughout the system to other tasks running in user space. A good exam-
ple of this is handling files; while on e.g. UNIX systems the information
about opened files is stored within the kernel and when the task wants to
access a certain file it uses a dedicated system call, in HelenOS, the kernel is
completely ignorant of files (or filesystems for that matter); if a task wants
to access the filesystem, it makes use of the IPC subsystem and communi-
cates via IPC messages with the Virtual File System service (which is a task
running in the user space).

4All the other user space primitives are implemented using futexes.

CHAPTER 4. ANALYSIS 29

Therefore, as we can see, the state of any task running in HelenOS is
inherently distributed among the task itself, the kernel and a number of
other tasks running in the user space. This immediately implies that if we
desire to export a task’s state, we cannot do without obtaining the relevant
parts of the state from all the other tasks that our task cooperates with.

An easy – and unfortunately naive – solution would be to transitively
extend the checkpointing operation to include all those other tasks, creating
a set of processes that should be stopped and whose state should be saved
within the snapshot image. However, things are more complicated than that
– not all the tasks running in the system can be checkpointed. An obvious
example is VFS: should we checkpoint VFS, we would not be able to save
the created image to a persistent storage, thus effectively shooting ourselves
in the foot.

A perhaps somewhat more subtle example is checkpointing Naming Ser-
vice; almost all of the servers in HelenOS cooperate with Naming Service
(and it cooperates with them), checkpointing it would therefore cause a cas-
cade resulting in majority of the servers in the system being stopped and
included in the snapshot image.

Yet another problem occurs when we consider restoring the task: we
would have multiple instances of a given system service running, which is
undesirable – and stopping the old system server might render the system
unstable.

4.4.2 Checkpointability

From the previously stated, it is obvious that we have to impose some con-
ditions on whether a given task is allowed to be checkpointed or not. Let us
first define the following terms:

• Task zero5 is the original task that has been requested to be check-
pointed, i.e., the one that the checkpointing operation has started
with.

• Checkpointable task is a task that is allowed to be stopped and
taken snapshot of.

5Analogous to patient zero, the term for the first known patient when a disease spreads.

CHAPTER 4. ANALYSIS 30

Checkpointing System Services

Checkpointing system services may be useful in a distributed system where
such a service could be migrated to a different machine, or for the purposes
of crash recovery, when the faulty service may periodically be snapshotted
and restored from the last snapshot image in case it crashes (so that we do
not lose its whole state but rather the part that has changed since the last
snapshot only).

However, snapshotting system services cannot currently be reasonably
used in HelenOS as it is not a distributed system (the networking service is
not even fully implemented yet) and recovering system services transparently
from a snapshot would require modifications to the system behavior that are
beyond the scope of this thesis.

Therefore in this thesis, we only focus on checkpointing ordinary user
applications.

Storing the Checkpointability Information

The information about a given task’s checkpointability must be known to
the checkpointer by the time the snapshotting operation has started. There
are three possible locations where this information can be stored: it can
either be known exclusively to the checkpointer (e.g. it could read a list
of uncheckpointable tasks from a configuration file at startup); it could be
known to the task itself (which could then inform the checkpointer at task’s
startup); or it can be present in the system as a security policy.

Keeping some sort of a list of uncheckpointable tasks in the checkpointer
is arguably the most inconvenient option, as it is not very flexible. Therefore,
we are left with two choices: we either require each uncheckpointable task to
register with the checkpointer (and inform it about its uncheckpointability),
or leave the information to be known to the system only as a security policy,
so that the checkpointer can consult the system for each task in question.

The advantage of keeping the information contained within the task is
that we do not have to complicate the design of the system by adding a
new security policy; on the other hand, the disadvantage is that we require
all uncheckpointable tasks to be aware of the checkpointer’s existence. The
advantage of leaving the decision in the hands of the system is that it is
transparent for the uncheckpointable tasks. However, it by definition re-
quires a certain degree of support from the system.

Both of these options are feasible when designing a checkpointing facility

CHAPTER 4. ANALYSIS 31

for HelenOS. However, we believe that the question, whether a certain task
is allowed to be stopped and snapshotted is a concern of system security
(as it could possibly render the system unstable if misused), this decision
should therefore be made by the system. Also, because no security measures
in HelenOS have been implemented yet, they can be designed with support
for checkpointing in mind.

4.4.3 Checkpoint Set

When we focus on how to obtain all parts of the distributed state for a given
task zero, we have to take a few observations into account.

First, as we have previously demonstrated, not all the tasks running in
the system can be stopped and taken snapshot of. Second, a part of the
state of task zero or other tasks that participate in the distributed state of
task zero may be contained within such an uncheckpointable task. Follows
that in order to obtain the complete state of a task for the purposes of
later restoration, certain degree of cooperation of those uncheckpointable
tasks with our checkpointing facility is essential. We therefore define the
following term:

• Cooperative task is a task that cannot be stopped and snapshotted
(i.e., it is not checkpointable) and cooperates with the checkpointing
facility in order to export its part of the distributed state.

If we want to take a successful snapshot of a given task zero we have to
find all the tasks that share any part of the distributed state of this task
and then either checkpoint those tasks directly (if they are checkpointable)
or ask them to cooperate and export the required information themselves.
Let us define:

• Checkpoint set for a given task zero is a set of tasks that participate
in the checkpointing operation; i.e., we either stop them and include
them in the snapshot image (if they are checkpointable) or ask them
to cooperate and export the required information themselves (if they
are cooperative).

In order to take a succesful snapshot of task zero, we have to include
all the tasks that share any part of the distributed state of task zero in the
checkpoint set.

CHAPTER 4. ANALYSIS 32

Checkpoint Set Properties

When we construct the checkpoint set, we have to ensure that the result has
the two following properties:

• Completeness – none of the tasks that participate in the distributed
state of task zero must be omitted when constructing the set.

• Stability – no new tasks may be included in the checkpoint set af-
ter the construction has been completed but before the checkpointing
operation has finished (i.e., the checkpoint set must not “grow”)6.

Furthermore, we would like the checkpoint set to be as small as possi-
ble so that the checkpointing operation finishes quickly. Therefore we also
require the resulting set to have the property of

• Minimality – only the tasks that participate in the distributed state
of task zero must be included in the checkpoint set.

In HelenOS there are two ways tasks communicate and thus share a
part of the distributed state – via sending/receiving IPC messages and via
sharing memory (which is initiated by sending an IPC message too). Let us
define set B = {task zero} and directed graph G = (V,E), V = tasks, E =
{(t1, t2) | t1 has an open connection to t2 ∨ t1 shares memory with t2}.
The checkpoint set can then be constructed as a set of all nodes reachable
from nodes in B in the subgraph G′ = (V,E ′), E ′ = {(t1, t2) | (t1 has an o-
pen connection to t2 ∨ t1 shares memory with t2) ∧ t1 is checkpointable}

In order to satisfy the property of stability, the algorithm must prevent
the checkpointable tasks in the checkpoint set from opening new connections
during the checkpointing operation (we need to postpone those connection
attempts until after the operation). The checkpointer cooperation mecha-
nism can be used for this purpose (see Sec. 4.4.6).

Note that if the checkpoint set is not complete and stable, we are unable
to guarantee that the information stored in the resulting snapshot image
is sufficient for carrying out a successful restore operation and unable to
make sure that the state of the tasks in the checkpoint set is consistent
(e.g. because a task outside the set is modifying shared memory). In case
the checkpoint set is stable and complete but not minimal, we are able

6Note that a task being killed (i.e., checkpoint set “shrinking”) does not constitute a
problem here because we would realize it during the exporting of its state.

CHAPTER 4. ANALYSIS 33

to restore the task from the snapshot image, however, the checkpointing
operation will store unnecessary information making the whole procedure
possibly significantly slower.

When the support for checkpointing is fully implemented in HelenOS
and the system is properly configured, all the tasks that can belong to the
checkpoint set of any checkpointable task should be either checkpointable
or cooperative. Ordinary user applications should be checkpointable and
all the services provided by the system (such as VFS, NS, device drivers
etc.) should be uncheckpointable. Those services that can belong to the
checkpoint set of any checkpointable task should be modified to support
cooperation with the checkpointer.

Uncooperative Uncheckpointable Tasks

When the support for checkpointing is fully implemented in HelenOS and the
system is properly configured, we should never come across a task during
the checkpoint set construction that is not checkpointable and does not
cooperate with the checkpointer. However, because the system configuration
may be invalid or full support for checkpointing may not yet be implemented,
we have to consider this case too.

If we encounter such a task during the checkpoint set construction, we
cannot include it in the set and we are therefore unable to satisfy the com-
pleteness property. Follows that we cannot guarantee that a successful snap-
shot can be taken (as we are unable to export the task’s state and because
the task can possibly modify shared memory areas and answer or send mes-
sages during the checkpointing operation).

We have two possible courses of action – the safer but more restrictive
option is to cancel the checkpointing operation and signal failure, the other
one is to close the connection to the problematic task at restore time and
answer all the respective unanswered messages with an error code – however,
there is a chance that the resulting snapshot image will be useless (as the
uncooperative task might have caused inconsistencies).

The action to be taken should be decided according to a user specified
flag.

Excluding Clients

It is of course possible to extend the checkpoint set to include all the check-
pointable tasks that have an open connection to any other checkpointable

CHAPTER 4. ANALYSIS 34

task in the checkpoint set too (i.e., include the clients of each checkpointed
server). However, that could possibly make the checkpoint set very large,
thus rendering the operation very slow and the resulting snapshot image
taking a lot of space. And even though checkpointing speed is not our pri-
mary concern, we believe that this slowdown is unnecessary and therefore
should be avoided.

For this reason we have decided not to include those tasks in the image –
it is not essential as any properly written server must expect that any client
may terminate its connection anytime. Therefore it suffices to emulate the
termination of the client connections for the restored server and handle all
the unanswered calls specially because their sender would not be running at
the time of the restoration; however, this could easily be handled e.g. by
creating a temporary proxy task and altering the calls to appear that they
come from the proxy instead of the original task.

4.4.4 Lazy vs. Eager Cooperation

When attempting to take a snapshot of the checkpoint set, we face a similar
problem as when we try to checkpoint the internal state of a task – we must
decide when to do it.

As has already been mentioned, tasks in HelenOS communicate primarily
via sending messages. An important observation regarding the IPC commu-
nication is that the messages exchanged between tasks usually adhere to
some kind of a protocol, i.e., they are not interpreted by the receiver in-
dependently but rather in the context of other messages that have been
received previously.

Consider the situation depicted in Fig. 4.1. The checkpointed task sends
messages A and B to a server when suddenly a checkpointing request arrives
just before sending the final message C. Messages A and B might have
already been answered so they may not be accessible to us at the time of
the checkpoint (answered calls are not preserved by the system).

Now we have two choices: either we stop and checkpoint the task imme-
diately after receiving the checkpoint request; or we wait until a there is a
“suitable moment” and take the snapshot then (what exactly do we mean
by “suitable” shall be explained later). For the purposes of this analysis,
the formerly described approach will be called eager cooperation and the
latter one lazy cooperation.

Note that the situation shown in Fig. 4.1 is not problematic if the server

CHAPTER 4. ANALYSIS 35

Msg A Msg B Msg C

Msg A Msg B Msg C

After restore

Figure 4.1: Interrupted protocol example.

that participates in the conversation is allowed to be checkpointed – then
we just stop it, include it in the snapshot and then at the restore time
we can resume the communication at the point where it ended. The issue
described below only manifests itself when the task is cooperating with an
uncheckpointable server. Let us now analyze the described situation when
using both of the aforementioned approaches.

Eager Cooperation If we stop the checkpointable task immediately (i.e.,
before message C is sent), it will later be restored believing that the commu-
nication with the server had never been interrupted, thus continuing with
the message C, which – if the situation is not handled specially by the server
– would be answered with an error because the server expects messages A
and B first. Therefore in order to support the restore operation, the server
must be able to gracefully resume the connection with the restored task.

However, this may not always be easy – or even possible. Consider
for example that some outer conditions have changed at the restore-time
(compared to the situation at the time when the task got checkpointed)
and any of the messages A or B in the depicted situation would have to
be answered with an error code should the whole communication take place
at the restore-time. Message C is then actually illegal – in the sense that
it should have never been sent. Moreover, we have no transparent way of
telling the checkpointed task about the error (because messages A and B
have already been answered).

CHAPTER 4. ANALYSIS 36

Another problem we have to deal with when considering the eager ap-
proach is that it makes it implementationally quite difficult for the cooper-
ating server to support the restore operation – the checkpointed task might
have sent a number of messages before the snapshot was taken and if the
server wants to resume the connection, it would need to remember when
exactly the connection had been interrupted so that it would expect the
correct message to be sent as the next one. In other words, because we
cannot affect the time when the snapshot is taken, we have to store a lot of
state information – and recreating a complex state can be naturally quite
complicated.

The advantage of the eager approach is that it is certain that the actual
checkpointing operation will begin in finite time (it cannot be postponed
indefinitely) because we are not waiting for any server.

Lazy Cooperation Using the lazy approach allows us to avoid both of
the problems mentioned above – we leave the checkpointable task running
and let the server reach a state in which it is safe for the checkpointing
operation to take place. When the server reaches such a state, it stays
there (i.e., the connection from the checkpointable task must not process
any messages) and informs the checkpointer; after the checkpointer receives
this notification from all the cooperative tasks in the checkpoint set, it stops
the checkpointable task and the snapshot can be taken. All messages sent by
the checkpointable task after the server had reached the checkpointable state
should be buffered at the server-side and delivered after the checkpointing
operation is finished (and of course at restore time too).

We define:

• Checkpointable state is a state of a connection which the coop-
erating task is able to restore at the restore time assuming all the
unresponded messages for the connection are re-delivered to it.

When a connection is in a checkpointable state, it cannot process (i.e.,
receive or answer) any IPC messages and moreover, it is responsible for
keeping any memory areas that it shares with the caller in a consistent state
(see Sec. 4.4.9).

Note that checkpointable state is defined with regards to a connection
from a checkpointable task to the cooperating task; other connections (from
tasks that do not belong to the checkpoint set) may process messages nor-
mally, i.e., the server itself is not stopped, but rather only the checkpointed

CHAPTER 4. ANALYSIS 37

connections. When we are talking about a server reaching a checkpointable
state, we are talking about the states of the connections from checkpointable
tasks in the checkpoint set.

By letting the server choose the time when the snapshot should be taken,
we are able to avoid both the problem with the illegal state and reduce the
implementational complexity of the restore operation – the server connection
can only be checkpointed when it reaches a checkpointable state, therefore
we can store less information and restoring the state is simpler.

However, the lazy approach has problems of its own, too – because we
have to wait until all the uncheckpointable servers reach a checkpointable
state before we can take the snapshot of the checkpoint set, there is a chance
that a deadlock will occur (because of a task waiting for a server that has
already reached a checkpointable position).

