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ně. Pro systém HelenOS, kde doposud monitorovaćı rozhrańı zcela chybělo,
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Chapter 1

Introduction

Through the past few decades computers made a giant step forward. Half
century ago computer was just a one-purpose machine which was able to
compute the algorithm for which it was constructed. But as the time moved
forward they evolved into contemporary machines on which a program can
be created and run without even restarting the machine. Also several pro-
grams can run in parallel not considering each other. Thousands of machines
are interconnected and many programs can exploit the power of all these
computers for one purpose.

Modern computer offers plenty of services which are used by user pro-
grams to fulfill tasks they were designed for. Thanks to several layers of
abstraction the user programs don’t need to care a lot about a low level
details. To a certain extent they even don’t need to care about the machine
architecture they are running on.

The most simple (from the computers point of view) user programs use
the machine only to perform different math and memory operations. But
typical tasks also employ services offered by the operating system such as
I/O operations, Inter-Process Communication (IPC), task handling, syn-
chronization and others. Simple operating systems offer about tens of such
services via the system call interface, widely spread systems has more than
few hundreds of these calls.

The operating system must also response to many unexpected situations.
These are many different errors, inputs on interfaces from the outer world
and even internal device notifications. These events are typically delivered
to the operating system in the form of exceptions or interrupts, the system
must process all of them. Typical reaction is to correct the machine state
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in order to fix the exceptional situation. Non-existing memory mapping is
refilled, received data are stored in the memory and the failing user task can
even be killed if the error is serious enough. Although these situations are
called ‘exceptions’ they usually happen many hundred times per second.

It is very hard to trace all the operations performed by today’s com-
puters. Typical machine can process few billions of instructions per second.
It is almost impossible to watch them all. Just for saving every processed
instruction we would need at least few other instructions. The space for
storing the results would be enormous.

Usually only remarkable operations of the user tasks (and operating sys-
tem itself) are recorded to gain a general overview about what’s going on
in the system. All real systems contain similar facility, however, at the be-
ginning of the work on this thesis HelenOS system was lacking any such
ability.

1.1 Goals

The primary goal of this thesis is to design and implement the system moni-
toring facility in the HelenOS system. Its output should be exposed through
some kind of interface to the user tasks. The solution must be able to mon-
itor all basic system and task operations. To simplify viewing the output
also some userspace tools should be made. Next to this work we discuss also
options and solutions of monitoring in other operating system.

It is not desirable to port any existing solution from other system to
HelenOS as its design differs a lot. Many basic system structures are very
different from any other one. The basic HelenOS motto (‘To do the things
The Right Way’) should be bared in mind all the time.

Next to this primary goal we consider possibilities of a task and system
profiling. An aim is to design and implement a brand new profiling apparatus
in the system kernel. Also some userspace tools should be created for setting
up the profiling facility and for listing its results.

1.2 Organization of the Thesis

The whole thesis is divided into several sections. There are two weakly cou-
pled parts – one about monitoring features and another about the statistical
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profiling. They are both described in separate sections, each is also preceded
by one more common introduction chapter.

Chapter 2 contains introduction to the operating system fundamentals
and their solutions in HelenOS system in particular. It should be read by
all of those who are not familiar with the HelenOS system.

Chapter 3 describes the system monitoring in common. Here we define
the goal and the range of the monitoring. Several existing tools are discussed
and the basic technical possibilities are inspected.

Chapter 4 shows a detailed description on how was the HelenOS mon-
itoring subsystem implemented. We present the ideas, their benefits and
drawbacks and the final solution which was implemented.

Chapter 5 shows the possibilities of profiling in common. We define the
profiling scope and show how it can be accomplished, where the samples can
be collected and what are the overall possibilities of implementation. At the
end we present several existing profilers.

Chapter 6 describes the implementation of the statistical profiler on the
HelenOS system. Two separate profilers were implemented, one for profiling
a selected user task and one for profiling all code running in the machine
(including kernel and interrupt handlers).

Chapter 7 concludes whole thesis and evaluates the asset of the work.
Also some future possibilities are described there.

Appendix A introduces several userspace tools which were made for
viewing all results.

Appendix B lists some example monitoring and profiling results.

1.3 Content of the CD

The attached CD can be directly used for booting HelenOS system with both
the monitoring and profiling features enabled. The system was configured
and built for IA-32 system architecture. Simply insert the CD into the drive
and set your BIOS to boot from it.

The directories stored in the root directory on the CD have following
content:

• boot contains HelenOS boot files,

• src contains complete system source code,

• thesis contains this thesis in PDF format.
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1.4 Compilation and Running

HelenOS system source code is managed by Bazaar distributed version con-
trol system [1]. All currently developed branches are accessible to public on
the Launchpad server. For this thesis a new branch was created:

lp:~ersin/helenos/measure2

For obtaining the source code of the work done for this thesis first install
the Bazaar version control system (either from your distribution repository
or from project web page) and make a branch of the measure2 branch:

bzr branch lp:~ersin/helenos/measure2 ./local-branch-name

For getting the cross-compiler required to build the HelenOS sources
use the tools stored in the ‘tools’ subdirectory in the repository. For later
building use the command make. The build system lets you to configure the
system and after the compilation it produces a bootable CD image with the
system binary.

The image can be burned on a CD and used for booting on a real ma-
chine, or can be inserted to the virtual CD drive of a machine emulator.
Unfortunately most of the virtual machine emulators do not emulate all low
level hardware features1. Booting HelenOS on a real hardware is therefore
recommended instead. As some of the features presented in this work are
very architecture dependant they were implemented only for a IA-322 ar-
chitecture. Some features are even CPU model specific so all of them are
available only on an IA-32 architecture CPU made by Intel vendor newer
than Intel Pentium chip. As HelenOS does not enable local APIC controller
in single processor configuration it is also necessary to boot it on some multi
processor system.

1For example a popular virtual machine emulator QEMU does not emulate Perfor-
mance Monitoring Counter registers which are used in this thesis. Also its implementation
of the Real Time Clock chip is not able to generate interrupts at higher frequencies.

2Also known as x86 or i386
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1.5 Directory Structure of the Source Code

The main part of code related to monitoring features is stored in these files:

kernel/generic/include/sysinfo/abi.h

kernel/generic/include/sysinfo/stats.h

kernel/generic/src/sysinfo/stats.c

uspace/lib/c/generic/stats.c

uspace/lib/c/include/stats.h

uspace/app/top/*

uspace/app/stats/*

uspace/app/tasks/*

The monitoring facility probes were inserted into these files:

kernel/generic/src/proc/scheduler.c

kernel/generic/src/proc/thread.c

kernel/generic/src/proc/task.c

kernel/generic/src/interrupt/interrupt.c

kernel/generic/src/syscall/syscall.c

kernel/generic/src/time/clock.c

kernel/generic/src/sync/waitq.c

Code related to statistical profiling can be found mainly in these files:

kernel/generic/include/profile/sprofile.h

kernel/generic/include/profile/sprofile_system.h

kernel/generic/include/profile/abi.h

kernel/generic/src/profile/sprofile.c

kernel/arch/ia32/include/drivers/rtc.h

kernel/arch/ia32/include/drivers/perf_count.h

kernel/arch/ia32/src/drivers/rtc.c

kernel/arch/ia32/src/drivers/perf_count.c

uspace/lib/c/generic/sprofile.c

uspace/lib/c/include/sprofile.h

uspace/app/profile/*

uspace/app/sprofile/*
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1.6 Conventions

Several conventions are used through the document.
New terms and important names or abbreviations are emphasized by an

italic font. These words can sometimes also be searched for in the C source
code or on the Internet.