On the other hand we believe that the benefits of this approach outweigh
its drawbacks – the possible deadlock issue is less serious than the problems
caused by using the eager approach because firstly, reasonably behaving
tasks should not experience it as the number of messages needed to be sent
between checkpointable positions is usually low (under the assumption that
the system services are designed to support checkpointing) and the message
sending (e.g. for opening a file or printing to a console) is usually wrapped
by standard library functions and therefore not interrupted by communi-
cation with another service; and secondly, we can introduce some kind of
a timing mechanism that cancels the checkpointing operation if all the co-
operating tasks do not answer within a certain time limit. This would not
be an acceptable solution if we focused on the raw speed of the checkpoint-
ing operation but as has been explained in Sec. 4.1, rather than speed our
checkpointing facility focuses on transparency, which is better when using
the lazy approach.

After considering both of the analyzed methods, we have concluded that
the more usable approach for our checkpointing facility is lazy cooperation.

4.4.5 IPC Calls

In order to checkpoint the external state of a task we have to store all the
messages that have been sent by the task and are unresponded at the time
the snapshot is taken and all the answers that the checkpointed task has not
yet processed (i.e., they are not removed from the task’s answer queue).

CHAPTER 4. ANALYSIS 38

Checkpointing the calls is a straightforward process – we are using the
lazy cooperation approach and therefore we know that the message states
will not change (as all the tasks in the checkpoint set are either stopped or
in a checkpointable state); restoring the calls is not complicated either – we
just resend the unresponded messages to the appropriate tasks and add the
unprocessed answers to the answer queue.

There are, however, two cases that need special consideration – blocking
calls and forwarded calls. We analyze them in the following section.

Blocking Calls

Let us take a look at the situation depicted in Fig. 4.1 once again. Task
sends messages A and B and a checkpointing request arrives; we are using
the lazy cooperation approach.

If the server responds to all the messages (i.e., A, B and C) in finite
time, everything works out just fine – the server waits until C is sent, then
replies and informs the checkpointer that it has reached a checkpointable
position. On the other hand, if C is a blocking call (i.e., a call that is not
responded immediately but rather after a possibly infinite time; for example
a console read) the situation is more complex. The server has to reach a
checkpointable state prior to exporting the state; it is, however, not obvious
what the checkpointable state for this server is.

One option is to specify that the server is in a checkpointable state when
it is waiting for a blocking call; this could, however, lead to the same illegal-
state-at-restore-time issue that we are trying to avoid by using the lazy
cooperation approach.

Another possibility is that we could simply wait until the server replies
to C and then continue as if there was no blocking call. But this can lead to
us postponing the checkpointing operation indefinitely; of course, we could
cancel the checkpointing operation if the call is not replied within a certain
time limit, however this is still not an optimal solution.

Arguably the best solution is to have the messages that can lead to this
situation wrapped in some kind of a transaction that can be transparently
restarted; however, HelenOS currently does not offer any kind of such a
transactioning mechanism (and implementing this mechanism would prob-
ably lead to major changes in the IPC subsystem).

To sum it up, until the above mentioned support for transactions is
implemented in HelenOS, the blocking calls issue is best avoided by designing

CHAPTER 4. ANALYSIS 39

the communication protocols of the system servers in such a way that the
aforementioned situation simply does not happen. In other words, if the
server is designed to support checkpointing, it must not use a protocol in
which one or more messages that can be answered by an error code that
could lead to an illegal state at restore time7 are followed by a blocking
request.

Forwarded Calls

In HelenOS, it is possible for a task to communicate with a task that it does
not have an open connection to – a message sent by the task can be forwarded
by its receiver; the response is then sent back by the final recipient directly
to the original sender of the call. This mechanism is used mainly for efficient
communication when sending larger chunks of data (the message needs to
be copied to/from user space less times when it’s forwarded, because the
answer is sent directly to the sender) and for opening new IPC connections,
however, it is quite general and can be used for other purposes as well.

The fact that a message is allowed to be delivered to a task that the
sender of the message does not have a direct connection to must be reflected
in the design of the checkpointing facility. Let us analyze the situations that
can arise when we consider call forwarding.

If both the forwarding task and the receiver of the forwarded message are
checkpointable or the forwarding task is checkpointable and the receiver is a
cooperative task, forwarded calls do not cause any problems; the transitivity
of the checkpoint set guarantees that the recipient of the forwarded call is
included in the checkpoint set and therefore the call can be recreated and
handed over to the proper task.

On the other hand, if the call is sent to an uncheckpointable task and
then forwarded – this can happen e.g. during a read request from a console;
the call is sent to the VFS service and forwarded by it to the Console service
– the final recipient may not be included in our checkpoint set and could
therefore cause inconsistencies during the checkpointing operation.

Consider the situation depicted on Fig. 4.2. Task A sends a message
to server B which forwards it to server C. Then, before server C can reply
a checkpoint operation is initiated with task A as task zero. If we would

7That means an error code other than e.g. ELIMIT which indicates that the maximum
number of calls to be sent has been reached, because that error code does not mean that
the server was unable to reach the requested state

CHAPTER 4. ANALYSIS 40

Task A

Server B

Checkpointable task

Uncheckpointable task

Checkpoint set

Server C

Forwarded call

Figure 4.2: Forwarded call issue.

construct the checkpoint set without considering forwarded calls, we would
not include server C in it and therefore C would not be obliged to get into
a checkpointable state in order for the checkpointing operation to proceed.
That means it could reply to the forwarded call at any moment, which could
in turn cause inconsistencies. Imagine that the forwarded call is wrapped by
another call by server B – i.e., B will receive an answer to the wrapping call
after C responds to the forwarded message8 – and that the forwarded call
is replied by C just before the checkpointing operation is finished; task A
would then think that the call has not been answered while server B would
have a response to the wrapping call in its buffered messages.

Therefore, this has to be reflected during the checkpoint set construction

8The wrapped call pattern is used quite often in HelenOS – e.g. in the aforemen-
tioned console read example – because it allows the forwarder to receive the result of the
operation, while still allowing the message containing the large data to be forwarded.

CHAPTER 4. ANALYSIS 41

– before we finish the construction and start the actual process of exporting
the states of tasks in the checkpoint set, we have to go through all the
calls sent by checkpointable tasks in the set and include the recipients of
any forwarded call in it (so that they reach checkpointable states before the
actual checkpointing takes place).

4.4.6 Cooperation With the Checkpointer

If a task figures in the distributed state of any checkpointed task (i.e., is
included in its checkpoint set), we need to export its part of the state and
include it in the snapshot image.

In case the mentioned task is checkpointable this is fairly easy – we just
take its snapshot and all the information about its state is checkpointed
along; reconnecting the IPC connections at the restore time is also quite
straightforward – the checkpointer just reconnects the phones, because we
do not have to worry about the other side rejecting the connection attempt
(the checkpointing operation is transparent, so the task is actually not aware
that it had taken place).

However, if the task is uncheckpointable, things get more complicated;
in fact, the only option we have to export the relevant part of the external
state is if it is willing to cooperate with our checkpointing facility. For this
reason we impose the following condition:

• All the uncheckpointable tasks that may participate in any checkpoint
set are obliged to cooperate with the checkpointer during a checkpoint-
ing operation.

If the task is uncheckpointable and does not cooperate, there is not much
we can do – other than cancel the checkpointing operation or terminate
the connection coming from the checkpointed task gracefully and let the
checkpointed task handle the interrupted connection at the time when it is
restored from the snapshot (as has been described in Sec. 4.4.3).

Registering With the Checkpointer

In order for the cooperation mechanism to work, the checkpointer must have
an open IPC connection to the cooperating task both at checkpoint time
and at restore time (otherwise it would be unable to send the appropriate
messages to the cooperating service and manage the cooperation). There

CHAPTER 4. ANALYSIS 42

are two ways how the checkpointer can obtain this connection – either it
can connect to the cooperative task and open a new connection every time a
new checkpointing operation is in progress (and close it when it is finished)
or the cooperative tasks may register with it at their startup and create a
callback connection.

The former approach has the advantage that the checkpointer takes care
of opening the connections and the tasks therefore need not be modified in
order to support registering with the checkpointer. However, this is also its
big disadvantage – not all the tasks in HelenOS are registered with the Nam-
ing Service and it could be very complicated for the checkpointer to connect
to some of the cooperating tasks (it would need some kind of instructions
telling it how to find each task).

Therefore, we have chosen the latter approach – the cooperative tasks
register with the checkpointer when they start and the checkpointer creates
a callback connection that is used to send the messages required by the
cooperation mechanism. The disadvantage is that the tasks need to be
modified to support the registration; on the other hand, they need to be
modified in order to be able to cooperate with the checkpointer anyway, so
adding the registration functionality is not a big complication.

Cooperation at Checkpoint Time

We can break the actual cooperation between the checkpointer and a coop-
erating task at checkpoint time down to three basic steps as displayed in
diagram in Fig. 4.3.

First, we have to inform the cooperative task that a checkpointing opera-
tion has begun and that it belongs to the checkpoint set, i.e., we require it to
reach a checkpointable state and stay there until the operation has finished
(as described in Sec. 4.4.4). Note that defining checkpointable positions for
a given server depends on its implementation, we are therefore unable to
specify any general rule that would apply in any case; however, in HelenOS,
servers usually accept messages from a main while loop – they accept the
first message for a given operation (such as e.g. printing a character to a
console) and handle the whole “communication” necessary to carry out the
operation in a dedicated function. In this case, one of the checkpointable
states for this server would most likely be at the beginning of the main loop
just before accepting a message.

In any case, the second phase is asking the task to export its part of

CHAPTER 4. ANALYSIS 43

Checkpointer Cooperative Task

Get into checkpointable

state.

Export state.

Resume normal operation.

Checkpointable state

reached.

State data.

Resuming operation.

Figure 4.3: Checkpointer cooperation at checkpoint time.

the distributed state. Again – the exported data depends completely on the
server implementation; the only condition is that the server must be able to
recreate the state of the checkpointed connection from this data at restore
time.

Finally in the third phase we inform the task that the checkpointing
operation has finished and that the checkpointed connections may resume
normal operation – the do not have to keep the checkpointable state any
longer.

Handling Errors There are of course special cases we have to consider –
an error might occur during the processing of the checkpointing request, or
the service might take a long time to answer the request.

Let us first handle the latter situation: in order to prevent the too long
(or possibly infinite) delay from occurring we need to introduce some kind of
a timeout mechanism, which returns an error if the limit has been exceeded
– thus effectively transforming the situation into the first described.

When an error occurs, we have two choices: either interrupt the whole
checkpointing operation or just inform the user that the respective service

CHAPTER 4. ANALYSIS 44

Checkpointer Cooperative Task

Reconnect the IPC phone.

Send state.

Resume normal operation.

Reconnected.

State restored.

Resuming operation.

Figure 4.4: Checkpointer cooperation at restore time.

had failed to cooperate (e.g. by logging it) and let the task handle the
situation when it is restored from the snapshot. The action to be taken
should be decided by an option supplied to the checkpointer because we are
unable to tell whether the failure will prevent the task from continuing after
being restored or not.

Cooperation at Restore Time

Similarly to the cooperation mechanism at checkpoint time, the actions re-
quired for restoring the state of a checkpointed task can be divided into
three phases too (see Fig. 4.4).

First, the connection from the restored task to the cooperating service
must be recreated. We can clone the connection from the checkpointer to
the cooperating service for this purpose and hand it over to the restored
task.

Second, the state data that have been exported during the cooperation at
checkpoint time has to be sent to the cooperating task; the task should then
use this information to recreate the state of the restored connection that it

CHAPTER 4. ANALYSIS 45

had at checkpoint time. All the unresponded messages for this connection
have to be redelivered to it.

Finally, as the last step, the checkpointer should signal the cooperating
task that the cooperation has finished and the restored connection may
resume normal operation.

Handling Errors Handling errors when cooperating with a service at
restore time is similar to handling errors at checkpoint time. Again, if an
error happens when cooperating with a a service during the restoration of
the checkpoint set, we know we were unable to recreate the state – however,
we generally do not have enough information to decide whether this failure
will prevent the restored task from continuing successfully or not.

We should let the action to be taken once again be decided according
to a user-defined option – either we cancel the whole restoring operation or
we gracefully terminate the connection that failed to restore (i.e., the phone
is hung up and all the pending calls are appropriately answered with an
error code) and let the restored task handle the situation after the restore
operation has finished.

4.4.7 Duplicate or Missing Server Issue

When a task with its respective checkpoint set is restored on a system, issues
concerning missing or multiple server instances might arise. Consider the
situation depicted on Fig. 4.5.

Here, the stored task zero is connected to two servers (denoted Server 1
and Server 2). Server 1 is uncheckpointable, while Server 2 is checkpointable
and both have been included in the checkpoint set.

There are two problematic situations – the first being when Server 1 is not
running at the restore time (this will be recognized when any restored task
tries to reconnect to Server 1), the second being when Server 2 is already
present in the system at the restore time (this will be recognized when
the checkpointed server tries to cooperate with the service used to connect
ordinary user tasks9 and register with it). It should be noted that the former
situation should not generally happen, because that would mean that one
of the system services is not running; however, we mention it here for the
sake of completeness.

9We assume that those connections will be handled by some trading service; support
for connections between ordinary user tasks is not yet implemented in HelenOS.

CHAPTER 4. ANALYSIS 46

Stored

task zero

Missing

server 1

Stored

server 2

Included in the snapshot image

Not included in the snapshot image

Running

server 2

Checkpoint set

Figure 4.5: Missing/multiple servers issue.

Both these situations mean that the restored task will raise an error
during the restoring process – the first one because the checkpointer will be
unable to find the missing service, the second one because the appropriate
service will report an error when trying to register the server at restore time.

Once again, we can either call off the whole restore operation or gracefully
terminate the connections to the missing tasks and let the checkpointed
task itself handle the situation. In case of the missing server issue, there
is also an option of trying to start the missing service (however, there is
currently no support for on-demand service starting in HelenOS). In the case
of duplicate server issue, there is the possibility of letting the checkpointer
kill the running tasks and replace them with the tasks stored in the snapshot.

Because we do not have enough information to decide whether the task
can resume normal execution without connecting to the missing task or
without registering with the trading service, the course of action should be
decided according to the value of a user-supplied option.

CHAPTER 4. ANALYSIS 47

4.4.8 Open Files

As has been mentioned earlier, HelenOS is a microkernel-based multiserver
system; all the operations dealing with the filesystems – such as mounting,
opening a file, writing to a file etc. – are therefore not carried out by the
kernel, but rather by a special user space task called Virtual File System,
shortly VFS, which then delegates the operations to the appropriate concrete
filesystem server (see [2] for details). In fact, the kernel does not know
anything about the existence of any filesystem at all.

This implies that if we want to export the information about the open
file connections for a given checkpointed task, we have to obtain it from
VFS. VFS – being a system service – is expected to cooperate with the
checkpointer, thus we can elegantly export this data using the checkpointer
cooperation mechanism described in section 4.4.6. At restore time, VFS is
asked by the checkpointer to cooperate once again, reopening all the pre-
viously opened connections to the files and/or devices and maintaining the
correct file descriptors.

The files should be open with the same mode that they had at the time
the snapshot was taken.