Fragments of the code itself are written in a non-proporcial font. This
is used for both the function names, system call names, message methods
and constants.
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Chapter 2

HelenOS Overview

HelenOS is a relatively young research operating system. Its development
started in 2001–2004 when Jakub Jermář wrote from scratch the SPAR-
TAN kernel as a school assignment. It was later expanded (also as a school
project) to the HelenOS operating system by the group of authors who
mostly develop the system till these days.

The main purpose of the HelenOS system is to develop an operating
system in a new and reasonable way. Many original structures and subsys-
tems were created in order to see their behavior in real. Compatibility with
existing standards is not emphasized a lot.

2.1 Architecture

The main architecture of the HelenOS system is based on micro-kernel
paradigm. There is a small (but not minimal) kernel which provides the
very basic system calls. A lot of common system services are implemented
as several user space programs called servers.

Among the most important servers we find these ones:

• The Naming Service, which serves as a central point for other tasks
for establishing the connections between each other,

• The Device Mapper which forwards user messages sent to a device
to corresponding device driver,

• Several File System servers, which serve requests for files and direc-
tories by reading blocks from disks or memory in particular format,
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• The Virtual File System, which serves requests for files by handing
the request over to corresponding file system server,

• And many others.

The kernel was developed with portability in mind since the very first
days. Ports to almost all common architectures were already made although
some of them were not tested on the real hardware yet.

One of the design goals was to create a modern operating system. He-
lenOS is fully preemptive multitasking system, supports multiple CPUs and
virtual memory. The communication between the tasks (mainly between the
user programs and system servers) is done via original IPC implementation
based on asynchronous message sending interface. For more information
about HelenOS design see HelenOS web page [7].

2.2 Threads and Tasks

The basic unit of execution in HelenOS kernel is a thread. Thread is the
memory structure which represents one flow of execution which can run
on one CPU. The CPU is assigned to the thread for short periods of time
periodically by the scheduler.

Apart from the CPU context (as the most significant part of the thread
structure) thread also contains a name, priority, state information and more
internal system items. For every thread there is also a separated kernel stack
which is used by the kernel code whenever the thread is interrupted.

Every thread must be a member of one task structure which serves as a
container for them. Usually every user program is represented by one task
but this is not the rule. Few threads can be members of one task which
represents all their common attributes. Here we find memory mapping, IPC
communication endpoints, security context etc. We see that communication
is done between the tasks, not between the threads. When the very last
thread of the task terminates, its task structure is also destroyed.

There are few special purpose threads running only in the kernel space.
A kernel task is created to contain all of them. This task exists all the time
the system is running.
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2.3 Fibrils

Beside the common threads which are managed by the kernel scheduler
subsystem (as in any other fully preemptive operating system) HelenOS
introduces also user space pseudo-threads called Fibrils. This idea is not
new at all, for example Microsoft Windows Fibers [17] represents almost the
same feature. What makes HelenOS different compared to other systems
(where user space threads are not widely used) is the importance of fibrils
for even basic operations. All userspace tasks perform the majority of their
operations through the Asynchronous library which is based on fibrils and
exploits their benefits very remarkable.

2.4 IPC Communication

IPC communication subsystem is one of the most interesting ones in the
whole HelenOS kernel. The communication is based on an analogy of tele-
phone calls made to the telephone answer boxes.

Any thread of the task can connect one of task’s phones (sender’s end-
point) to the answerbox of a called task (receiver’s endpoint). After the
connection is established it can send calls (small ‘messages’) over the line
and wait for the answers later. A thread can send several calls before waiting
for the answer because the communication is asynchronous. There is a small
buffer for sent and received calls. Every call (except kernel IRQ notification
calls) must be answered.

Every call contains six fixed size arguments of payload which can be
used for passing data. First argument of the message defines the message
method. Lower specific values are processed by the system. Higher values
can be used by user application freely.

The IPC subsystem is accessed using standard syscall interface. Two
specific versions of message passing calls exist. The fast one passes all argu-
ments through the CPU registers, however only a limited number of values
can be passed. Slow one stores all arguments on the stack.

Table 2.1 shows an overview of basic system message methods.

2.4.1 Call Forwarding

Some calls can even be forwarded from one task to another if the original
destination task decides to do so. In this case the message is transmitted to
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Message type Message description

IPC_M_CONNECTION_CLONE Send a copy of a connection.
IPC_M_CONNECT_ME Notify a receiver about a cloned connection.
IPC_M_CONNECT_TO_ME Register new system service.
IPC_M_CONNECT_ME_TO Make a connection to requested service.
IPC_M_PHONE_HANGUP Terminate the phone connection.
IPC_M_SHARE_OUT Share out sender’s memory area.
IPC_M_SHARE_IN Create a sharing of receiver’s memory area.
IPC_M_DATA_WRITE Write data to recipient’s address space.
IPC_M_DATA_READ Read data from recipient’s address space.
IPC_M_DEBUG_ALL Start a debugging session on a recipient.

Table 2.1: Basic system messages

different task than was originally intended. This mechanism is mainly used
by the Naming Service (the ‘NS’) for creating new connections between the
tasks.

When tasks are created they get their first phone connected to the Nam-
ing Service. This can be used for registering offered services (by servers) or
on the other hand for making connections to the servers (by client tasks).
The server notifies the Naming service about services it offers, NS answers
this message and a new callback connection from NS to the server is cre-
ated. When any user task asks the NS for a service it forwards the call to
the corresponding server through the previously created connection. Thus
the new connections from the tasks to the servers are created.

2.4.2 Data Copying and Sharing

When larger data are to be passed over the IPC connection two special
mechanisms can be used.

First mechanism is used for copying the data between the task address
spaces. A task can send a call to the other task to initialize either data
reading or writing. This call contains only a size and a pointer to the source
or target data respectively. If the target task acknowledges the call the data
are copied between the tasks by the kernel.

Similar mechanism can be used also for data sharing simply by using
respective message method numbers. Message order is the same, only the
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size of the area is filled by the kernel. The memory sharing is created for
the address space area specified in the call arguments.

2.4.3 Asynchronous Library

Because the whole IPC communication is performed between the tasks a
serious problem can arise. If two threads or fibrils of one task send a call
consequently and an answer to one of them is received it is not trivial to
determine which one of the calls was answered.

To help programmers solve this problem quite sophisticated Asynchronous
library was introduced. The library itself should be used for all IPC opera-
tions as it simplifies the communication quite significantly.

For more information about IPC subsystem design see HelenOS IPC for
Dummies [8].

2.5 Sysinfo Interface

Sysinfo is the interface which serves for passing various system information
from kernel to userspace tasks. All its items are stored in one sysinfo tree.
Path to every node (which contains data) is given by a path string with
items on the way separated by dots.

At the beginning of the work on this thesis the leaves of the tree could
contain only data stored in fixed size integer values. However the imple-
mentation was very quickly expanded by Martin Děcký so now there can be
many different types in the tree nodes and leaves. The values can also be
generated dynamically by calling a function every time the corresponding
node’s value is requested. Thanks to these modifications the sysinfo inter-
face shapes a powerful tool for passing information from kernel to userspace
tasks.

2.6 Task Creation

Another very interesting (although not so much related to this work) part
of HelenOS design is a process of a new userspace task creation.

In traditional (monolithic) kernels derived from original UNIX system
there is a fork system call which makes a precise copy of the calling task
(only with different task id or ‘pid’). One of the new tasks (usually the
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‘child’ one) can later use the exec system call to replace its code with the
new one loaded from a file system.

This procedure is quite inefficient as the memory areas of the calling task
are copied to be immediately replaced by the new ones obtained from the
binary file used in the ‘exec’ system call.

HelenOS has a totally different system call program_spawn_loader. The
result of the system call is also a newly task, however its code is a copy of
the userspace task called loader. This loader receives the path to the new
file executable to be loaded over IPC communication, loads the binary from
the ELF image to its own memory and passes on the execution to the code
loaded from the binary.

As this process is quite new in the HelenOS system it is not described
in the original design materials. It was created as a supplementary part of
the Jǐŕı Svoboda’s Master thesis [5] and as such is described there in more
detail.

2.7 Synchronization Primitives

HelenOS kernel supports several types of synchronization primitives.
Atomic variables are supported on all architectures for lockless solutions.

Spinlocks can be used for active waiting in Multi processor (SMP) configura-
tion. Spinlocks are even used in two different ways – either with interrupts
enabled or disabled.

For passive waiting there are only wait queues synchronization primitive
similar to the counting semaphores. All other primitives are build upon
them. Threads block on the wait queue until wakeup operation is performed.

The wait queues are used for implementation of fast user mutex primitive
or simply futex. Futex operations are quite similar to mutexes except that
successful locking can be done entirely in userspace.

Futex is the main synchronization primitive offered to user tasks. Stan-
dard libraries implement several other primitives such as mutexes and sem-
aphores upon them.

2.8 More Reading

There are many other sources about HelenOS design which are more focused
on introducing HelenOS design features than this thesis.
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As the main document we would recommend original HelenOS design
[9] which is however obsolete now. But almost any thesis, presentation
or paper on HelenOS features can serve as good source for understanding
how the system works. The newer ones are better as they present event
features added more recently. There is an overall page which lists all existing
documentation [10].

Of course the best and the most accurate (although the most difficult to
read also) source of information about HelenOS is its source code itself. The
central Bazaar development branch was very recently renamed from ‘head’
to ‘mainline’. Currently it is therefore accessible at this address:

bzr://bzr.helenos.org/mainline/
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Chapter 3

Operating System Monitoring
Overview

Let’s have a look on what can even be monitored in the operating system.
As was said the main purpose of the operating system is to run all user
applications, separate them from each other and to correctly handle all ex-
ceptions and interrupts. The programs should be switched fast enough to
make an illusion of parallel execution.

3.1 Monitoring Basics

Every computer has some hardware resources such as CPUs (possibly more
than one), some amount of memory, disk space, network interfaces etc. Us-
age of every resource can be monitored in a percentage portions of its full
capacity. On a CPU we can trace how many cycles were spent doing some
useful job (compared to the wasted cycles), memory can be watched for the
total size of allocated frames, network interface for total bandwidth usage
and so on.

On the other hand there are some requirements on the system which
mainly originate from the user space task calls. Tasks want to use the CPU,
store their data in the memory and send or receive data through the network
infrastructure. The operating system must handle all these requirements and
satisfy them with as much resources as it can afford (according to the fact
that all resources are limited). The system should pay attention to fairness
in distribution of the resources between the tasks, although it cannot be
simply told what this requirement exactly means. There are many policies
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on how to distribute the resources and none of them is clearly the best.
Some of them are better for certain conditions and needs, some of them for
others.

As we can see the basic separation of the monitoring is between mon-
itoring of the resources and requirements. Monitoring of the resources is
quite simple as every resource is represented by some physical device of the
computer and as such can me measured.

The situation with the requirements is more complex as it depends on the
actual system design what exactly the requirement means. Typical systems
of these days use threads as the main unit of execution, but there are many
different services which the threads can require.

There are also layers of the operating system itself which don’t fit into
any of these groups. For example file system should be definitely considered
as the part of the operating system (not necessarily of the kernel). A user
thread requires access to some files but in fact it is the file system which
reads the raw data and it is actually some low level driver which uses the
hard drive. So we should measure the requests for the files (as the user
requirements), the actual usage of the hard drive (as usage of the resource)
and the time spent by the file system and the driver to handle the request
(as the operating system overhead).

3.2 Resources Monitoring

Let us have a closer look on what resources and how can be monitored.

3.2.1 Processor

Every system has one or more processors (CPU) which are used for almost
all computations. Every CPU processes instructions of both the user tasks
and the kernel and essentially there is almost no difference between them
(except the CPU operation mode).

It is very hard to say how long every instruction takes. Modern CPUs
make a lots of optimizations thanks to which there is almost no correlation
between amount of processed instructions and the CPU frequency. However
most CPU models measure also the amount of processed clock cycles which
are perfectly regular. Therefore they can be used as the unit of measurement.
It is then not important how many cycles processing of every instruction
took.
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If there are some threads to run then the CPU is processing their in-
structions. But what if there is nothing to do? For this purpose there might
be for example some special ‘idle thread’ prepared in the system. This idle
thread would not do any useful job, it would just cycle forever. The oper-
ating system would be aware of it and schedule it only if there is no other
thread to run.

In such case the CPU usage can be easily computed. It is the rate of
cycles spent by the special idle thread and by all other threads during last
short period of time.

However with today’s CPUs the situation is slightly different. Idle cycling
is just wasting of electricity, the most of modern CPUs therefore introduce
a special halt instruction which stops CPU execution until it is waken up by
some interrupt again. Luckily CPUs usually (at least in the case of common
IA-32 architecture [11]) count passed cycles even in this case. If the CPU
does not count the cycles while halted another technique must be used. For
example the theoretical maximum of processed cycles per second can be
computed according to the CPU speed. The CPU usage is then given as a
rate of max− computed to computed cycles.

Also some external source of time such as the Real Time Clock (‘RTC’)
chip can be used to determine how long the CPU was sleeping. However
this solution would be much less accurate than measuring based on cycles
counted by the CPU itself.

The final trouble of the CPU monitoring are interrupts. As (one of) the
CPU is the central unit of every computer it is also responsible for handling
requests from other devices. These requests are delivered to the CPU in the
form of interrupts which stop the original flow of instructions and force it
to switch to the interrupt handling.

The instruction cycles spent on interrupt handling should be counted
separately as they are often not caused by neither the code of the user tasks
nor the system itself. If there is a network packet coming from outside world
then the network card causes an interrupt and the CPU or the system has no
(unless the network card offers such mask) way how to inhibit this behavior.

3.2.2 System Load

Although the current CPU utilization is definitely a piece of interesting
information, it says nothing about the long time CPU usage. For example
a thread which sleeps most of the time does not load the system a lot, but
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it can now and then make some short intensive computations. The actual
value of CPU usage is not sufficient to determine if there is still some free
CPU time or not.

In traditional UNIX-like systems there is another value next to the pure
CPU utilization computed for this purpose. The value is called load and is
based on an average length of the scheduler queue through the past short
period of time. Usually this value is measured for three different periods –
that is 1, 5 and 15 minutes.

Quite interesting part is the load computation itself. Collecting the
scheduler queue length samples through the time would be quite compli-
cated (and time consuming). The load is therefore usually computed using
a special decay function. The function itself is rather magic, there is a
nice article on its implementation in GNU/Linux in Linux Journal [6]. We
explore this algorithm in more detail in Section 4.4.2.

3.2.3 Memory

Measuring of the memory usage is quite straightforward. There is total
amount of physical memory for use by the system. Major part of the memory
is usually allocated by the user tasks. To compute the rate between allocated
and free frame counts is a simple task.

On real systems free physical memory is usually further used as a buffer
for IO operations. Disks are much slower than the main memory, therefore
this principle can significantly speed up the whole system. However there
are no such buffers used in HelenOS system yet because they are not needed
for basic system operation.