Filesystem Consistency

Because the files are still present in the filesystem after the snapshot has
been taken, an issue of their consistency arises – the files can be changed
or deleted. There are several possible behaviors of the checkpointing facility
regarding the open files that can be chosen from10. The choice should be
made by the user of the checkpointing facility by specifying a flag. The basic
behaviors are:

• Unchangeable. All the files are expected not to change in any way
(i.e., all files will be at the same positions and their content will not
change after the snapshot has been taken). We can use a checksum to
check whether the file was modified and report an error if the checksum
differs at restore time. The file pointer is restored to point to the same
position as when the snapshot was taken.

• Volatile. Similar to the Unchangeable option, but no checks are
made; if the file has been deleted, the appropriate file descriptor is

10Other options or combinations of options are naturally possible and can be added
later on demand.

CHAPTER 4. ANALYSIS 48

closed; if the file has been modified and shortened, we seek to the end
of the file.

• Backup and overwrite A copy of the file is stored at checkpoint time.
If the file exists on the filesystem at restore time, it is overwritten by
the checkpointed version. In order to take a consistent snapshot, we
need the filesystem driver to support creating filesystem snapshots
on the physical filesystem. When using this option, we should also
consider VFS to be an exception to the general protocol for coopera-
tion with the checkpointer as sending the filesystem snapshot to the
checkpointer via IPC messages would be quite slow; we should there-
fore rather allow the checkpointer to specify the directory to store the
snapshot to directly.

• Backup and skip Similar to Backup and overwrite with the differ-
ence that existing files are not overwritten (behaves as Volatile for
existing files).

4.4.9 Shared Memory

Although the common way of IPC in HelenOS is via sending/receiving mes-
sages, sometimes – particularly in cases when we repeatedly need to send
large amounts of data efficiently – tasks may share a memory area.

There are two scenarios: either the memory is shared without any syn-
chronization and the tasks access it randomly, or the memory is shared and
the access is synchronized using regular IPC messages (first task writes the
data and sends a message, the other tasks receives the message and reads
the data etc.). The former scenario is only used in a special cases – e.g.
mapping the time variables from kernel by NS – because the memory itself
offers no means of synchronization. The latter situation is more common as
a more efficient way of passing data than regular messaging.

As far as checkpointing is concerned, shared memory does not constitute
any problem if all the tasks that share the given memory area are check-
pointable – then we just store the memory in the snapshot image along with
the other necessary data and reshare it at the restore time, because all the
involved tasks are stopped and therefore we can be sure that the memory
has not changed.

Let us therefore focus on the more interesting case where at least one
of the tasks involved in sharing is uncheckpointable. We know that all the

CHAPTER 4. ANALYSIS 49

checkpointable tasks sharing the area are stopped and will not change the
memory during the checkpointing operation; the consistency of the memory
area at the time of checkpoint must therefore be ensured by the uncheck-
pointable tasks that share it. The checkpointer cooperation mechanism (see
Sec. 4.4.6) is ideal for that – when the cooperative task reaches a check-
pointable state it must ensure that the shared memory area will stay in a
consistent state for the duration of the checkpointing operation.

From this follows that if we encounter a checkpointable task that shares
a memory area with an uncheckpointable task without having an IPC phone
connected to the task, we are unable to use the cooperation mechanism (as
there is no connection that could be brought to a checkpointable state to
protect the shared memory area). Therefore in such a case we behave as if
we have encountered an uncheckpointable uncooperative task as described
in Sec. 4.4.3. Fortunately this should not happen in a properly configured
system as no system service in HelenOS allows sharing memory without an
open IPC connection.

In the remaining case when the consistence of the shared memory area is
ensured by the cooperative task, the checkpointing process is fairly straight-
forward – we store the memory area contents just as if we were storing a
regular memory area during the checkpointing operation, but in addition
we remember that the area was shared and store its base addresses in the
address spaces of the uncheckpointable tasks the area is shared among (this
is necessary to remap the areas at restore time).

Restoring the areas shared with a cooperative task is then the opposite
process – we restore them using the restore-time checkpointer cooperation
mechanism. Note that we should provide the original memory area base
address to the cooperative tasks for each newly reshared area – in case there
were more areas to share, it would otherwise not know which area is currently
being restored. We should also negotiate with the cooperative task whether
we should overwrite the reshared memory area contents with the data stored
in the snapshot image or leave this to the cooperative task.

Time Variables

HelenOS stores the current system time at a special memory address which
is periodically updated by the kernel; all the tasks that want to access the
system time (e.g. because they use a timer to wait for an event) achieve
this by sharing memory with the Naming Service, which maps the shared

CHAPTER 4. ANALYSIS 50

memory area to this special physical address. This has to be reflected in
the construction of the checkpoint set – otherwise it would always contain
all the tasks that share this area, which is undesirable because it violates
the property of minimality (see Sec. 4.4.3) and moreover it could cause the
checkpointing operation to fail incorrectly (because of an uncheckpointable
system service possibly included in the checkpoint set). Therefore, if we find
a memory area during the checkpoint set construction which is shared with
NS (among other tasks), we should only add NS to the checkpoint set and
ignore the other tasks.

4.4.10 Task Identifiers

Restoring task identifiers is generally a difficult problem as the identifier that
has been assigned to the checkpointed task may have already be taken at
restore time by a different task. Some checkpoint/restart facilities solve this
problem by adding a special virtualization layer (see e.g. [4]) to the system,
this is however beyond the scope of this thesis. Another solution could be
to wait until the required identifier is free; however, there is naturally no
guarantee that this will happen anytime soon after the restore operation has
been initiated.

Our checkpointing facility does not address this problem; the task id is
not restored to its original value when the task is restarted.

Chapter 5

Design and Implementation

As a part of the thesis, we have created a proof-of-concept implementation of
the checkpointing facility proposed in Section 4. In this chapter, we provide
the low-level description of this implementation.

We will begin by describing our design goals and covering the high-level
design issues. Then we will explain the actions taken by the checkpointing
facility in order to checkpoint and restore the internal and external state
of the checkpointed task. Finally, we will put all the presented information
together and provide a complete overview of both the checkpointing and the
restoring operation.

5.1 Overview

Our aim was to design and implement a checkpointing facility for HelenOS,
whose main focus is on the transparency of the checkpointing operation. A
brief description of our design goals is:

• Kernel-assisted. The checkpointing facility may modify the kernel
code. However, those changes should be kept as local as possible and
only if the requested operation cannot be (reasonably) carried out in
user space. When we face a decision whether we should complicate the
design of the kernel or of the checkpointing facility, we should leave
the kernel simple.

• Application transparency. The checkpointed application does not
have to be modified in order to support checkpointing.

51

CHAPTER 5. DESIGN AND IMPLEMENTATION 52

• No runtime overhead. The checkpointing facility should not intro-
duce any run-time overhead (other than the overhead caused by the
snapshotting and restoring process itself).

• Multithreaded application support. The checkpointing facility
supports multihreaded applications.

In order to provide a functional prototype implementation, we also re-
quire that the following conditions are met:

• Homogeneous environment. We require that the tasks are always
restored on the same hardware architecture they were checkpointed
on. Our prototype implementation is limited to the IA32 platform.

• Filesystem access. We require that the restored tasks have access
to the same filesystems that they had when they were checkpointed.
This is necessary in order to restore the open files.

We have provided two applications – /app/chkpnt for taking a snapshot
of a running task and /app/rstr for restoring a task from a snapshot – that
communicate with the checkpointing facility and allow the user to check-
point/restore a task from the command line. Their usage is explained in
Appendix A.

5.1.1 Checkpointer Service

Before starting the implementation we had to decide whether we want our
checkpointing facility to run as a system service – i.e., one that it is started
automatically at system startup – or as a normal user space application,
that would only be launched when necessary.

As we have shown in the analysis, other tasks are required to register with
the checkpointer in order to cooperate during the checkpointing operation.
If the checkpointer was a normal application (i.e., not a system service), this
would be much more complicated – the cooperating services would need to
catch some sort of a signal that a checkpointer has been created so that they
know they should register with it. On the other hand, if the checkpointer
is implemented as a system service, the other services only need to register
once at their startup. Furthermore, there is almost no overhead with the
checkpointer running as a system service (as most of the time it just waits
for a checkpointing request to come and does not consume any CPU time).

CHAPTER 5. DESIGN AND IMPLEMENTATION 53

Therefore, we have chosen to implement the checkpointing facility as a
new system service.

5.1.2 Exposing New Kernel Functionality

In HelenOS, there are currently two ways of exposing new functionality
implemented in the kernel to the user space (supposing that we do not want
to introduce a completely new one) – by extending the IPC functionality or
by introducing new system calls.

We have decided to expose the new functionality via IPC because it
has the advantage of the checkpointer being able to conveniently use the
asynchronous library; furthermore, it is the same approach that the udebug
framework – which out checkpointing facility builds on top of – uses.

Names of the symbolic constants for the methods used by the check-
pointer can be found in kernel/generic/include/checkpointing/check-

point.h. They have the form of CHKPNT M method, where method stands for
the name of the method (capitalized).

5.1.3 Source Code

The kernel part of the code handling the checkpointing can be found in
kernel/generic/src/checkpointing. It has been designed in a modu-
lar fashion – we have divided the code into four modules; checkpoint.c

and restore.c containing the initialization and cleanup code and code that
runs within the context of the application; checkpoint ipc.c that pro-
vides the binding between the IPC messages and the checkpointing opera-
tions; and finally checkpoint ops.c providing the implementations for the
methods called from checkpoint ipc.c. The corresponding header files are
located in kernel/generic/include/checkpointing. The architecture-
specific code1 is located in kernel/arch/ia32/src/checkpointing, the re-
spective headers are in kernel/arch/ia32/include/checkpointing.

Other changes have been made to various places in the kernel code; how-
ever. they are too numerous to list here. They are mostly related to replacing
hashes with numerical identifiers and supporting restartable system calls.

The user space part of the code is mostly located in uspace/srv/chkpnt.
Modifications in order to support task restarting have also been made to the

1The prototype implementation is limited to the IA32 platform.

CHAPTER 5. DESIGN AND IMPLEMENTATION 54

task loader service (uspace/srv/loader) and the async framework (uspace-
/lib/libc/generic/async.c).

Disabling Checkpointing

The checkpointing facility can be enabled or disabled using the configu-
ration option Checkpointing support (CONFIG CHKPNT). When disabled, the
checkpointing code is not compiled into the kernel and all the checkpointing-
related IPC messages return an ENOTSUP error code. The sys thread wait -

for restore system call (see Sec. 5.3.4) is replaced with a stub that returns
ENOTSUP error code as well. The code related to restarting system calls (see
Sec. 5.3.1) and replacing memory hashes by numeric identifiers (see Sec.
5.4.6) is independent of the checkpointing code and is compiled into the ker-
nel without being affected by this option. When the Checkpointing support
option is disabled, the checkpointer service is not included among the init
tasks and therefore is not included in the resulting HelenOS image. The
chkpnt register with checkpointer function (see Sec. 5.4.2) is then re-
placed with a stub that returns ENOTSUP error code.

Because the checkpointing facility uses the functionality provided by
the udebug framework, the Checkpointing support (CONFIG CHKPNT) option
may only be enabled together with the Support for userspace debuggers
(CONFIG UDEBUG) option.

5.2 Checkpointer Interface

In this section, we describe the IPC interface of the checkpointer and give an
overview of the messages it understands and how a checkpointing/restoring
operation is started.

5.2.1 Taking a Snapshot

In order to take a snapshot for a given task zero, we send a CHKPNT IN -

CHECKPOINT message to the checkpointer with the selected task’s identifier
followed by two IPC M DATA WRITE messages specifying the output directory
where the snapshot image will be stored, and user-specified checkpointing
options.

Next, the checkpointer constructs a checkpoint set starting with task zero
and stores a snapshot of each checkpointable task within the checkpoint set

CHAPTER 5. DESIGN AND IMPLEMENTATION 55

to the selected output directory; each cooperative task in the checkpoint
set is requested to export its state and any data obtained in this way are
included in the snapshot image. This is detailed in Sec. 5.4.

Handling Errors

If an error occurs when taking snapshot of task zero, we cancel the whole
checkpointing operation and resume execution of all the involved tasks. If an
error occurs while checkpointing any other tasks that belong to the check-
point set, the action to be taken depends on the value of a user defined option
OPT CHECKPOINT ERR. If ERR CANCEL is set, the whole operation is canceled
and execution of all tasks in the checkpoint set is resumed, if ERR RESUME is
set, the checkpointing operation continues.

A maximum time limit in seconds for each cooperative task in the check-
point set to reach a checkpointable state is specified by the value of OPT -

CHECKPOINT REQUEST TIMEOUT option. In the current implementation, we
always abort the checkpointing operation if we encounter an uncooperative
uncheckpointable task during the checkpoint set construction.

Finishing the Operation

If the checkpointing operation finishes successfully, an action is taken ac-
cording to the value of a user defined option OPT CHECKPOINT KILL.

If CHECKPOINT KILL NONE is set, all the tasks in the checkpoint set are
resumed; if CHECKPOINT KILL TASK ZERO is set, task zero is killed and all
the other tasks in the checkpoint set are resumed; if CHECKPOINT KILL ALL

is set, all the checkpointable tasks in the checkpoint set are killed.

5.2.2 Restoring a Checkpointed Task

The restore operation is initiated by sending a CHKPNT IN RESTORE message
to the checkpointer followed by two IPC M DATA WRITE messages specifying
the directory where the snapshot image is stored and restore operation op-
tions.

The checkpointer then reads the contents of the snapshot image and
restarts each stored task by starting a new task and manipulating its state
to recreate the state stored in the snapshot image.

CHAPTER 5. DESIGN AND IMPLEMENTATION 56

Handling Errors

Handling errors is similar to error handling at checkpoint time. If an error
occurs when restoring task zero, the operation is called off. If an error occurs
when restoring any other tasks stored in the snapshot image, the course of
action depends on the value of OPT RESTORE ERR.

If ERR CANCEL is set, the restore operation is canceled and all the tasks
that have been restored so far are killed; if ERR RESUME is set, the operation
continues.

5.3 Internal State

In the following part of this chapter we describe the steps taken by the
checkpointer service in order to take a snapshot of the internal state of a
single checkpointable task and restore its internal state from a snapshot
image.

5.3.1 Stopping the Threads

Let us first focus on the actions taken by the checkpointer to store the
internal state of a checkpointable task. In order to ensure that the snapshot
image is taken consistently, prior to storing any information, we have to stop
the task’s threads.

As we have described in Sec. 4.3.1, when we want to checkpoint a thread,
we cannot do so at any random moment, but we rather have to make sure
that the thread has reached a certain well-defined position first. Such posi-
tions are:

• The beginning of syscall handler before processing the system call.

• The end of syscall handler before returning to user space.

• When the thread is running in the user space and gets preempted, i.e.,
at the end of exc dispatch before returning to user space.

We use the udebug framework (particularly udebug begin function) to
stop the task’s threads. However, that is not enough as although it guaran-
tees us that no thread will execute any user space code until the debugging
session is finished, it does not guarantee that the thread will reach any of

CHAPTER 5. DESIGN AND IMPLEMENTATION 57

the aforementioned positions. Let us now describe the actions taken in order
to get a checkpointed thread into one of those positions. There are three
different situations which we need to handle.