Real systems are further able to handle the situations when there is
not enough physical memory. Let us describe this mechanism although
this is not the case of HelenOS neither. The lack of physical memory is
usually handled by copying some of the memory pages out to the disk. This
operation is commonly known as swapping. The swapped out memory pages
are stored either in special disk partition (e.g. in the case of Unix system
descendants) or in a file (e.g. Microsoft Windows system family). The great
advantage of using a separate swap partition is the fact that data are not
fragmented, but this can be achieved even for the swap file if the file system
manages to do so.

Monitoring of all these additional memory features should be also imple-
mented once they are introduced in the HelenOS system.
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3.2.4 Storage

Also the usage of the hard drives and other storage facilities can be measured
to get better overview of the resources used by the system.

Briefly the total amount of used and free space on the drive can be
measured to get know how much data can be further stored on the drive
before it becomes full. Because all drives in today’s operating systems are
used through some file systems their space usage is typically traced by the
file system itself.

Next to the space we can also measure the speed of the data flowing to
and from the drive. Every storage facility has some theoretical maximum
speed of data transmission however the real speed is usually much lower.
Thanks to the physical construction of the classical hard drives the total
throughput depends on the order of the requests very significantly1.

Similar to the CPU usage also the disk bandwidth usage can be measured.
But since the total transfer speed much more depends on the order (and
block numbers) of the requests this value is not very important and is not
widely used.

3.2.5 Network Interfaces

Also network interfaces deserve some attention about how much data can be
transmitted through them and how much they are really doing so. Usually
every interface counts the transmitted packets. If the system knows the
theoretical maximum speed of appropriate interface then it can also compute
the interface usage.

Network usage is measured by almost all operating systems. For basic
network infrastructure facilities such as routers, switches and firewalls this
value is even one of the most important ones.

3.2.6 Others

Every physical device and I/O port of the computer can be measured some-
how. For some of them this is important, but for many others not. Of course
we can measure how much data is pouring through the serial port but as the
serial ports are disappearing from today’s computers nobody cares if there
is still some free bandwidth.

1Although this is not the case of modern SSE disks whose construction allows real
random access.
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Basically the operating system can store the size of all data passing to
the specific device. If it knows the maximum throughput then it can even
compute the percentage usage, but for most of other devices these numbers
are not such important as for the previously mentioned ones.

3.3 Requirements Monitoring

Let us have a look at which requirements of the user tasks can be monitored
and how.

3.3.1 Tasks and Threads

In running system there are usually many user tasks containing even more
threads. Some of them are running but the most of them are just waiting for
some events such as a timer alarm or keystroke hit by a user. The count and
state of all tasks and threads is the first thing which should be monitored.
Every system should have some simple interface how to detect how many
tasks and threads are there running at the moment.

There are few typical states which can be reached by the thread in the
operating system. As the thread is born it enters the Ready state. System
preemptive scheduling periodically switches the thread between the Ready
and the Running state. If the thread sleeps on some wait queue it enters the
Sleeping state. After it leaves its main function it enters the Undead state in
which it can be joined (or detached) by its parent thread. Figure 3.1 shows
overview of the most typical thread states.

The total count of all tasks can change very quickly because the tasks can
created and destroyed very often. For example typical build of any software
by common ‘make’ tool usually invokes the compiler for every single file,
therefore new tasks are born many times per second.

3.3.2 Processor time

The main resource used by running threads is the CPU, so the CPU time
they used should be measured. For better overview also a sum of the time
periods used by all task threads should be computed.
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Figure 3.1: Thread states diagram

3.3.3 Memory

All tasks in modern system are separated by some king of virtual memory
(usually paging in these days). Every task must first ask the system to make
the mapping before it first accesses the area.

The system must keep the mapping of all areas to their relevant physical
addresses for all tasks in order to handle the request for page table refills.
The total amount of allocated memory for each task should be monitored
for easy detection which task consumes the biggest amount of memory.

3.3.4 Syscalls

For standard interaction with outer space the task must ask the system to
do so through some system call interface. Overview of all executed syscalls
might be quite interesting for tracing task activities.

However this simple solution would work only for traditional systems
based on monolithic kernel. In any system based on micro-kernel design the
most used syscall by far is the one for sending messages or other respective
communication with other tasks. All services in such systems are usually
done through some other (server) task. In this case the total amount of
syscalls done would not be so interesting as statistics of the sent messages
which would show much more about what is going on in the tasks.
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3.3.5 Others

Monitoring of the running tasks, their amount of allocated memory and
interactions with the system is just the most basics. There are many other
operations which the task can request from the system and all of them
deserve to be monitored.

If the system offers some work with the files (and almost all systems does)
we should measure how many file operations is being done by the tasks. The
same applies to the network layer, graphics subsystem or any other system-
specific feature. Simply said every feature offered by the system to the tasks
should be also measured how much it is really used.

3.4 Real Monitoring Interface Overview

Let us have a look at how common operating systems expose their monitor-
ing information. Among the most common systems are those of Microsoft
Windows family and various descendants of old UNIX system so let’s focus
on them.

3.4.1 Microsoft Windows monitoring

For users there is a tool called ”Task manager” which shows all basic system
information. There are few tabs offering almost anything what normal user
needs to know:

• Performance tab shows CPU and memory usage,

• Networking tab shows network usage and

• Processes tab shows information about all tasks in the system, how
much do they use the CPU, how much memory do they consume etc.

In higher (and more expensive) variants of Windows system there is also
a more advanced tool called ”Performance monitor” which contains many
counters which can be used for more detailed monitoring. These counters
allows users to see how many bytes are send through specified interface, how
much write operations are processed by specified hard drive etc.

How can be these data collected? There are two interfaces which allows
programmer to access the performance counters. First, he can query registry
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values on key HKEY_PERFORMANCE_DATA, or he can use special PDH functions
[18] to obtain the same results.

How the monitoring itself is implemented is hard to say as Microsoft has
not made the sources of Windows operating system opened to public.

3.4.2 UNIX Monitoring

Traditional UNIX-like systems (since ca. 1984) expose basic process infor-
mation through a virtual file system called procfs and this solution is still
widely used. Procfs looks like a standard file system with files and directo-
ries. But its directory structure and file contents are generated by the kernel
every time the file system entries are accessed.

For every running process in the system there is one directory (named
by its process id or pid) which contains plenty of information about it. The
most important files (as they are found in GNU/Linux system) are listed:

• fd lists all opened file descriptors of the process,

• stat shows different statistics of the process such as used CPU jiffies2,
memory page faults,

• status shows status of the process, its total memory usage, user and
group ids and many other information.

GNU/Linux system places some more virtual nodes in this directory. All
these extra directories have names containing only alphabetic letters. It is
therefore easy to distinguish them from the process directories which have
names consisting of only numeric digits. These special directories and files
contain overall system information. Here are some important items found
in the procfs directory tree:

• cpuinfo lists static information about the CPU model (or models),

• loadavg shows average load of the system,

• meminfo lists various physical memory statistics,

• interrupts show statistics of time spent by interrupt handling,

2Time slices assigned from the system to the threads
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• stat shows overall various statistics such as the CPU usage, number
of running processes and count of served syscalls since boot.

There are also several other ways how to obtain statistics on UNIX sys-
tems, but the procfs is by far the most used one. From the others there
is e.g. getrusage() function which retrieves resources used by particular
process, statvfs() for file system usage statistics and others.

There are many resources dealing with GNU/Linux monitoring interface
but quite good documentation is supplied as a part of kernel sources itself
[12]. Search the subdirectory Documentation, for procfs overview look at
the file Documentation/filesystems/proc.txt in particular.

The original aim of procfs design was to replace the ptrace system call.
However today the ptrace syscall is used for process debugging and tracing
opposite to procfs which is used more for monitoring and gathering statistical
information about the processes.

3.4.3 Other Monitoring Tools

During more recent years another interesting tools were introduced. In 2003
Sun Microsystems made available DTrace tracing framework [4] for its So-
laris operating system. It was by the way made public as the very first
part of the OpenSolaris project later. DTrace was designed with the aim for
tracing both kernel and userspace tools, but it can be used for monitoring
purposes also. Amongst the best features of DTrace is the fact that for all
tracing functions it uses strictly dynamic instrumentation. DTrace therefore
has no affect on running system if its features are disabled, in fact there is
no DTrace related code present in the kernel at all.

DTrace allows its users to attach many kinds of probes3 on almost any
place in the kernel. At these points user usually retrieves arguments of the
functions, but DTrace can also just count how many times particular point
was executed. As the result DTrace can be used for monitoring system state.
An example for such probe follows:

syscall:::entry // probe description

/pid == $1/ // predicate

{

@[probefunc] = count(); // action

}

3Small pieces of code that usually just stores the arguments of the function
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Although a part of DTrace was unofficially ported also to the GNU/Linux,
this system was still missing similar abilities. As a consequence main Linux
vendors announced development of SystemTap, another tracing tool based
on dynamic instrumentation. SystemTap introduces also many probes writ-
ten in special scripting language, which are however compiled into a kernel
module which is later inserted into the kernel itself.

Another accessible tracing tool is Linux Trace Toolkit (New Generation)
which is however not so useful for system monitoring.
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Chapter 4

HelenOS Monitoring
Implementation

Let us introduce now the implementation of the HelenOS monitoring features
which were implemented as a part of this thesis.

Because the implementation covers basic system structures it does not
depend on any particular architecture. This is a great feature because no
work is needed on monitoring facilities when porting HelenOS to new archi-
tectures.

All results of the monitoring features can be viewed by several tools which
were made for this purpose. Their listing can be found in Appendix A.

4.1 Monitoring Implementation Overview

The monitoring data are collected on several places in the kernel. As all the
information must be valid right at the moment they are requested they are
not cached anywhere. All data are captured and handed over right at the
moment when the request on them is detected.

At first all data were passed to the userspace using standard syscall
handling procedure. But this solution was not very elegant. For example
the monitored data set might depend on actual kernel build configuration,
the interface should therefore also offer the list of all accessible information.

All monitored data follow a tree structure. A task contains some threads
which further contains thread data such as CPU usage and priority. The
interface used for obtaining these data should therefore reflect this tree
structure. As a result the interface for transferring monitoring data to the
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userspace was switched to (already existing) sysinfo interface which can re-
flect the tree structure of the data. The sysinfo subsystem was originally
quite trivial and was missing advanced features for passing structured data.
Martin Děcký however expanded its implementation to the current state so
it can be used for passing almost any data without troubles.

Because the monitoring features became the part of the sysinfo subsys-
tem its source code is also located there. Search the HelenOS kernel source
code at kernel/generic/src/sysinfo subdirectory.

The main part of the monitoring code is stored in file stats.c located
here. This file contains many functions which are registered to the sysinfo
interface and which calls them anytime they are requested according to their
names in the sysinfo subtree.

On every request the values are pulled from the system, however most
of them are also measured during the normal system operation. Table 4.1
shows all sysinfo nodes which contains data covered by this thesis.

Path Content

system.uptime Current system uptime
system.exceptions Interrupt statistics
system.cpus Overview of system CPUs usage
system.physmem Overview of physical memory usage
system.load Current system load values
system.tasks Tasks statistics
system.threads Threads statistics

Table 4.1: Sysinfo system nodes and their values

4.2 Passing Data from Kernel to User Space

As was already mentioned at the beginning of this section for passing the
monitoring results the sysinfo subsystem is used. For retrieving the data
themselves special new syscall SYS_SYSINFO_GET_DATA was introduced.

This syscall requires userspace to pass four arguments:

• First one contains pointer to the string containing path of the selected
sysinfo node,
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• Second one contains size of the path string,

• Third one contains pointer to the buffer where the result will be stored,

• Fourth contains maximum size of the data which can be copied to the
buffer.

Sysinfo subsystem calls the appropriate stats function which was regis-
tered during stats system initialization. Later it copies results of the stats
function to the user space buffer specified in the third argument. Data
themselves are copied using the standard copy_to_uspace() function.

4.3 Transition between Kernel and User Space

Crucial point for monitoring thread operations is a correct detection of pass-
ing the thread flow between the user and the kernel space. For this the per-
fect knowledge about all ways how can the user thread pass between both
is required. Table 4.2 shows all ways how the kernel code can be entered.

Name Function Cause

Syscall syscall handler Thread executed syscall instruction
Interrupt exc dispatch CPU triggered interrupt for some cause

Table 4.2: Ways of entering the kernel code

After thread enters the kernel its stack is switched to the special kernel
stack. Later even whole CPU context can be switched if scheduler decides
not to run this thread any more. In such case another thread is picked up
from one of the scheduler queues and its context is loaded on the CPU. All
saved (Ready) threads must have entered their states through the scheduler
where their context was saved right as they were leaving the scheduler.
Restoring their context results therefore also in leaving the scheduler code.

However one more option of switching different thread is possible. If the
thread decides to sleep on some wait queue it’s context is saved by the wait
queue handling code. There it is also restored after it’s waiting is done and
scheduler decides to run the thread again. This is why it is important to
update the code there every time any change is done to the scheduler wake
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up code. These two functions must be kept synchronized otherwise some
weird situations may occur.

Usually similar behavior would be a sign of a badly designed code. How-
ever in the operating system kernel several copies of the very same code are
sometimes desirable in order to optimize the execution.

4.4 Monitoring in the Kernel Space

Let us have a look on what work was done on monitoring features in the
kernel space.

4.4.1 Measuring CPU Utilization Statistics

Every CPU today measures a count of processed cycles. This number is
accessible in the HelenOS kernel by the get_cycle() function. As the CPU
computes clock cycles even when halted (by hlt instruction on IA-32 archi-
tecture) our aim is just to separate which cycles were computed as busy and
which the CPU was idle.

This distinction is done in file kernel/generic/src/proc/scheduler.c
where the CPU is halted if there is no thread to schedule. In such case the
difference in computed cycles since last check is processed and the CPU is
marked as idle.

Because the only way how halted CPU can come to life again is through
some interrupt handler we check the idle mark of the CPU there. If the
CPU was idle, the difference in computed cycles since last check is added to
the amount of cycles during which the CPU was idle.

The count of cycles should be also sometimes updated even when the
CPU was so busy that it was not going to sleep at all. Therefore this num-
ber is updated on every clock time in kernel/generic/src/time/clock.c.
Otherwise the CPU monitoring would return an obsolete values.

This solution has one great advantage over other systems and that is
its precision. Traditionally the CPU usage measurement is based on clock
ticks of the system timer – every tick is accounted to some task, system or
is recognized as idle. However in such case the interrupt handling overhead
is not measured because its granularity is simply finer than the clock tick
frequency. It was better solution in days when CPUs were significantly
slower but today it is much better to account every processed cycle of the
CPU.