Non-blocking system call When a thread is processing a non-blocking
system call, we know that it will either block before starting to process the
call or after the call has been processed but in either case before returning
to user space because there is a stoppable section both at the beginning and
at the end of syscal handler, but nowhere else on the execution path of
the system call.

Blocking system call In case the thread is sleeping in a blocking system
call, the situation is not that simple. What we want is to have the thread
undo all the changes to the kernel state it has done so far and then return to
the topmost kernel function (that is syscall handler) to avoid issues with
the state of kernel synchronization primitives and/or other resources (such
as mapped memory). In other words: we want to restart the system call.

It is guaranteed that each part of a blocking system call where the
thread actually gets blocked is wrapped by a stoppable section, therefore
if the thread gets woken up, it will block there when attempting to leave
the section. However, the thread might not get woken up by the time the
checkpointing operation takes place (i.e., it might still be sleeping on the
wait queue before attempting to leave the stoppable section). In that case,
we have to wake the thread up so that it tries to leave the section and
gets blocked hence transforming the situation into the formerly described
one. We have implemented the waitq force thread wakeup function for
this purpose; its task is to check whether a specified thread is sleeping on a
specified wait queue and if it is, force the thread to wake up2.

After we have made sure that the thread is sleeping on a udebug wait
queue, we mark the thread Go to allow it to leave the stoppable section. Af-
ter leaving a stoppable section in a blocking system call, the thread checks
whether it is requested to restart the system call (by checking whether the
respective thread t structure has syscall restart flag set to true – this
flag is set when the checkpointing operation for the task is initiated and
unset when the operation finishes) and eventually cleans up its changes to

2Note that this is different than interrupting the thread’s sleep as an interrupted thread
is expected to terminate, while we just want the thread to restart the system call and
resume execution.

CHAPTER 5. DESIGN AND IMPLEMENTATION 58

the kernel state and returns to syscall handler with EAGAIN error code
signaling that the system call is to be restarted. There we use a goto

instruction to jump to the beginning of syscall handler. The only prob-
lematic system calls (for system call restarting) are the synchronous message
sending handlers (sys ipc call sync fast and sys ipc call sync fast in
kernel/generic/src/ipc/sysipc.c). The issue is described in detail and
the solution is presented in Sec. 5.4.8.

An interesting question is whether the system call restarting should be
handled in the kernel or in the user space by returning a special error code
which re-invokes the system call when intercepted (in a UNIX-like manner).
The user space approach makes syscall handler code slightly simpler as
there is no need for any goto instructions or jump label at the beginning
of the function. However, we have decided that the system call restarting
responsibility should not be carried out away from the kernel because the
syscall API forms a contract by the kernel to the user space and we believe
that this contract should be kept as simple and as intuitive as possible. Thus
the idea of simplifying the kernel code, but complicating the contract – by
allowing system calls to return some special “restart me” error code – was
rejected and the whole system call restart operation is handled from within
the kernel code.

Preemption The last case we need to cover is when the thread is being
preempted while running in user space. Here, the thread will get blocked by
the udebug framework in the function clock. Hence we can just mark it Go
and then block it again at the end of exc dispatch just before it returns to
the user space.

As we can see, in all the cases we are able to return to the topmost function
(i.e., syscall handler or exc dispatch) and reach one of the consistent
states described above.

5.3.2 Checkpointing Thread State

Suppose now that the thread we want to checkpoint has already reached a
consistent state (i.e., it is in the topmost function as described in section
5.3.1) and we are just about to block it. However, before we call the function
that causes the thread to block, we would like to store the contents of the
thread’s kernel stack and its registers (so that at the restore time the thread

CHAPTER 5. DESIGN AND IMPLEMENTATION 59

resumes execution here and not in some nested function that handles the
actual blocking).

Therefore, before the thread is blocked, we first make it pass through our
CHECKPOINT macro. There, we copy the thread’s kernel stack and register
contents into a special per-thread storage so that it can later be saved to
the snapshot image.

5.3.3 Restoring a Task From the Snapshot Image

With the exception of the system services created at boot time, every task
in HelenOS is created using the executable image of a special task called
program loader, shortly loader.

Every time a task spawn system call is invoked, the system creates a new
program loader and one of the phones of the task spawn caller is connected
to the loader by kernel. The caller then communicates with the loader via
IPC messages and provides the path of the ELF image and the program
arguments. Then, the executable file is loaded into the loader’s address
space and it waits for the message telling it to run.

When such a message is received, the loader transfers control to the
entry point of the program and the new task is started. All the information
known at the startup of the task (e.g. program arguments etc.) are stored
within the Program Control Block structure, shortly PCB. As the user space
memory of the task is overwritten by the checkpointed data during the
restoring process, this information is preserved in the restored task.

When we are restarting a task, we have to put the functionality that takes
care of creating the task’s threads, reconnecting to the specified services etc.
somewhere. We have two choices – either we create a special task which
will be launched by the loader every time a restore operation is initiated
or we modify the loader task itself. The latter approach has the advantage
of not having to introduce another binary image to the system and also
that there is a phone connected by the system from the caller (i.e., the
checkpointer) to the loader task. Therefore, we have chosen to introduce
the new functionality to the loader task – specifically, we have modified it
to accept a new message called LOADER SNAPSHOT RESTORE used to inform
the loader that it should switch to a special “restore mode” and perform the
actions necessary to restore the task state (instead of normally starting a
new task).

A sequence diagram presenting the actions taken by the checkpointer

CHAPTER 5. DESIGN AND IMPLEMENTATION 60

and loader to restore the state of a task is shown in Fig. 5.1.

5.3.4 Restoring Thread State

When the loader task receives the LOADER SNAPSHOT RESTORE message, it
expects it to be followed by a number of messages responsible for resharing
memory areas and restoring the state of the IPC connections to the coop-
erative tasks in the checkpoint set (see Fig. 5.1). The actual mechanism of
this cooperation is described later on in Sec. 5.4.5.

After the state of the connections to the cooperative tasks has been
restored, the checkpointer sends a CHKPNT OUT RESTORE FINALIZE message
to the loader to signal that the restore-time-cooperation phase is finished.
Afterwards, the checkpointer sends a CHKPNT OUT RESTORE SET NTHREADS

message specifying the number of threads of the checkpointed task. It is
then the loader’s responsibility to create the same number of threads (minus
one, of course, because there is one thread already running in loader). It
would be possible to create the threads directly in the kernel using the one
of checkpointer’s IPC messages, however that would violate our goal of not
modifying the kernel code when unnecessary – we therefore let the threads
creation in the hands of the loader task.

After the threads are created, each of them then blocks by calling a
special SYS THREAD WAIT FOR RESTORE system call. This system call has
been created for the sole purpose of allowing us to conveniently restore
the states of the checkpointed threads. At the time of restoring from the
snapshot, all the threads belonging to the restored task are sleeping in this
system call, therefore there is a single location where we need to place our
function that restores each thread’s state (that is, at the end of the function
processing the SYS THREAD WAIT FOR RESTORE system call). If this system
call is invoked by any thread that does not belong to a task that is currently
being restored, it blocks there until a restore operation is started for the
task.

Knowing that all the threads that should be restored are blocked in
the SYS THREAD WAIT FOR RESTORE system call, we have placed a restore -

checkpointed thread function call at the end of function sys thread -

wait for restore that processes the system call. This way, each thread
will call this function before returning from sys thread wait for restore.

The purpose of restore checkpointed thread is to switch the thread’s
stack to a temporary location, overwrite the original kernel stack with the

CHAPTER 5. DESIGN AND IMPLEMENTATION 61

Checkpointer Loader

LOADER_SNAPSHOT_RESTORE

Switch to

restore mode.
EOK or error code

CHKPNT_OUT_RESTORE_-

SET_NTHREADS(n)

UDEBUG_BEGIN

Restore time check-

pointer cooperation

and memory areas

resharing.

CHKPNT_OUT_RESTORE_-

FINALIZE

Restore internal

state and finish

restoring external

state.

UDEBUG_END

Task restored

EOK or error code

EOK

EOK or error code

EOK or error code

Figure 5.1: Restoring a task.

CHAPTER 5. DESIGN AND IMPLEMENTATION 62

stored contents, then restore the thread’s metadata and finally replace the
thread’s register set with the values stored at the checkpoint time (which also
switches the kernel stack back to the original one). Note that because the
restored thread will most probably get a different kernel stack base address,
we have to adjust the values of the stack pointer and frame pointer registers
appropriately, so that they point to the correct locations.

The thread will then resume execution from the location where it got
checkpointed (i.e., our CHECKPOINT macro either in syscall handler or
exc dispatch).

Kernel Build Dependency

The above described solution is not optimal because restoring the contents
of the kernel stack and register set makes us dependent on the same kernel
build – if the kernel code changes and is recompiled, the value of the pro-
gram counter and kernel stack contents may not match the values stored
in the snapshot image rendering the snapshot unusable on the new system.
Therefore, in order to check the validity of the snapshot image a version of
the kernel build should be included in the image and the current version of
the kernel build should be matched against it at restore time (canceling the
restore operation in case of mismatch).

A better approach has been proposed: if we knew the contents of the
kernel stack and all the registers at the time of the system call, we could
use this knowledge to create a perfect illusion for the thread that it has
just entered the topmost function (we would recreate the contents of the
kernel stack at the time of the function call and set the program counter
to the memory address of the syscall handler or exc dispatch function).
However, in order to do that, we would need to know the contents of the
registers; unfortunately, due to the fact that the contents of the preserved
registers are not always known to us3 the necessary functionality has not
yet been implemented by the udebug framework (although a solution has
already been proposed in [3]).

The described thread state restoring functionality is however well sep-
arated from the rest of the kernel code, therefore it can be reimplemented
and improved later without any changes to the rest of the kernel code what-
soever.

3Described as the missing registers issue in [3].

CHAPTER 5. DESIGN AND IMPLEMENTATION 63

5.3.5 Thread and Task Metadata

After all the task’s user space threads have been stopped in one of the
consistent positions described earlier, we may proceed to exporting the task’s
and threads’ metadata.

In order to obtain the requested information, we use CHKPNT M GET -

THREAD METADATA and CHKPNT M GET TASK METADATA messages to copy the
relevant kernel structures to a user space buffer in the checkpointer’s address
space, which then stores them in the checkpoint image.

Restoring the metadata is then simply the opposite process – we re-
ceive the appropriate kernel structure in the buffer of a CHKPNT M GET-

THREAD METADATA or CHKPNT M GET THREAD METADATA message and over-
write the relevant parts of the thread’s or task’s metadata by the data from
the snapshot image.

5.3.6 Synchronization Primitives

As we know, a thread may only be checkpointed in a few certain well-defined
positions. The advantage of this is that we do not have to worry about the
state of its kernel synchronization primitives (simply said, we know that no
checkpointed thread holds any kernel locks).

Therefore, the only synchronization primitive that we have to take care
of are the user space futexes.

Futexes in HelenOS consist of two parts – a user space counter and a
kernel structure representing the futex. The kernel structure is mapped to
the corresponding user space counter by using its physical address and is
created and initialized the first time a system call related to the particular
futex is called. This design is actually quite well suited for our checkpointing
needs – we know that if we do not store the futex in the checkpoint image,
it will be recreated the next time it is referenced by the restored task.

The only problematic situation would be if we had missed a futex wakeup
call (that is a piece of information kept by the kernel structure), because the
thread that should receive the call was already blocked by the checkpointer.
Fortunately enough when we consider the cases that might happen, we real-
ize that this is a situation that cannot occur, unless the futex is shared and
one of the tasks that share it is an uncheckpointable uncooperative task;
however, in this case there is nothing we can do anyway because we are
unable to get the whole checkpoint set to a consistent state prior to taking
the snapshot (this is analyzed in Sec. 4.4.3).

CHAPTER 5. DESIGN AND IMPLEMENTATION 64

The remaining cases are a futex that is shared among multiple tasks –
either cooperative or checkpointable – and an unshared futex. In both of
these cases the tasks are brought to a consistent state prior to taking the
snapshot (either by sending them an IPC M CHKPNT REQUEST – see Sec. 4.4.6
– or by stopping them using the udebug framework). Therefore we can
be sure that the futex state will not change – i.e., it will not get locked or
unlocked – when taking the snapshot is in progress. The only situation when
we can experience a missed wakeup call is when a thread that is blocked on
the futex is stopped by the udebug framework before another thread unlocks
the futex and then gets stopped. Then we would restart the blocking system
call invoked by the blocked thread and the thread would block on the futex
again at restore time (and thus miss the wakeup call).

To prevent this situation we use a little trick – if the thread got blocked
when leaving the checkpointable section without being forced to wake up by
the checkpointer (i.e., we would miss a wakeup call at restore time, if we
restarted the system call), we let the thread that would normally restart the
blocking system call finish the wakeup process and checkpoint it at the end
of syscall handler instead of restarting it. No harm is done by doing that
– the only change is that the system call gets a chance to finish before the
thread is checkpointed.

When we restore a checkpointed task that uses a futex, the futex user
space counter will be restored with the user space memory contents and the
respective kernel structure will be recreated when the task first references
the synchronization primitive.

5.3.7 Memory Areas

We are using the UDEBUG M AREAS READ message from the udebug framework
to get the information about the memory areas of the checkpointed task. We
store all the information about the areas in the snapshot image and then use
the UDEBUG MEM READ message to read the contents of each area and store it
in the snapshot image.

In order to restore the restored task user space memory, we use the data
from the snapshot image to recreate the task’s areas (using the CHKPNT M -

SET MEM AREA message) with flags set to AS AREA WRITE (so that we can
write to those memory areas), then we overwrite their contents using the
UDEBUG MEM WRITE call from the udebug framework and finally we reset the
area flags to match those it had at restore time (using the CHKPNT M SET -

CHAPTER 5. DESIGN AND IMPLEMENTATION 65

MEM AREA FLAGS call).

Optimization

We are currently storing the contents of all the memory areas of the check-
pointed task in our prototype implementation (i.e, we are not using the
optimization proposed in Sec. 4.3.3). The reason for this is that it is cur-
rently not possible for us to learn the path to the checkpointed task binary
(or its respective VFS node) at the time of checkpoint as the necessary func-
tionality has not yet been implemented in VFS. However, there are plans for
supporting on-demand page loading in HelenOS, which requires exactly the
same functionality (as we need to be able to access the task’s binary to load
the pages); when this support is implemented, we will be able to switch to
using the proposed optimization.

5.3.8 Current Working Directory

The current working directory (shortly CWD) is a directory that is dynami-
cally associated with each task and is used when the task refers to a file using
a relative path (it is prepended to the relative path to make it absolute).

CWD value in HelenOS is stored in the user space memory of the task (as
char *cwd path variable in uspace/lib/libc/generic/vfs/vfs.c). As
we are unable to tell whether the task relies on the CWD value, there is no
way how we can transparently change this value for the checkpointed task at
restore time (e.g. because the task has called getcwd() to obtain the CWD
value before the snapshot was taken and then would use the remembered
value after the task has been restored). The only choice is therefore making
sure that the CWD is valid on the system at restore time (i.e., recreate it
when it does not exist).