37



4.4.2 System Load Computation

As it was already mentioned in Section 3.2.2 traditional UNIX-like systems
compute system load value next to the actual CPU usage. The meaning
of the load value is not strictly defined, however its value usually somehow
reflects the average length of the scheduler queue. The importance of the
load value is based on an observation of its values. If the load value is less
than the count of active CPUs in the system then there are more likely
moments when some of the CPUs are idle. If the load is higher than the
CPU count then all CPUs are probably fully used most of the time. This
behavior should be preserved even on a micro kernel system.

In HelenOS we do the load computation in a way very similar to the
algorithm used on a GNU/Linux system. In the GNU/Linux kernel the
load computation is executed every few clock ticks right after the thread was
switched from the system clock handler. Otherwise the load computation
might get influenced by other system threads. However in HelenOS we do
the load computation by a standalone system kload thread. This approach
is much cleaner as the code computing load is separated from the clock
handling routines which has nothing to deal with it.

The actual algorithm of computing load values was slightly simplified.
Although the load value should somehow reflect the average count of threads
running in the system, its computation is not based on mean value. A decay
function is used instead. The common formula is

new = old ∗ C + n ∗ (1− C),

where old stands for previous load value, n stands for count of currently run-
ning threads and C is the specific constant of decay speed. The GNU/Linux
system load computation is based on exponential decay function, constant
C is therefore defined as C = e−

A
T . Here A defines period of load recompu-

tation (usually 5 seconds) and T defines a load period (1, 5 or 15 minutes
respectively).

As the inverse exponential function has no big influence on the results
we simplified the C constant as follows: C = 1− A

T
. The comparison of the

GNU/Linux load values to our results is shown in Figure 4.1. The constants
for the figure were set as A = 5, T = 60. We set count of running threads
n = 1 for whole period and the initial value of old = 0.

Thanks to the HelenOS micro-kernel nature there is also one more differ-
ence on interpreting load values. Many tasks in the system are considered
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Figure 4.1: Load value comparison in time

as a part of the system itself (such as file systems, drivers and other servers).
These tasks are sleeping most of the time and waiting for work to do. Only
when some userspace threads are communicating with them they are run-
ning quite often. Even worse, they are usually awakened only for a short
while which makes the length of the scheduler queue very flexible. Unfortu-
nately it is hard to say what influence will have this fact on practical usage
as there are not many real applications on HelenOS yet.

4.4.3 Interrupt Handling Time Measurement

Interrupt handling can consume a lot of CPU time if there are some very
active devices present in the system (such as Gigabit Ethernet network card).
Therefore time spent in each interrupt handler is measured to gain overview
on them.

Interrupt measuring is quite simple because all interrupt handling rou-
tines must register themselves in one system interrupt handler table. When
an interrupt comes the CPU context is switched and exc_dispatch() rou-
tine in kernel/generic/src/interrupt/interrupt.c is called. Here we
account interrupted task for last cycles spent, run the interrupt handler and
after it we account the handler itself for spent CPU cycles.

If the scheduler is run from a clock interrupt handler the current thread
is rescheduled. However the CPU cycles are accounted right before the old
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thread is scheduled out. The newly loaded thread stores the current CPU
cycle value before leaving the scheduler code. Finally the interrupt handler is
charged only for cycles which took the thread to leave the interrupt handler.

This approach is simple and it works quite well. The results can be found
in the sysinfo tree under the system.exceptions node.

4.4.4 Physical Memory Usage

HelenOS keeps track of a physical memory space usage in several frame
zones. Each zone represents one continuous block of the physical memory,
it traces which memory frames in the zone are allocated and which are not.

The usage of physical memory is computed simply as a sum of all frame
zones. On request for system.physmem sysinfo node the sizes of all memory
areas are retrieved and the sum of them is returned.

4.4.5 Task Statistics

Most of the task data is just copied from the system structures in the stats
request handling function. However few values are more complicated to gain.

Task CPU Cycles

Task cycles are gained as a sum of all cycles spent by its threads. The sum is
recomputed every time it is requested as cycles processed on behalf of each
thread can vary anytime. Before the results are passed to the userspace
the amount of cycles is converted into microseconds because this is the unit
which users expect.

This approach supposes the frequency of all CPUs constant which must
not be true in the future. In HelenOS the frequency is not changed during
runtime yet, but all modern processors have abilities to lower their working
frequency in order to save energy when the system is not under heavy load.
However frequency might be changed only to some fraction of the full speed,
so this fraction can be saved on a frequency change request and the cycles
can be appropriately adjusted any time they are computed.

Thank to this observation the cycles are converted into milliseconds sim-
ply by dividing its value with the CPU frequency. The frequency can be
polled from the CPU itself using special instructions or can be measured by
computing a dummy cycle for a while. The latter solution is nowadays used
by HelenOS system to detect the frequency. In both cases there might be
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however some inaccuracy so the results should not be considered as abso-
lutely exact.

Virtual Memory Allocated by the Task

For every task the amount of mapped virtual memory is computed. This
is simply done by passing through all its address space areas and adding
its page counts. Later this should be changed in a way that address space
handling code will adjust total size of address space every time it allocates
or frees some pages in the address space.

IPC Messages Sent and Received by the Task

All IPC messages passing through the task’s answerbox are monitored. This
is done in the IPC handling code in kernel/generic/src/ipc/ipc.c right
during processing of the message itself.

Overview of the monitored messages is shown in Table 4.3. Basically
processing of every message increments one of these counters by one. The
results can be obtained from the sysinfo interface from the system.tasks

node because these data are part of the task statistics.

Name Description

call_sent Count of the calls sent
call_recieved Count of the calls received
answer_sent Count of the answers sent
answer_received Count of the answers received
irq_notif_received Count of the received IRQ notification calls
forwarded Count of the forwarded calls

Table 4.3: IPC messages monitoring overview

4.4.6 Thread Statistics

Gathering statistics of a single thread is quite similar to gathering corre-
sponding task statistics. Most of the fields are just copied from the system
structures.

As the spent CPU cycles are measured per thread (not per task) every
time the thread is scheduled the current CPU cycle count is saved in the
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thread structure. When the scheduler is executed again the difference of
the CPU cycles is computed and the result is added to the thread cycles
account.

To be more precise the cycles are divided between user and kernel ones.
During standard operation the cycles are counted as a user time. In every
entry point to the kernel (which is only possible through a syscall or inter-
rupt) the current user cycles are accounted and the thread is switched to
the system accounting. When the thread is leaving system code the system
cycles are charged at the end of the syscall function or the interrupt handler
respectively. There is however one more point where the system cycles must
be accounted and that is when the thread is waking up from sleep on some
wait queue. A short scheduler wakeup code is executed there doing the some
operations as a thread leaving scheduler would do.

4.5 Future Improvements

There are many points where this (quite simple) monitoring subsystem can
be expanded. We just present some of them:

• There should be a way how to measure all services which are not
parts of the kernel itself. Example of these services are be opened
files, network sockets or console operations. For these services it is not
sufficient to measure only IPC messages and CPU usage, users need
to have brief overview of opened files and network streams. A flexible
framework would be useful to ease gathering of information from the
corresponding servers.

• When paging or caching features are introduces in HelenOS system
sizes of such memory areas should be also measured.

• When user accounts are introduced in the system all monitoring struc-
tures should be adjusted for them. Almost all data described here
would have some relation with the user who was responsible for them.

• The CPU time might be divided also between user and system time.
Going even further the time spent in the kernel might be divided be-
tween its subsystems. Overview of how many time was spent by han-
dling memory operations, IPC message passing or task creation would
be definitely useful.
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• The userspace monitoring tools can be improved significantly. ‘Top’
utility should show also some more raw data or statistics per selected
threads. It should also offer some way for sorting and filtering the
showed data.

As monitoring facility is quite essential part of every real operating sys-
tem these features should be maintained together with other system de-
velopment. Work described here is not done, it is just a foundation of a
subsystem which needs ongoing sustainment in order to keep track with the
whole system.
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Chapter 5

Profiling Overview

The goal of every profiling is a better understanding of the operations per-
formed by the program. This is achieved by employing some sort of dynamic
inspection of the program while it is running. As such it is opposite to the
static analysis which has the similar goal but inspects just the program code
(or binary) without running it instead.

There are several different profiling techniques which can be used. How-
ever all of them share the basic idea of collecting some samples describing
the running program. The implementation itself shares some techniques
with debugging tools as they both need to trace the program states. The
difference is that a debugger usually serves for monitoring smaller areas of
code (where we expect the bug to be hidden) in contrast to profilers which
rather monitor whole application as one piece and build overall statistics of
the most exposed code.

Let us have a closer look on how different types of computer programs
can be profiled.

5.1 Profiling User Programs

Profiling of the user programs is the simplest. Basically we can add some
special piece of code to every place where we want to store some runtime
information. These data can be later used (after necessary processing) to
build an overview of called functions and other operations performed by the
program.
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5.1.1 Profiling Based on Source Code Modifications

Usually a programmer wants to know how many times the program functions
were executed and how long did the program spend by running each one of
them.

A trivial solution is to insert some profiling code into the source code by
hand. We cannot insert a profiling code before every line of code because
it would pollute the code a lot. Despite this fact this solution is used quite
often because it does not need any special tools. If we want to know how
many times one particular function is called there is not a simpler solution
than to insert an incrementing counter into the function.

The most of compilers offer an option to automate this process to make
a programmer’s life easier. The compiler inserts a call to a profiling function
before every call of the user function. The profiling function stores the
current time and name of the user function. After the profiled user functions
ends the compiler runs another profiling function. This function gets the
current time again and subtract the first time. The result gives the time
spent by the user function. The pure difference contains also the times
spent by all nested functions. By subtracting also the time spent by the
inner functions we get the time spent by executing the original user function
itself.

Also the overhead of the profiling facility can be subtracted. This can be
done by storing the time at the beginning and at the end of every profiling
function. The difference between the former and the latter gives the time
spent by the profiling function itself. Using this principle we get the total
time spent by executing each user function. If we sort them we get the most
exposed functions in the whole program.

5.1.2 Profiling without Source Code Modifications

Even if we don’t posses the source code (or we are just not able or allowed to
recompile it) the profiling is still possible. As the function calls are present
also in the binary files these calls can be replaced the same way as it was
mentioned in previous section. Going even further this replacement (or
instrumentation) of the calls in the binary can be done while the profiled
program is running (if the operating system let us to do so). If we attach
the code of the profiling functions to the binary image in the memory we
can call our profiling function before all original function calls.

User applications are usually not allowed to change the code of other
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applications. Instrumentation must therefore be done at some lower layer,
either in the operating system, in the language interpreter or even in the
virtual machine the code is running on.

5.2 Profiling Operating System Code

How can we profile the operating system itself? There is no lower layer which
can instrument the system with calls to the profiling functions. Although
theoretically also the hardware can trace which functions were called this is
usually not utilized because the hardware should not depend on currently
running code.

The first possible way of profiling operating system is to recompile all
code and insert calls to the profiling functions at places we want them. But
replacing whole operating system is usually quite painful operation and leav-
ing the calls at their places all the time would slower the system significantly
without any benefits.

A better solution is to insert profiling calls to the system dynamically by
using instrumentation techniques similar to the ones we have just described
for profiling of the user tasks. This solution is more difficult to implement
however it offers the best results. Only a selected part of the system can
be profiled and if the profiling is disabled there is not any part of its code
at all. This means that disabled profiling has no influence on the system
performance.

5.3 Statistical Profiling

The idea of a statistical profiling offers quite a different profiling solution. It
does not follow a flow of the operations and the calls of the functions done
by the program. Instead it is built around an external source of regular
clock events. At each clock signal the current value of Instruction Pointer
(IP) register is saved. Instruction pointer register always contains address
of currently executed instruction.

Binary images of all programs are loaded in the virtual memory according
to the area maps stored in their binary file headers1. Therefore the program
code addresses are the same every time the program is run. By collecting the

1Unless some address space loading randomization security technique is employed. In
such case the randomization would must have been deciphered.

46



IP register values regularly it is possible to identify the areas of the program
code which were running.

If the binary file contains also the table with addresses of the function
names (the ‘symbol table’) it is further possible to translate the addresses
to the symbols. Therefore even the names of the interrupted functions can
be gained.

There are some technical details on how to get the value of Instruc-
tion Pointer register as it is immediately changed after the CPU enters the
interrupt handler. Basically the CPU stores somewhere the context prior
to entering the interrupt handler. From there the interrupted Instruction
Pointer value can be restored.

The only output of statistical profiling is the list of the functions which
were running when the clock event occur. From this list we can only gain
counts of how many times every function was encountered. But if the mea-
suring events are regular then the function counts will reasonably represent
the time periods spent by executing each function. Thus the numbers will
show which functions were exposed the most.

The source of clock events should be as much independent on the system
as possible because its regularity is the main requirement for the assumption
of the correlation between the sample counts and the time spent in each
function. Attaching special physical clock device to the computer every time
the profiler is executed would be a strong requirement. Therefore several
different internal computer clocks are usually used instead. They might
slightly influence the normal system operation, but this is not considered as
a significant problem.

5.3.1 Event Sources for Statistical Profiling

There are several clock event sources which can be used for statistical pro-
filing. All of them are an integral part of the most of recent computers so
no special device is needed.

For the best results we need the event frequency as high as all running
threads will be at least once interrupted. Otherwise we might not get any
samples for some threads. A time slice assigned to the threads is usually in
an order of tens milliseconds. However many threads are not using whole
granted slice because they get blocked on some other operation first. There-
fore the frequency of the event source should be in order of the kilohertz at
least.
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System Clock Handler

As the easiest solution a common system clock handler can be used. The
advantage is that every modern operating system must already utilize some
sort of clock events which are used mainly for preemptive thread switching.
It is a simple task to add a call of a profiling routine into the system clock
handler.

The biggest drawback of using the system clock handler is its executing
frequency which is usually less than hundred hertz. This speed is enough
for making a fiction of applications running in parallel for human being.

The system clock events on IA-32 architecture are generated either by
APIC controller or by original Intel 8253/8254 compatible timer. Today
these chips are made by several other vendors. The timer chip offers three
separate pins on which it can generate a periodical signal. However only the
first one is connected to the system interrupt controller as IRQ 0. This one
is used as a system timer if APIC controller is not configured.

The Intel 8253 timer can be setup for higher frequency. But the APIC
also generates the clock interrupts as IRQ 0, so the Intel 8253 interrupts are
masked on IO APIC in such case. As a result Intel 8253 events cannot be
enabled together with the signals generated by APIC.

Real Time Clock Integrated Circuit

A different source of events can be supplied by a Real Time Clock chip.
Every architecture has similar device which can be used for keeping track
of time even when the operating system is not running. This device can be
usually also instructed to generate a periodical clock signal of a specified
frequency.

RTC chip can be therefore used for the statistical profiling. If this chip
is reconfigured the hardware clock might loose the track of real time. But
this problem can still be fixed after profiling ends. The system handler is
used to keep track of time while the system is running, therefore it is also
possible to restore the correct time in the RTC chip.