Unfortunately, that is not possible in the current implementation as we
do not know the address of the cwd path string when we are checkpoint-
ing the task. A possible workaround for this issue would be mapping the
cwd path variable to a fixed memory address so that at restore time we would
be able to read its value and recreate the required directory (if it does not
exist). Another possible solution could be introducing some general mech-
anism that would allow the task to store some task-specific information in
the task’s kernel structure – then we could store CWD there.

In our prototype implementation we expect the current working direc-
tory to be valid at restore time.

CHAPTER 5. DESIGN AND IMPLEMENTATION 66

5.4 External State

In this part of our thesis we describe the process of checkpointing and restor-
ing the external state of a task and the inner workings of the checkpointer
cooperation mechanism proposed in Sec. 4.4.6.

5.4.1 Checkpoint Set Construction

Let us now assume that the checkpointer has received a CHKPNT IN CHECK-

POINT message with the task identifier of task zero, the output directory
and the checkpointing flags (as described in Sec. 5.2.1). The next step of
the checkpointing operation is the construction of the checkpoint set. This
is handled by checkpointer’s construct checkpoint set function.

As we have described in Sec. 4.4.3, we require that the algorithm used
for the construction produces a checkpoint set that is stable, complete and
minimal. In order to satisfy those conditions we use an algorithm that
constructs the checkpoint set in iterations while preventing the tasks that
have already been included in the set from opening new connections. In
every iteration of the algorithm, we use a CHKPNT M READ IPC CONNECTIONS

and CHKPNT M READ SHARED TASKS to obtain the identifiers of the tasks that
share a part of the distributed state for every checkpointable task in the
checkpoint set (for each connected IPC phone we obtain the identifiers of
the connection too).

We must however consider some issues in order to guarantee that the
checkpoint set has the three aforementioned properties.

Stability Care has to be taken, because the checkpointable tasks in the
checkpoint set might open new connections while the checkpoint set itself is
being constructed causing us to fail to include some of the tasks that should
belong to the set too (see Fig. 5.2) – in other words, the checkpoint set
could “grow” while under construction.

In order to avoid this “growth” and therefore guarantee that the check-
point set is stable, there are two things we have to take into account. First,
because we are using the lazy cooperation approach we have to prevent

CHAPTER 5. DESIGN AND IMPLEMENTATION 67

Missing

server

Included

server

Checkpoint set

Task zero

Not yet responded to

IPC_M_CONNECT_ME_TO

message.

Naming

Service

Figure 5.2: Missed connection in checkpoint set construction.

checkpointable tasks in the checkpoint set from opening new connections
while the checkpointing operation is in progress – or to be more exact we
have to postpone creating those new connections until the operation has
finished. Second, because creating a new connection between tasks is not
an atomic operation, we have to wait for all the connections that have been
initiated but not yet finished (i.e., accepted or rejected by the callee).

Tasks in HelenOS connect to each other using special system services;
there are currently two services that allow non-system tasks to open new con-
nections – Naming Service and Device Mapper4. We therefore prevent the
tasks in the checkpoint set from opening new connections by using the check-
pointer cooperation approach – we send an IPC M CHKPNT REQUEST message
to each of the cooperative tasks in the checkpoint set informing them about
the ongoing checkpointing operation. By sending this message we require
that the connections from the checkpointable tasks to the cooperating tasks
get into a checkpointable state (as described in Sec. 4.4.4 and 4.4.6). All
the new connection attempts will then be buffered by the respective servers
until the checkpointing operation is over, thus effectively postponing the
connections attempts until after the operation. After we have received all
the responses to the IPC M CHKPNT REQUEST messages, we know that the

4Those services are however not designed to connect two arbitrary tasks, they rather
allow non-system tasks to connect to system services. To allow connections between
non-system tasks some kind of trading service will most probably be implemented in the
future.

CHAPTER 5. DESIGN AND IMPLEMENTATION 68

recipients will not allow the checkpoint set to grow.
However, before we move on with the checkpointing operation, we also

have to deal with the already initiated but not finished connection attempts –
we have to wait until all such attempts are either accepted or rejected by their
recipients. Tasks connect to each other by sending an IPC M CONNECT ME TO

call to the system service that provides the connection (it then forwards the
connection message to the correct task). Therefore, we have to wait until all
the forwarded IPC M CONNECT ME TO calls sent by any checkpointable task
in the checkpoint set have been delivered and answered (either accepting or
rejecting the connection).

After this we have finished one iteration of the algorithm. The next
step is to scan the checkpoint set for newly included tasks and repeat the
previously described procedure for all those tasks.

Completeness After the checkpoint set has been created by the previ-
ous procedure, we have to deal with the recipients of the forwarded calls
(as we have described in Sec. 4.4.5). Therefore, we have to go through
the forwarded messages originating at any checkpointable task within the
checkpoint set and repeat the checkpointing procedure for each message re-
cipient (i.e., include the recipients in the checkpoint set). Note that this
only concerns uncheckpointable tasks, because apart from the connection
messages (which are handled specially as described above), no system ser-
vice forwards messages to checkpointable tasks. Also note that including a
recipient of a forwarded call that replies to the call after it has been added
to the checkpoint set but before it is asked to reach a checkpointable state
is not a problem – we will remove such tasks in the following cleanup phase.

Minimality The last phase before starting the actual checkpointing is the
cleanup phase – the checkpoint set construction is finished, but there may
be tasks in the set which are not reachable from task zero and therefore we
do not need to include them in the checkpointing operation (because a task
in the checkpoint set has finished execution or has been included because it
was a recipient of a forwarded call, but managed to answer the call before
reaching a checkpointable state). Therefore, in the cleanup phase, we stop
all the checkpointable tasks in the checkpoint set and then remove all the
unreachable tasks (the removed tasks resume normal execution). Note that
it is of course possible that a task in the checkpoint set will be killed when
the checkpointing operation is in progress – in that case the checkpointing

CHAPTER 5. DESIGN AND IMPLEMENTATION 69

operation for that task will report an error.

The checkpoint set algorithm may be expressed in pseudocode as described
in Algorithm 1.

Algorithm 1 Checkpoint set construction.
count = MAX ITER COUNT;
add to set(checkpoint set, task zero)
repeat

conns1 = find new connections(checkpoint set)
conns2 = find new shared memory(checkpoint set)
if is empty(conns1) and is empty(conns2) then

break
end if
add to set(checkpoint set, conns1)
add to set(checkpoint set, conns2)
inform cooperative tasks(conns1)
wait for pending connections(checkpoint set)
count = count - 1

until count == 0
{Ensure completeness.}
conns3 = find unresponded forwarded calls recipients(checkpoint set)
add to set(checkpoint set, conns3)
inform cooperative tasks(conns3)
{Ensure minimality.}
stop checkpointable tasks(checkpoint set)
remove unreachable tasks(task zero, checkpoint set)

Prototype Limitation

In our prototype implementation we impose a condition on the checkpoint
set: we allow only a single checkpointable task to be present in the check-
point set – task zero.

There are two reasons for this – the major reason is that no security
subsystem has yet been implemented in HelenOS and therefore we are unable
to obtain the information about task’s checkpointability (see Sec. 4.4.2) and
differentiate between checkpointable and uncheckpointable tasks. For this

CHAPTER 5. DESIGN AND IMPLEMENTATION 70

reason, we stick to the safer choice, which is considering all the other tasks
in the checkpoint set (that is, other than task zero) to be uncheckpointable.

The other reason is that the support for creating IPC connections be-
tween ordinary user space tasks is not implemented in HelenOS either; there
is no service designed to be used for creating those connections.

5.4.2 Registering With the Checkpointer

In order for the checkpointer to be able to successfully checkpoint the dis-
tributed state of task zero, we need the uncheckpointable tasks that partici-
pate in the checkpoint set to be registered with it and cooperate during the
course of the checkpointing operation.

We have provided a convenient function (in uspace/lib/libc/gene-

ric/chkpnt.c) that allows cooperative tasks to register with the check-
pointer easily.

• int chkpnt_register_with_checkpointer(

const int service_id, const task_id_t task_id,

const async_client_conn_t checkpoint_conn,

const async_client_conn_t restore_conn)

It accepts four parameters – a persistent identifier of the regis-
tering service (service id), task identifier of the registering service
(task id) and two pointers to a fibril function (checkpoint conn and
restore conn). service id identifier is one of the values defined in
libc/include/ipc/chkpnt.h. It is used to persistently identify the service
among different machines and/or HelenOS runs; we use this identifier to find
the appropriate service at the restore time. task id is used by the check-
pointer to identify the IPC connections, undelivered IPC calls and shared
memory areas and export this information from the kernel (as the kernel
itself is unaware of the persistent identifiers). checkpoint conn function
pointer is used to specify the fibril function that will handle the communi-
cation with the checkpointer at checkpoint time. Finally, the fibril function
pointer restore conn is used at restore time – when the restore connection
is opened (using the special IPC M RECONNECT ME call as described in Sec.
5.4.5), a new fibril is created and it executes this function; this way, it is
much easier to separate the restore routine logic from the logic that handles
normal IPC calls.

CHAPTER 5. DESIGN AND IMPLEMENTATION 71

The provided chkpnt register with checkpointer function connects
the registering task to the checkpointer service, sends it the service id

and task id and uses the IPC M CONNECT TO ME system message to create
a callback connection from the checkpointer task (this connection is then
handled by the fibril specified by the checkpoint conn parameter).

5.4.3 Checkpointer Cooperation

As we have shown in the analysis, in order to take a snapshot of a task that
communicates with an uncheckpointable service, the checkpointer must be
able to cooperate with this service in order to obtain its part of the task’s
distributed state.

There are six well-known messages that each cooperative task must un-
derstand in order to support the checkpointing/restoring operation.

• IPC M CHKPNT REQUEST(conn id) → ()

conn id: Identifier of the connection that is requested to reach the
checkpointable state.

Informs the task about a checkpointing operation that is taking
place. The task’s connection identified by the message argument is
required to reach a checkpointable state and stay there until it re-
ceives an IPC M CHKPNT END message. The cooperative task answers
this message when the connection has reached a checkpointable state.

• IPC M CHKPNT INIT(conn id) → (size)

conn id: Identifier of the checkpointed connection.

The cooperative task is requested to export the state of the iden-
tified connection.

size: Size of the data to be exported (used to specify the size
of the buffer for the following IPC M READ message that handles the
actual exporting).

• IPC M CHKPNT END(conn id) → ()

conn id: Identifier of the checkpointed connection.

Informs the cooperating task that the checkpointing operation has
finished (either successfully or with an error). The checkpointed con-
nection may resume normal execution (i.e., it does not have to keep
the checkpointable state).

CHAPTER 5. DESIGN AND IMPLEMENTATION 72

• IPC M RECONNECT ME() → ()

Informs the cooperative server about a new cloned connection
whose state is going to be restored (explained in Sec. 5.4.5).

• IPC M RSTR INIT() → ()

Informs the cooperating task about a new restore operation. This
method is accepted by the fibril created by the IPC M RECONNECT ME

message.

• IPC M RSTR END() → ()

Informs the cooperating task that the restore operation has fin-
ished successfully. This method is accepted by the fibril created by
the IPC M RECONNECT ME message. The restored connection may re-
sume normal execution. If the restoring operation has ended with
an error, the connection will be closed by a standard IPC M HANGUP

message.

Let us now take a closer look at the inner workings of the cooperation
mechanism.

5.4.4 Cooperation at Checkpoint Time

The checkpointing operation as seen from the point of view of a cooperative
service comprises three parts – first, the service gets into a checkpointable
state, second, the service exports its part of the distributed state, and finally
the third phase when the checkpointed connections resume normal operation.
A UML sequence diagram presenting a concise overview of the cooperation
mechanism is shown in Fig. 5.3.

Getting Into Checkpointable State

After a checkpointing request has been accepted by the checkpointer for a
given task zero, the checkpointer has to create the checkpoint set and get
all the cooperative tasks within the set to reach a checkpointable state (see
Sec. 5.4.1). That involves sending an IPC M CHKPNT REQUEST message to all
those cooperative tasks.

In order to ease the implementational burden imposed on the cooperative
services by requesting that they support the checkpointing operation, we
have included several functions in the async library.

CHAPTER 5. DESIGN AND IMPLEMENTATION 73

Checkpointer Cooperative Task

IPC_M_CHKPNT_REQUEST(conn id)

IPC_M_CHKPNT_INIT(conn id)

EOK or error code

IPC_M_DATA_READ

Checkpointable

task

CHKPNT_M_READ_IPC_-

CONNECTIONS

conn id

EOK & data size or error code

EOK & exported data or error code

IPC_M_CHKPNT_END(conn id)

EOK

Checkpoint set

construction

Figure 5.3: Cooperation at checkpoint time, sequence diagram.

• int async_set_checkpointable_state(const ipcarg_t conn_id,

const bool state_flag)

Allows the cooperative service to set a flag for a connection iden-
tified by conn id that specifies whether that connection is (or is not)
currently in a checkpointable state.

• int async_set_pending_checkpoint_flag(

const ipcarg_t conn_id, const ipc_callid_t call_id)

Checks the state of the connection identified by conn id. If it is in
a checkpointable state (set by the async set checkpointable state

function) it answers the IPC M CHKPNT REQUEST message identified by
call id right away; otherwise, it stores the message identifier in the
structure that represents the connection and when the connection
reaches a checkpointable state state, the message is answered. Af-
ter the message has been replied, the fibril that handles the connec-
tion (identified by conn id) is taken out of the fibril ready queue (if

CHAPTER 5. DESIGN AND IMPLEMENTATION 74

it is currently active) and does not get scheduled until the connec-
tion is allowed to leave the checkpointable state. All the messages for
the connection are buffered and will be delivered when the thread is
scheduled.

Using the provided functions, fibrils that handle the connections can
signal when they are in a checkpointable state and if there is a checkpoint
request pending, they will stay in this state until the service is notified that
the operation has finished (or has been canceled).

Blocking Calls We have provided an analysis of the blocking calls issue
in Sec. 4.4.5. We have shown that without any transactioning mechanism
this is a rather difficult problem to solve.

Due to the implementational complexity of the better solution, in our
prototype implementation we always wait until the blocking message is
replied to. This is not optimal as it can lead either to the checkpoint-
ing request blocking indefinitely or being canceled by exceeding a timeout.
However, we believe that it is sufficient for our proof-of-concept implemen-
tation.

Exporting the State

The second part of the checkpointing cooperation is then exporting the ac-
tual state.

We assume that the connection that we are exporting the state of is
already in a checkpointable state. The checkpointer then sends the coop-
erating service an IPC M CHKPNT INIT message specifying the identifier of
the connection, followed by an IPC M DATA READ request. The cooperating
service then fills the buffer with the data.

Again, we have provided functions to simplify storing/obtaining state
data for a connection.

• int async_set_checkpoint_data_for_conn(

const ipcarg_t conn_id, const void *data)

Allows the connection identified by conn id to store data in a
connection-specific buffer.

• int async_get_checkpoint_data_for_conn(

const ipcarg_t conn_id, void **data)

CHAPTER 5. DESIGN AND IMPLEMENTATION 75

Allows the connection identified by conn id to get the data stored
in a connection-specific buffer.

What exactly is needed to be stored for a connection depends on the
implementation of each particular service. However, there must be enough
information to allow the connection to restore its state when it is requested
at restore time.

Resuming Operation

The final phase of the checkpointing cooperation is letting the checkpointed
connection fibril resume its normal operation. When the checkpointing oper-
ation has finished successfully or has been canceled, the checkpointer sends
an IPC M CHKPNT END message to the cooperating service. After receiving
this message, the service’s checkpointed connection is allowed to leave the
checkpointable state and all the messages for this connection that have been
buffered are delivered.

Again, we have provided a function that allows the connection to leave
the checkpointable state.

• int async_wakeup_checkpointed_fibril(

const ipcarg_t conn_id)

Clears the pending checkpoint flag for a connection identified by
conn id and if there are any buffered messages for the connection,
adds the respective fibril to the fibril ready queue (causing the buffered
messages to be delivered). The connection resumes normal operation.

5.4.5 Cooperation at Restore Time

Similarly to the checkpointing operation, restoring the state of a previously
checkpointed task comprises three parts – first, we create a new IPC con-
nection from the restored task to the cooperating service; second, we send
the data to allow the fibril to restore the state of the connection; and finally
third, we let the connection resume normal operation.

We present a concise overview of the checkpointer cooperation mecha-
nism at restore time in Fig. 5.4.

CHAPTER 5. DESIGN AND IMPLEMENTATION 76

Restored task

(loader)
Cooperative Task

RECONNECT_ME

IPC_M_RSTR_INIT

EOK & phone id or error code

forward IPC_M_DATA_WRITE

Checkpointer

IPC_M_CONNECTION_CLONE

EOK & phone id or error code

EOK or error code

EOK or error code

CHKPNT_OUT_RESHARE_MEM_AREA

(orig base)

CHKPNT_OUT_RESTORE_-

CONN_STATE(phone id)

IPC_M_DATA_WRITE

EOK or error code

CHKPNT_OUT_RESTORE_-

SHARED_MEMORY_AREA

(phone id, base, size,

orig base)

IPC_M_SHARE_IN(base, size)

EOK & reshare flag & overwrite flag

EOK or error code

CHKPNT_OUT_FINALIZE_-

CONNECTION_RESTORE

(phone id)
IPC_M_RSTR_END

EOKEOK

EOK & reshare flag &

overwrite flag or error code

Figure 5.4: Cooperation at restore time, sequence diagram.

CHAPTER 5. DESIGN AND IMPLEMENTATION 77

Recreating the Connection

Assume that the task to be restarted has already been created (as described
in Sec. 5.3.3), but it has not opened any IPC connections yet. The check-
pointer uses a special IPC M CONNECTION CLONE message provided by the sys-
tem to clone its connection to the cooperating service and hand this connec-
tion over to the restored task (the restored task returns the phone id of the
connected phone to the checkpointer in the answer to the IPC M CLONE CON-

NECTION message). The task then sends an IPC M RECONNECT ME message to
create a new connection fibril on the cooperating service side – this new
connection is the one whose state is going to be restored.

After the new connection fibril has been created, the checkpointer uses
the restored task to communicate with the cooperating service. The check-
pointer could communicate directly with the service using its own registered
connection, however using the cloned connection has the advantage of the
cooperating service being able to accept the messages directly in the restored
fibril (we can do this because the connection knows it is being restored; un-
like during the checkpointing operation where we have to use the direct
checkpointer connection).

Restoring the State

After the connection has been recreated, the checkpointer sends a CHKPNT -

OUT RESTORE CONN STATE message to the restored task specifying the phone
id of the connection whose state is to be restored followed by an IPC M -

DATA WRITE call with a buffer containing the exported state of the coopera-
tive task’s connection. The restored task sends an IPC M RSTR INIT message
via the specified phone and then forwards the IPC M DATA WRITE message.
The cooperative service uses the received information to restore the state of
the recreated connection to the state it had at checkpoint time.

Resharing Memory Areas

After the state of the recreated connection has been restored, we have to
recreate the memory areas that the checkpointed task shared with the co-
operating service. For each area to be reshared, the checkpointer sends
a CHKPNT OUT RESTORE SHARED MEMORY AREA message to the restored task
specifying the phone id, base address, area size and original base address of
the area in the cooperative service’s address space at checkpoint time. The

CHAPTER 5. DESIGN AND IMPLEMENTATION 78

task then sends a CHKPNT OUT RESHARE MEM AREA message with the original
base address via the specified phone to the cooperating service and receives
an answer containing a boolean flag specifying whether this particular area
belongs to this connection (this is necessary because there can be multiple
connections from the task to the service and each of those connections could
be aware of different shared memory areas) and a boolean flag specifying
whether the area contents should be overwritten by the checkpointed data
or left to be updated by the service. If the area does not belong to the con-
nection, we skip to the next area to be reshared; otherwise, the task sends
an IPC M SHARE IN system message to the service, which creates a memory
area of the specified size at a specified address in the sender’s address space
and shares this area with an area in the receiver’s address space. If there
is no such area in the cooperating service’s address space, the service must
create it before answering the message. Afterwards, the restored task replies
to the message sent by the checkpointer and we either process the next area
or (if it was the last one) move on to finalize the restore operation. In case
more than one of the connections are aware of the area to be reshared, each
of them should set the “belong” flag to true – that way, the area will only
be reshared once (by the first of those connection that is restored).

Finalizing the Restore Operation

The restoring operation is finished when the checkpointer sends a CHKPNT -

OUT FINALIZE CONNECTION RESTORE message to the restored task, which
then sends an IPC M RSTR END message to the cooperating service – after
receiving this message, the restored connection resumes normal operation.
If an error occurs during the restore operation, the restored connections are
hung up using the standard IPC M PHONE HANGUP message.

5.4.6 Replacing Hashes by Identifiers

There are two ways a resource managed by the kernel can be referred to in the
user space in HelenOS: it can be either a 64 bit long incremental ID or a hash,
i.e., a memory pointer to kernel address space. If the resource is supposed to
be unique in the system and is expected to be reused, it is convenient to use
a hash because the memory manager automatically guarantees uniqueness
and we do not have to care about assigning the hashes (as long as there is
enough memory available; however, when we run out of memory, we have a
lot of other problems too).

CHAPTER 5. DESIGN AND IMPLEMENTATION 79

Unfortunately, hashes are very inconvenient when considering check-
pointing because tasks restored from a snapshot expect the resources known
to them to be accessible under the same identifiers; and this is impossible
to guarantee when using hashes as some other resource may be using the
memory address at restore time.

In HelenOS, there are two resources identified using hashes: phone con-
nections and IPC calls. In order to provide checkpointing support, those
hashes exposed to the user space must be replaced by IDs.

When considering the replacement, we have to take into account that we
cannot use regular 64 bit long IDs because they would not fit as system call
arguments on 32 bit systems5; the native size of a system call argument for
the given architecture had to be used. Moreover, by removing the memory
pointers, we lose the inherent uniqueness guaranteed by the kernel memory
manager and we have to ensure the uniqueness ourselves.

We could search for a new identifier for an IPC message and an IPC
phone every time a new one is needed; however, that would be very slow
and because IPC message passing is a critical feature for a multiserver mi-
crokernel system, this would be unbearable. For this reason we decided to
use an incremental counter; we have added a new counter t structure to
kernel/generic/include/adt.h where we store the current value of the
counter, the bounds of the numeric area that the counter value is assigned
from, counter’s minimal and maximal value, the increment step and a spin-
lock to protect the counter from race conditions. Two counter t structures
are kept by each task’s answerbox – call counter for creating new identi-
fiers for IPC phones and phone counter for IPC calls.

When the value of the counter reaches the upper bound, we lock the
task’s structures that use the identifiers related to this counter and we find
and sort all the identifiers of the structures that are currently assigned an
identifier created by the respective counter (i.e., the IPC calls or IPC phones
of the task) in an array, add the minimal and maximal counter value to the
beginning and end of the array and then find the biggest “gap” between two
successive identifiers. This is the new numerical area to assign new identifiers
from. This is handled by functions ipc find new phone counter area and
ipc find new call counter area in kernel/generic/src/ipc/ipc.c.

The performance degradation caused by searching for new identifiers

5The other resources using 64 bit IDs (task and thread identifiers) rely on the fact
that their identifiers are not used very often, therefore they are not sending the ID via
system call arguments, but copy it from the user space using other means.

CHAPTER 5. DESIGN AND IMPLEMENTATION 80

should not be significant as the search is only made when the previous nu-
meric area has been depleted – which should take a reasonably long time
on 32-bit systems (and would most probably never be needed on 64-bit sys-
tems). Furthermore, the tasks usually do not have too many unprocessed
IPC messages (i.e., those, whose structures are still present in kernel) or IPC
phones, therefore the search should not take too long.

5.4.7 IPC connections

In order to be able to recreate the state of the checkpointed task, the check-
pointer must be able to reconnect all of the task’s IPC phones to the same
tasks they were connected to at checkpoint time.

Checkpointing the Connections

Each IPC connection in HelenOS is identified by two identifiers – a sender-
side id and a receiver-side id. Sender-side id is used to refer to the individual
connections when the task uses an IPC-phone related system call, while the
receiver-side id is used to identify the connection by the callee (so that it can
be routed to the correct fibril). Both identifiers are assigned by the kernel.

The checkpointer keeps track of all the connections for every check-
pointable task in the checkpoint set. It acquires the task identifiers of the
connected tasks using the CHKPNT M READ IPC CONNECTIONS call during the
checkpoint set construction as described in Sec. 5.4.1. Apart from the
callee’s task identifier, the message also returns both the sender-side and
the receiver-side identifier for each connection. In case the callee is a check-
pointable task, it suffices to store this information only. However, if the
callee is a cooperative task, we have to deal with the fact that the task
identifiers are not persistent and they would be useless in case the restore
operation would take place after the system has been restarted or on a dif-
ferent machine (we would not be able to identify the cooperative task to
restore the connection to). To avoid this problem, the checkpointer maps
those identifiers to persistent identifiers of registered tasks obtained during
their registration (as described in Sec. 5.4.2). Those persistent identifiers
are then stored in the snapshot image together with the information about
the identifiers of the connected IPC phone.

CHAPTER 5. DESIGN AND IMPLEMENTATION 81

Reconnecting the Phones

The IPC phones are reconnected by the loader during its special “restore
mode” phase (see Sec. 5.3.3). There are two different cases we need to
handle.

If the callee is a cooperative task, the checkpointer finds the task among
the registered tasks by its persistent identifier, uses an IPC M CONNECTION -

CLONE message to clone the checkpointer’s connection to this task (created
at the registration time) and hands it over to the restored task as described
in Sec. 5.4.5. If no connection registered with the appropriate identifier is
found, it means that a cooperative task that was present at checkpoint time
is missing in the system at restore time (described as the “missing server
issue” in Sec. 4.4.7) and we report an error.

In case the callee is a checkpointable task we are unable to recreate the
connection using cloning (as there is no connection to be cloned). How-
ever, the restored task has an open connection to the checkpointer, which in
turn has open connections to the rest of the restored tasks. Therefore, the
checkpointer sends a CHKPNT OUT RECONNECT TO CHECKPOINTABLE message
specifying an identifier of the callee which we want to reconnect to and the
restored task sends an IPC CONNECT ME TO message to the checkpointer using
this identifier. The checkpointer then forwards the call to the appropriate
callee and the connection is opened.

Restoring the Identifiers

If we want the checkpointing/restoring operation to be transparent to the
checkpointed task, when we recreate a connection to a checkpointable task,
we need it to be recreated with the same identifiers it had at the checkpoint
time. In case the callee is a cooperating task, only the sender-side id needs
to be the same (because the restore operation is not transparent for the
other side of the connection).

Regarding the sender-side id, there are two choices: either we could re-
connect the phones as we read them from the snapshot image and then
reassign the identifiers using a special checkpointing call or we could recon-
nect them in an order that would make sure they will get the identifiers we
need. As one of our design goals was to add new functionality to the kernel
code only where necessary, we have chosen the latter approach.

To restore the identifiers, we use the knowledge that the kernel assigns
the sender-side identifiers in an ascending sequence always starting from 0

CHAPTER 5. DESIGN AND IMPLEMENTATION 82

skipping the “slots” already occupied by connected phones. Therefore, if we
sort the phones by their sender-side identifiers and reconnect them in this
order, they will be assigned correct identifiers. However, there is one catch
here – if there was a “hole” in the phone identifiers at the checkpoint time
(this can happen when the task normally hangs up a connection), we have
to recreate it at restore time too, otherwise all the phones after the “hole”
would be assigned a smaller id. For this reason, if we encounter a “hole”
when reconnecting the phones, we remember it and connect the phone with
the identifier that matches the “hole” to the checkpointer (thus filling it).
After all the connections are recreated, we hang up all the connections that
correspond to the “holes”. That way all the sender-side identifiers at restore
time match the identifiers at checkpoint time.

When we are restoring a connection to a checkpointable task, we also
have to restore its receiver-side identifier. This cannot be done from user
space (as the receiver-side id is assigned by the kernel and unlike when
restoring sender-side id, we cannot really affect its value from the user space),
therefore we use a special CHKPNT M SET IPC CONNECTION call to reset the
identifier.

5.4.8 IPC Calls

If there are any undelivered or unanswered messages at the time the snapshot
of the checkpoint set is taken, we need to resend those calls transparently
at restore time. Messages in HelenOS are represented by call t kernel
structures kept either at the receiver’s answerbox (there are two queues –
one for the calls that have been sent but not yet delivered to the task’s
user space and one for the calls that have already been delivered) or at the
sender’s answerbox (in case it is an answer that has not yet been delivered
to the user space).

This is unfortunately not very useful for the our checkpointing needs,
because we have to keep track of all the messages sent by checkpointable
tasks in the checkpoint set and if a checkpointable task sends a message to
a cooperative task, it is added to the cooperative task’s answerbox queue
where we are unable to find it (because we are not allowed to stop a cooper-
ative task and search his unanswered messages). Also – the message could
be forwarded by the cooperative task which means we would not even know
where to look for it.

For this reasons we have decided to add a new list to the task t kernel

CHAPTER 5. DESIGN AND IMPLEMENTATION 83

structure called out calls which we use to remember all the calls sent by
the task. A message is added to this list when it is sent and removed when
it is answered; we can therefore comfortably keep track of the forwarded
messages too.

In a manner similar to the IPC connections, IPC calls are identified by
a sender-side id, which is used to identify the answers so that they can be
routed the the appropriate fibril, and a receiver-side id, which is used to
route the call to the correct fibril at the receiver’s side.

Checkpointing the Calls

The checkpointer uses a CHKPNT M READ PENDING CALLS message to obtain
the memory address of the call structures in kernel together with the infor-
mation whether the call is forwarded and whether there is a buffer associated
with it. Then we use the CHKPNT M GET PENDING CALL message to copy each
call structure from the kernel to the user space and store it in the snapshot
image (the payload arguments are stored within the structure). In order to
allow the checkpointer to resend the call via the same phone it has been sent
at the checkpoint time, we have associated a checkpoint call t structure
with the kernel call t structure where we keep the sender-side identifier of
the phone. If the call is associated with a buffer, we copy the buffer contents
to the user space using the CHKPNT M GET PENDING CALL BUFFER message
and add it to the snapshot image.

Restoring the Calls

Restoring the pending calls and answers stored in the snapshot image takes
place after all the IPC phones have been reconnected. Similarly to the
situation when reconnecting phones, when both sender and receiver of the
checkpointed call are checkpointable, both call identifiers must be restored
in order for the checkpointed task to be transparently restored from the
snapshot; in case the receiver is a cooperative task, restoring the sender-side
identifier suffices (because the receiver knows that the unanswered call will
be resent and that it cannot make any assumptions regarding the receiver-
side value of its identifier)

Restoring the calls is done via the CHKPNT M SET PENDING CALL message.
Note that this has to be done from the kernel because there is no way we
could transparently restore an unprocessed answer or a forwarded call from
the user space. Note that if the receiver is a checkpointable task and the

CHAPTER 5. DESIGN AND IMPLEMENTATION 84

call has not yet been answered, we have to add it to the appropriate queue
on the receiver’s answerbox – if the call has already been delivered to the
user space, we have to add it to the dispatched calls queue (otherwise
the receiving task would receive the call twice); if the call has not yet been
dispatched, we add it to the calls queue.

If a buffer was associated with the call at checkpoint time, we restore it
using a CHKPNT M SET PENDING CALL BUFFER message.

Synchronous Calls

Although HelenOS is primarily an asynchronous system, it allows the tasks
to send synchronous messages too. In this case, the thread that sends the
IPC message blocks in the system call that handles the sending until the
message is answered.

If the synchronous message has been answered before the task’s threads
have been stopped by the checkpointer and we have begun taking the snap-
shot, everything works just fine – the system call will not be restarted and
the thread will either return to the user space before it is stopped by the
udebug begin call (as described in Sec. 5.3.1) or it will get checkpointed
at the end of the system call that handles the synchronous message sending
(that is sys ipc call sync fast or sys ipc call sync slow depending on
the number of payload arguments). In any case it is guaranteed that the
thread that had blocked while waiting for the answer will get the answer
exactly once.

The problematic situation is if the synchronous call has not been an-
swered by the time the snapshot of the task is taken. Because the thread is
blocked in a system call, the system call will be restarted (see Sec. 5.3.1).
Therefore, we have to make sure that the call will not be sent twice. Note
that this is not an issue with asynchronous calls because when sending an
asynchronous message, the sending and waiting for an answer is handled
by two separate system calls where the first one is not blocking – we can
therefore be sure that the message is only sent once.

Checkpoint Time Let us now focus on the situation with sending syn-
chronous calls at checkpoint time. Every kernel call t structure that rep-
resents a message keeps a pointer to the caller’s answerbox, so that we know
which answerbox we should append the answer to, when the message is
replied. For asynchronous calls, this answerbox is the task’s default answer-

CHAPTER 5. DESIGN AND IMPLEMENTATION 85

box. For synchronous calls, a special answerbox is allocated by the system
call handler and the call’s answerbox pointer is set to this new answerbox –
this is done to ensure that the answer will be delivered to the same thread
that had sent it. This special answerbox is destroyed when the synchronous
call is answered.

If we just restarted the system call, the synchronous message would be
sent again and the recipient would receive the message twice. Furthermore,
we would not be able to wait for the first message to be answered because
we would lose the pointer to the answerbox associated with the call. To
prevent this, we have added a call t *active sync call variable to the
kernel thread t structure where we keep a pointer to the sent synchronous
message when the system call is restarted. That way when we re-execute
the system call handler, we find that there is an active synchronous call for
this thread and we skip the sending part and just wait for the answer to
come. We set active sync call to NULL when the call is answered.

Restore Time There are three cases we need to consider when we are
restoring an unanswered synchronous call at restore time.

• The recipient is a cooperative task. In this case we just do nothing –
the call will be resent when the system call is restarted.

• The recipient is a checkpointable task and the call has not yet been de-
livered to user space. In this case, we do not have to do anything either
– the recipient’s user space knows nothing about the call, therefore it
suffices that the call will be resent when the system call is restarted.

• The recipient is a checkpointable task and the call has been delivered to
user space, but not yet answered. In this case, we cannot let the call be
resent when the system call is restarted (otherwise the recipient would
receive the call twice). Therefore, we add the call to the recipient’s
dispatched calls queue, allocate an answerbox and set the restored
call’s answerbox pointer to it. Then we find the thread that has sent
the synchronous call by its identifier (which is checkpointed together
with the synchronous call) and we set the thread’s active sync call

value to the restored call. That way, we make sure the call will not be
sent twice and the answer will be delivered to the correct thread.

CHAPTER 5. DESIGN AND IMPLEMENTATION 86

Excluding Clients

As we have described in Sec. 4.4.3, we are excluding clients of each check-
pointed server from the checkpoint set in order to keep the checkpoint set’s
size minimal. We therefore ignore all the undispatched messages waiting on
any of the checkpointed task’s answerboxes whose sender is not included in
the checkpoint set. If the message has already been delivered to the user
space, we have to recreate the appropriate kernel call t structure (so that
answering the message does not fail) – the only problem is that the sender
does not exist at restore time. The solution is to create a new dummy task
(using the loader service) and modify the calls so that they appear to have
come from this task. Each client connection is then closed by adding a stan-
dard IPC M HANGUP message to the restored task’s answerbox answer queue,
again modified to appear to be sent by the dummy task.

5.4.9 Shared Memory

As a part of restoring checkpointed task’s external state, we have to reshare
all the memory areas that have been shared with any other tasks in the
checkpoint set.

Checkpointing the Areas

Checkpointing shared memory areas is quite straightforward – we store the
information about those areas together with the information about the other
(i.e., non-shared) areas when we are checkpointing the internal state of the
task (see Sec. 5.3.7). The only difference is that we store some extra data
with each shared memory area – a list of task identifiers of the other tasks
that the checkpointed task shares the area with and a list of base addresses
of the shared area in the address spaces of the other tasks. We use a
CHKPNT M READ SHARED MEM AREA INFO message to obtain this data. In a
manner similar to checkpointing the IPC connections (see Sec. 5.4.7) , we
have to replace the task id with a persistent identifier in case the task id
refers to a cooperative service so that we are able to find it at restore time.

Restoring the Areas

Restoring shared memory areas takes place after all the IPC phones have
been reconnected. There are two scenarios for each area – either one of

CHAPTER 5. DESIGN AND IMPLEMENTATION 87

the tasks that the area is shared among is cooperative or the area is shared
exclusively among checkpointable tasks.

In the former case, we restore the area shared with the cooperative tasks
during the cooperation with the checkpointer using the IPC M SHARE IN sys-
tem message (the details of the resharing process are described in Sec. 5.4.5).
We also obtain a flag from the cooperative service telling us whether the ser-
vice has requested the task to overwrite the area contents. Resharing the
area between the remaining checkpointable task is then done the same way
as resharing between checkpointable tasks only (as described in the next
paragraph).

In the latter case we use the following approach – we select the task with
the lowest task id value from the set of tasks that need to reshare the area
and instruct this task (i.e., the loader that is in the special “restore mode”,
see Sec. 5.3.3) to first recreate the area in its address space and then send a
CHKPNT OUT RESHARE MEM AREA message to each of the other checkpointable
tasks involved in the sharing specifying the original base address of the area
(in their address spaces) followed by a IPC M SHARE OUT system message.
This message creates a memory area with a specified size in the address
space of the receiver and shares it with a specified area in the sender’s
address space.

The contents of each reshared memory area are then overwritten during
the restoring of the internal state (the task with the lowest task id from the
checkpointable tasks that share the area does the actual writing). If the
cooperative service had instructed us to leave the area unchanged, we skip
the overwrite phase.

5.4.10 Open Files

All the information about open files for a checkpointed task is contained
within the VFS system service. We use the checkpointer cooperation mech-
anism (described in Sec. 5.4.4) to export the state of the connection from
the checkpointed task to VFS which comprises the information about those
files.

Open files are referred to by VFS using a triplet of identifiers – file
system id, device id and finally index. File system id and device id together
uniquely identify a mounted file system instance; however, those identifiers
are not persistent – they may change when the filesystems are mounted in
a different order. Therefore in order to be able to safely recognize a given

CHAPTER 5. DESIGN AND IMPLEMENTATION 88

filesystem instance, we need it to provide us with some persistent GUID or
UUID which we could use to find the filesystem instance at restore time.
Majority of filesystems implement this functionality.

In the prototype implementation, we simply export the (fs id, dev id, in-
dex) triplet together with the information about the access flags and position
in the file during the cooperation with the checkpointer – the implementa-
tion is therefore limited to being restored on the system that uses the same
filesystems mounted in the same order (otherwise the identifiers will possi-
bly not match the stored values). Open files are restored according to the
unchangeable option described in Sec. 4.4.8 – we expect that the files have
not changed since the checkpointing operation. File position pointers for all
the reopened files are restored to the positions they had at checkpoint time.

In case we would like to extend the functionality of the checkpointer to
be able to restore the checkpointed tasks on a system that does not have
the access to the same filesystem instances it had at checkpoint time, we
would need to create a snapshot of the filesystem and bundle it with the
snapshot image of the checkpointed task. However, this functionality would
require that the filesystem supports creation of filesystem snapshots, which
is beyond the scope of this thesis.

5.5 Putting It Together

In the previous parts of this chapter, we have shown the inner workings both
of the checkpointing and the restoring mechanism used by the checkpointer
service and explained the actions taken in order to export both the external
and the internal states of tasks in the checkpoint set. In the section, we will
put the information together and present the complete algorithms used by
the checkpointer to store and restore the state of the checkpoint set for a
given task zero.

5.5.1 Checkpointing Algorithm

The checkpointing operation for a specified task zero can be broken down
to five parts.

1. Construct the checkpoint set for task zero. This comprises sending
an IPC M CHKPNT REQUEST message for each connection from a check-
pointable task in the checkpoint set to a cooperative task, causing

CHAPTER 5. DESIGN AND IMPLEMENTATION 89

the connection to reach a checkpointable state and stay in it. All
the checkpointable tasks in the set are stopped in order to prevent
inconsistencies in the resulting snapshot image.

2. For each checkpointable task T within the checkpoint set cooperate
with all the cooperative tasks in the checkpoint set connected to T
(i.e., send them an IPC M CHKPNT INIT message for each connection
and export the state of the respective connection). Store the result in
the snapshot image.

3. Take a snapshot of each checkpointable task in the checkpoint set.
That comprises storing the information about the internal state of the
task, shared memory areas, IPC phones and IPC calls.

4. Inform the cooperating tasks in the checkpoint set that the check-
pointing operation has finished (i.e., send them an IPC M CHKPNT END

message for each connection) to allow the checkpointed connections to
resume normal operation.

5. Let all the stopped checkpointable tasks in the checkpoint set run.

The algorithm used for the checkpointing operation expressed in pseu-
docode is presented in Algorithm 2.

5.5.2 Restoring Algorithm

The restoring operation may be divided to the following six phases:

1. The checkpointer loads the information about the checkpointable tasks
in the checkpoint set from the snapshot image, creates a new loader
task for each such task and instructs it to switch to the special “restore
mode” by sending it a LOADER SNAPSHOT RESTORE message.

2. We reconnect all the IPC phones to the tasks they have been con-
nected to at the checkpoint time. If the callee is a cooperative task,
the checkpointer clones its connection to the callee and hands it over
to the restored task, then the restored task sends the IPC M RSTR INIT

message to the cooperative task and restores the connection state (in-
cluding recreating the shared memory areas). If the callee is a check-
pointable task, we reconnect to it using the IPC M CONNECT ME TO mes-
sage forwarded to the callee by the checkpointer. Memory areas that

CHAPTER 5. DESIGN AND IMPLEMENTATION 90

Algorithm 2 Checkpointing operation.

chkpnt set = construct checkpoint set(task zero)
{Cooperate with the cooperative tasks in the checkpoint set.}
for task in chkpnt set.checkpointable do

for conn in task.cooperative connections do
state part = cooperate with task(conn)
store exported state(task, conn, state part)

end for
end for
{Take a snapshot of the checkpointable tasks in the checkpoint set.}
for task in chkpnt set.checkpointable do

task state = checkpoint task(task)
store state snapshot(task state)

end for
{Instruct the connections to the cooperative tasks to leave checkpointable
state.}
for task in chkpnt set.checkpointable do

for conn in task.cooperative connections do
finalize cooperation(conn)

end for
end for
{Let the checkpointable tasks run.}
for task in chkpnt set.checkpointable do

finalize checkpointing(task)
end for

are shared among checkpointable tasks only are recreated during this
phase by the restored task with the lowest task identifier value. For
each connection to a cooperative service we restore the connection
state.

3. For each connection to a cooperative service we have restored, we send
an IPC M RSTR END to the cooperative task to inform it that the con-
nection can resume normal operation (i.e., that the process of restoring
the state of the connection has been finished).

4. We stop all the restored tasks to ensure consistency of the following
restoring process.

CHAPTER 5. DESIGN AND IMPLEMENTATION 91

5. We restore the internal state of each restored task (including overwrit-
ing the contents of memory areas shared with a cooperative task if
the task instructs the restored task to do so). Then we restore the
receiver-side identifiers of the IPC phones connected to the restored
tasks. Finally, we resend all the pending IPC calls and re-deliver all
the unprocessed answers to the appropriate answerboxes.

6. We let the restored tasks run. Their state has been transparently
restored and they continue normal execution.

We present the algorithm used for the restoring operation (in pseu-
docode) in Algorithm 3.

CHAPTER 5. DESIGN AND IMPLEMENTATION 92

Algorithm 3 Restoring operation.

checkpointed tasks = read tasks info(snapshot image)
restored tasks = []
for task in checkpointed tasks do

loader = launch new loader(task)
restored tasks.add(loader)
restored task.checkpoint info = task
switch to restore mode(loader)

end for
{Restore the external state of restored tasks.}
for task in restored tasks do

for conn in task.checkpoint info.cooperative conns do
new conn = reconnect IPC phone to cooperative(conn)
task.restored coop conns = new conn
restore connection state(new conn)
recreate shared memory area cooperative(area, new conn)

end for
for conn in task.checkpointable connections do

new conn = reconnect IPC phone to checkpointable(conn)
task.restored chkpnt conns += new conn
recreate shared memory areas checkpointable(new conn)

end for
end for
{Instruct connections to cooperative tasks to resume normal operation.}
for task in restored tasks do

for conn in task.restored coop conns do
finalize cooperation(conn)

end for
end for
for task in restored tasks do

end restore mode(task)
stop task(task)

end for
for task in restored tasks do

restore internal state(task)
restore phone identifiers to checkpointable tasks(task)
resend IPC calls(task)

end for
for task in restored tasks do

task run(task)
end for

Chapter 6

Related Work

In this chapter, we present an overview of the checkpointing approaches used
by other operating systems, both monolithic and microkernel-based.

Although there are many checkpointing facilities (not surprisingly mostly
for Linux), the scope of this thesis is limited; we have therefore focused on the
following three: CRAK for Linux, Fluke checkpointer and L4 checkpointer.
The reason for this selection is that these checkpointing facilities allow us to
demonstrate various different approaches to checkpointing and all are well
documented.

6.1 Linux – CRAK

CRAK[7] is a transparent checkpoint/restart package for Linux[8] imple-
mented as a kernel module. It uses the checkpointing mechanism to achieve
process migration. It assumes a homogeneous environment – checkpointed
processes are restarted on the same hardware architecture. Moreover, it
assumes that the restored processes can continue to access the same files
that they could access at checkpoint time on all machines. It offers sup-
port for checkpointing parallel processes (i.e., processes created using the
fork system call) and restoring network sockets. However, unlike the check-
pointing facility proposed by this thesis, CRAK only allows checkpointing
of single-threaded applications [9].

CRAK uses the STOP signal to stop the checkpointed process for the du-
ration of the checkpointing operation (the signal handling mechanism also
takes care of restarting the blocking system calls) and then dumps the ker-
nel state of the process to a file. Linux is a monolithic OS, therefore this

93

CHAPTER 6. RELATED WORK 94

suffices to export the state for non-parallel processes. Parallel processes are
synchronized before checkpointing operation using the STOP signal and then
checkpointed one after another – kernel knows nothing about checkpointing
multiple processes. IOCTL interface is used to provide the checkpointing
API.

CRAK uses the auxiliary approach to take the snapshot of the check-
pointed task, i.e., the checkpoint is taken from the context of a different
process than the one being checkpointed. This is caused by the decision to
implement the checkpointing facility as a kernel module (it is not allowed
for a kernel module add a signal handler necessary to handle the signal used
for checkpointing). In order to minimize the size of the resulting snapshot
image, CRAK uses the optimization proposed in 4.3.3.

6.2 Fluke

Fluke[11] is a microkernel-based operating system build using Flux OS Kit[10].
The detailed description of the checkpointing facility provided by Fluke is
presented in [12], therefore we will just outline the most important charac-
teristics here.

Fluke checkpointing facility uses the user space approach to export/res-
tore the state of a checkpointed task. This is possible due to two kernel
features – first, at any time any user visible-kernel object – so called flob –
in Fluke is exportable from the kernel to the user space (this process is called
pickling) and importable from the user space to the kernel; and second, every
kernel operation is either transparently atomic or restartable (with respect
to the pickling process). It is noteworthy that these features are basically
the same as the features we require for implementing checkpointing support
in HelenOS – however, as HelenOS has not been designed with support for
exportable kernel state, our checkpointing facility has to modify the kernel
code to achieve this.

There is, however, an important difference in the transparency of the
checkpointing operation in Fluke compared to our solution. In Fluke, the
process that is to be checkpointed must be launched together with the check-
pointer; the checkpointer is a so-called “nester”, i.e., the checkpointed pro-
cess is “nested” within the checkpointer process and the checkpointer con-
trols its environment and resources. In comparison, our checkpointing fa-
cility allows the snapshot to be taken without any preconditions, thus it is
more transparent.

CHAPTER 6. RELATED WORK 95

6.3 L4

L4[13] is a microkernel originally developed by J. Liedtke at GMD, IBM
Watson Research Center and Universität Karlsruhe. The paper [14] presents
the approach used for implementing transparent checkpointing in a system
running on top of L4 microkernel. The authors do not consider checkpointing
individual processes but rather focus on taking a snapshot of the complete
system state. This simplifies the design of the checkpointing facility – there
is no need for complicated checkpoint set construction.

The checkpointing facility presented in [14] relies on a concept of recur-
sive address spaces – tasks can map parts of their address spaces to other
tasks creating a hierarchy of mappings. Memory managers (referred to as
pagers) running as user space tasks can thus be stacked upon each other; the
top level-pager is then backed by the physical memory. The checkpointing
facility is implemented as a checkpoint server located directly below the top-
level pager – it therefore has access to all user memory of the tasks located
lower in the address space hierarchy. Moreover, the checkpoint server acts
as a pager for Thread Control Blocks (structures containing the information
about every task’s state) which allows it to save the kernel state of threads
running in the system. This minimizes the amount of kernel modification
necessary in order to export the system state; in comparison, memory man-
agement in HelenOS is currently provided by the kernel and the thread state
is kept there too, we therefore have to modify the kernel code to export this
information.

Threads blocked in a system call are handled the same way as our pro-
posed checkpointing facility does – all the system calls in the L4 microkernel
have been modified to be restartable in order to support checkpointing.
Contrary to our implementation, the restarting is done from user space.

Chapter 7

Conclusion

7.1 Achievements

All the goals outlined in section 1.2 have been accomplished. The author
of this thesis has selected the most suitable checkpointing approach to be
used in HelenOS and provided both a detailed analysis of the problems
encountered when extending HelenOS with checkpointing support and a
low-level description of the implementation.

Where relevant, the author has presented and discussed alternate solu-
tions to the mentioned problems. A functional implementation prototype of
the proposed checkpointing facility has been created as a part of the thesis.

Finally, the author has briefly discussed the similarities and differences
between the checkpointing facility proposed in the thesis and the checkpoint-
ing facilities used in other operating systems.

7.2 Contributions

The author has contributed to the HelenOS project in several ways during
the course of working on this thesis. Not only by extending the system
with support for checkpointing, but also by helping to discover some non-
trivial bugs (e.g. faulty futex implementation with a hidden race condition
or problems with pending synchronous calls when the sender task is killed1)
thus improving the system stability and functionality.

1See tickets #154 and #138 at http://trac.helenos.org/ for details.

96

CHAPTER 7. CONCLUSION 97

The author also believes that by extending the functionality of HelenOS,
this thesis has contributed to the open-source community and academia by
providing an improved version of this modern open-source operating system.

7.3 Future Work

Implementing a full-fledged checkpointing facility in HelenOS is a major
task as it requires non-trivial modifications to various parts of the system.
The prototype implementation provides a functional example, however work
still needs to be done to extend the checkpointing support to comprise all
the necessary system services (only NS, VFS and Console tasks are cur-
rently modified to support checkpointing). Furthermore, in order for the
checkpointing facility to be able to differentiate between checkpointable and
uncheckpointable tasks, support from the currently non-existent system’s se-
curity policy is required; checkpointing multiple cooperating checkpointable
tasks could then be implemented.

The implemented checkpointing facility has not been optimized for per-
formance – it is merely a proof-of-concept implementation. No performance
measurements have been therefore presented in this thesis. Future work
should focus on minimizing the size of the state stored in the snapshot im-
age (possibly also by implementing some of the optimizations proposed e.g.
in [6]) and provide measurements of the checkpointing/restoring operation
performance.

With the support for task checkpointing being added to the system,
HelenOS has made the first steps on the way to achieving task migration.
When the network subsystem is fully integrated into HelenOS, the research
endeavor could be directed in this way as well.

Bibliography

[1] HelenOS Design Documentation,
http://www.helenos.org/doc/design.pdf

[2] Implementation and design of the file system layer,
http://trac.helenos.org/trac.fcgi/wiki/FSDesign

[3] J. Svoboda: Dynamic linker and debugging/tracing interface for He-
lenOS, 2008
http://www.helenos.org/doc/theses/js-thesis.pdf

[4] O. Laadan, J. Nieh: Transparent Checkpoint-Restart of Multiple Pro-
cesses on Commodity Operating Systems. In Proceedings of the 2007
USENIX Annual Technical Conference (USENIX 2007) pages 323–336,
2007.

[5] A. Kantee: Using Application-Driven Checkpointing Logic for Hot
Spare High Availability, 2004
www.cs.hut.fi/∼pooka/school/thesis/kantee-appchkpt.pdf

[6] J. S. Plank, Y. Chen, K. Li, M. Beck, G. Kingsley: Memory Exclusion:
Optimizing the Peformance of Checkpointing Systems, Technical Report
UT-CS-96-335, University of Tennesse, 1996

[7] H. Zhong, J. Nieh: CRAK: Linux Checkpoint/Restart As a Kernel
Module, Columbia University Department of Computer Science Tech-
nical Report CUCS-014-01, 2001

[8] Linux
http://www.kernel.org

[9] E. Roman: A Survey of Checkpoint/Restart Implementations. Berkeley
Lab Technical Report (publication LBNL-54942), 2002.

98

BIBLIOGRAPHY 99

[10] The OSKit Project
http://www.cs.utah.edu/flux/oskit/

[11] B. Ford, M. Hibler, J. Lepreau, P. Tullmann, G. Back, S. Goel, S. Claw-
son: Microkernels Meet Recursive Virtual Machines. In Proceedings of
the Second Symposium on Operating Systems Design and Implementa-
tion, 1996.

[12] P. Tullmann, J. Lepreau, B. Ford, M. Hibler: User-level Checkpointing
Through Exportable Kernel State. In Proceedings of the Fifth IEEE
International Workshop on Object-Orientation in Operating Systems,
1996.

[13] L4 microkernel
http://os.inf.tu-dresden.de/L4/

[14] E. Skoglund, Ch. Ceelen, J. Liedtke: Transparent Orthogonal Check-
pointing through User-Level Pagers. Revised Papers from the 9th In-
ternational Workshop on Persistent Object Systems pages 201-214.
Springer-Verlag, 2001.

Appendix A

User Manual

A.1 Applications

We have provided a command line application /app/chkpnt that allows the
user to take a snapshot of a running task.

A.1.1 /app/chkpnt

Synopsis

Usage: chkpnt [options] [task identifier]

Description

Stores a snapshot image of the task identified by task identifier.

Options

• -o/--output dir
The output directory where the snapshot image should be stored. By
default the dir is set to “.” (i.e., the current directory).

• -t/--timeout secs
Maximum time in seconds that the checkpointer will wait for each
cooperative task to reach a checkpointable state. If the limit is reached,
the checkpointing operation is canceled. If set to 0, no time limit is
specified. By default, this value is set to 10 seconds.

100

APPENDIX A. USER MANUAL 101

• --kill-zero
Kill task zero after the checkpointing operation has successfully fin-
ished.

• --kill-all
Kill all the checkpointable tasks in the checkpoint set after the check-
pointing operation has successfully finished.

A.1.2 /app/rstr

Synopsis

Usage: rstr [options] [snapshot dir]

Description

Restores a task from the snapshot image stored in snapshot dir directory.

Options

• --err resume
Ignore errors caused by tasks other than task zero during the restoring
operation. The IPC connections to the tasks that failed to restore
are closed and unanswered IPC messages are responded with EHANGUP

error code. The default behavior (i.e., without using this option) is to
cancel the restoring operation and kill all the newly created tasks.

A.2 Step-by-step Tutorial

In the following text, we assume that the user has downloaded the source
code of HelenOS with support for checkpointing and has built it1. Note
that for this tutorial to work, HelenOS must be compiled with Support for
user space debuggers and Checkpointing support options enabled (this can
be selected in the config menu).

1User manual with instructions on how to build HelenOS is available at
http://www.helenos.org/doc/usrman.pdf.

APPENDIX A. USER MANUAL 102

A.2.1 Checkpointing a Task

In this Section, we present a tutorial describing how to checkpoint a simple
task – a game of Tetris.

1. Boot HelenOS.

2. Launch task tetris by executing “tetris”. Press “s” if you want to
start a new game and checkpoint the task while playing.

3. Now we need to determine the task identifier of the task to be check-
pointed. Press F12 key to display the kernel console. Execute “tasks”
to list all the tasks running in the system. Tetris task should be at the
end of the list. Remember its task identifier. Execute “continue” to
return to the normal console.

4. Press F2 to switch to the second console (or any other console than the
one tetris task is running on) and execute “chkpnt -o〈output dir〉
〈task id〉”. The argument output dir specifies the directory which
the resulting snapshot image will be stored to. The task id argument
is the task identifier of task zero (in this example Tetris task).

5. Press F1 to jump to the console tetris is running on. Press any key to
allow the checkpointing operation to continue; this is necessary because
in the prototype we are waiting for blocking calls – such as blocking
read from the console – to be answered.

6. After a few moments, chkpnt task will finish and the tetris task will
resume execution. The snapshot image has been taken – it is stored
in the directory specified by the chkpnt command.

A.2.2 Restoring a Task

Here we present a brief tutorial describing how to restore a task from a
previously stored snapshot image. We assume that HelenOS is running and
a snapshot image of the checkpointed task is stored in the system.

1. Switch to the console which the checkpointed tetris task has been
running on. Execute “exit” to end the shell task. This is necessary
in order to prevent the restored application from struggling with the
shell task over the keyboard input.

APPENDIX A. USER MANUAL 103

2. Press F2 (or another F key) to switch to another console than the one
the checkpointed task has been running on.

3. Execute “rstr 〈snapshot dir〉” to launch the restorer application.
The argument snapshot dir specifies the directory containing the
snapshot image. After a few moments the checkpointed task will be
restored and tetris will resume execution from the point it has been
checkpointed at.

	Introduction
	Motivation
	Goals
	Obtaining Source Code
	How to Read This Document
	Style Conventions

	Checkpointing Overview
	Motivation and Application
	Approaches
	User Space Checkpointing
	Kernel-assisted Checkpointing
	Transparent Checkpointing
	Application-driven Checkpointing
	Compiler-assisted Checkpointing

	HelenOS Overview
	Architecture
	Scheduling Subsystem
	User Space Tasks
	Identifiers and Hashes

	IPC Subsystem
	Low Level View
	User Space View
	Naming Service

	Udebug Framework
	Low Level View

	Analysis
	Choosing a Suitable Approach
	Kernel-assisted vs. User Space
	Application-driven vs. Transparent

	Task State
	Internal State
	Ensuring Consistency
	Accessing the Task's State
	Memory Areas
	Threads and Task Metadata
	Synchronization Primitives

	External State
	Distributed state
	Checkpointability
	Checkpoint Set
	Lazy vs. Eager Cooperation
	IPC Calls
	Cooperation With the Checkpointer
	Duplicate or Missing Server Issue
	Open Files
	Shared Memory
	Task Identifiers

	Design and Implementation
	Overview
	Checkpointer Service
	Exposing New Kernel Functionality
	Source Code

	Checkpointer Interface
	Taking a Snapshot
	Restoring a Checkpointed Task

	Internal State
	Stopping the Threads
	Checkpointing Thread State
	Restoring a Task From the Snapshot Image
	Restoring Thread State
	Thread and Task Metadata
	Synchronization Primitives
	Memory Areas
	Current Working Directory

	External State
	Checkpoint Set Construction
	Registering With the Checkpointer
	Checkpointer Cooperation
	Cooperation at Checkpoint Time
	Cooperation at Restore Time
	Replacing Hashes by Identifiers
	IPC connections
	IPC Calls
	Shared Memory
	Open Files

	Putting It Together
	Checkpointing Algorithm
	Restoring Algorithm

	Related Work
	Linux – CRAK
	Fluke
	L4

	Conclusion
	Achievements
	Contributions
	Future Work

	Bibliography
	User Manual
	Applications
	/app/chkpnt
	/app/rstr

	Step-by-step Tutorial
	Checkpointing a Task
	Restoring a Task