CPU Performance Monitoring Counters Facility

The last but probably the best solution for the statistical profiling is the CPU
Performance Monitoring Counters. Majority of modern CPUs (in case of IA-
32 architecture since times of Intel Pentium chip) contains specific registers
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which can be used for counting of different operations or their durations
as they are performed by the CPU. It is also possible to set a limit on the
counter register value. When the counter reaches this limit the CPU triggers
an interrupt to notify the operating system about this situation.

There are two main advantages on using the Performance Monitoring
Counter registers. The first advantage is that they are not needed for a
common system operation and as such they are not used in the operating
system. The second one is the fact that the interrupts emitted by the CPU
itself are usually not maskable2. Thanks to this fact all operating system
code including its kernel can be interrupted and thus profiled. Also there
is no delay on delivery of this interrupts as they can be triggered anytime.
But a special attention must be paid when writing corresponding interrupt
handlers, because these handlers must be for example lock-less.

5.4 Overview of Existing Profilers

Let’s have a look on implementations of several existing profilers.

5.4.1 The GNU Profiler, gprof

The GNU profiler is the most common representative of a profiler attached
as a part of the compiler itself. If the user program is compiled with the
GNU C Compiler (gcc) with the -pg option enabled, every function call in
the final binary is preceded by the call of mcount() function which stores the
current IP register value. Also the system is instructed (usually by profil()

system call) to run a statistical profiler.
After the program ends the profiling results are written into an output

file. This file can be later analyzed by a separated program gprof.
Very similar profilers are also available for other languages. But the

majority of modern languages is running on a virtual machine, the profiling
facility is therefore a part of the underlying virtual machine itself. Java
Virtual Machine Profiler Interface (JVMPI) is an example of such one.

2Term ‘not maskable’ is usually used for interrupts which cannot be masked by stan-
dard interrupt masking technique (using EFLAGS register on IA-32 architecture). How-
ever they can still be masked using some other specific ways.
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5.4.2 OProfile

OProfile is a statistical profiler included in the GNU/Linux operating system
[13]. As it is bundled with the system it can profile all user applications as
well as the operating system itself.

All three different types of clock signal sources are supported by OProfile.
If the system CPU contains hardware performance counter registers than the
CPU can be used for emitting periodical clock signals. The most of today’s
CPU models are supported.

If the performance monitoring counters are not available (either by the
CPU model or OProfile missing feature) OProfile falls back to the common
system clock handler (on GNU/Linux kernel version 2.6) or to Real Time
Clock chip (on kernel version 2.4).

All the system code is profiled because the clock signal source is not
aware of currently running thread. Only samples belonging to the profiled
task can be preserved while others are discarded. The user is responsible for
setting the frequency sufficient to interrupt the requested thread.

5.4.3 Pin Tool

Pin tool offers interesting profiling solution if the source code of the profiled
application is not available. It uses dynamic instrumentation techniques for
detecting an actions performed by the monitored application.

It can be used for observing functions called by the application, so it can
also be used for profiling purposes.

5.4.4 DTrace

As was mentioned earlier, DTrace is a very powerful tool for monitoring
many operations done by both user applications as well as by the operating
system itself. The monitoring is set up by activating some of the available
probes, which are fired when the respective situation occurs.

One of the actions which can be done on firing a probe is just to ”count
an event”. If the probe is instrumented to fire on every function call, we get
a brief profiling overview.
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5.4.5 Minix Profiling Implementation

For profiling the Minix operating system a brand new profiler was introduced
[2]. In fact there are two separated profilers - a statistical and a call one.

Statistical profiler is based on events emitted by the Real Time Clock
(RTC) chip. The results are directly written from kernel interrupt handler
into the memory of the profiler. After the profiling ends the data from
memory are written to a file which is later analyzed by the prepared PERL
script.

The call profiler is based on a feature of ACK compiler (which is used
for Minix compilation by default). It can call a special supplied function on
every begin and end of a function. This special function is therefore used
for storing the current call pathes and call times, which are used for later
building of an overview of the whole profiling call tree.
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Chapter 6

Statistical Profiler
Implementation on HelenOS

Let us show how the statistical profiler was implemented for the HelenOS
operating system.

6.1 Basic Architecture

There are three basic parts of the profiler, see Figure 6.1 for a brief overview.
First, the userspace control utility allows user to start and stop the profiler
and to receive the data samples from the kernel. These samples can be also
parsed and printed. Second, in the kernel there is the core profiler facility
which stores the Instruction Pointer samples on the clock signals in its buffer.
The third important part is the clock signal source itself.

When the buffer of samples is getting full all samples are passed to the
userspace tool for later processing. This tool can search for the Instruc-
tion Pointer values in the symbol tables are produce overview of the highly
exposed functions.

6.2 Communication between Kernel and User

Space

One of the important questions was how pass data between the userspace
control application and the kernel structures.
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Figure 6.1: Profiler implementation overview

At first implementation of the data passing was based on standard syscall
scheme. Several new syscalls were introduced allowing the applications to
start, stop and receive all profiling data from the kernel.

But there were many troubles with this solution. The most important
one was the statically allocated sample buffer in the kernel. Not even it was
consuming much space in the kernel itself, also its overflowing meant losing
all future samples. Dynamic allocation of the buffer would not solve the
issue as it would just prolong the time when the buffer would overflow. Of
course any buffer in the kernel cannot grow beyond all limits.

Simply speaking the samples must be passed from the kernel to userspace
continuously because they should not be stored in the kernel.

To accomplish this goal the solution originally designed for userspace
debugging support was employed [5]. The work on userspace debuggers
introduced special kernel answer box (the kbox) in every task which can be
used for passing kernel messages related to the task. The messages sent to
this box are used for passing commands from the debugger to control the
debugged application.

The connection to the selected task kernel box is created by a syscall
SYS_IPC_CONNECT_KBOX. Further communication is done using the very same
way as a standard IPC message passing - even the same functions are used.
The connection ends when one of the parties hangs up the connection phone.

Thank to this solution all data can be passed using the standard IPC
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messages continuously and they are not stored in the kernel. Next if the
messages are later passed through the network between different hosts the
profiler (as well as the debugger) can easily run on different machine than
the profiled (debugged) application.

Following the solution of debugging support several new kernel box mes-
sages were introduced. They are defined in kernel/generic/include/

profile/abi.h. The overview of them is listed in the Table 6.1.

Message type Message description

SPROFILE_M_TASK_BEGIN Establish a new task profiling session.
SPROFILE_M_SYSTEM_BEGIN Establish a new system profiling session.
SPROFILE_M_END End current session.
SPROFILE_M_PAUSE Pause or resume current session.
SPROFILE_M_DATA_READ Wait for profiling data.

Table 6.1: Profiling related kernel box messages

6.2.1 Profiling Message Format

Common profiling message structure follows the content of the standard IPC
messages. Table 6.2 shows the brief overview of the message payload.

Method Arg1 Arg2 Arg3 Arg4 Arg5
IPC_M_SPROFILE_ALL Profile command a1 a2 a3 a4

Table 6.2: General profile message structure

The message method must be the same for all profiling messages in order
to distinguish them from other system messages sent to the kernel answer-
box. First message argument identifies the message command, the rest of
the arguments depend on the profiling command specified.

The reply message structure follows the standard message format even
more. First argument contains the return value, other arguments are specific
to the reply message type.
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6.3 Profiling Operation Modes

In fact two slightly different profiling modes were implemented. Profiler can
use the messages to the kernel answer box to start profiling of either a whole
system or just of a task which owns the used kernel answerbox.

Both profiling modes can also be paused. In such case no new samples
are generated until the profiling is resumed again.

6.3.1 Profiling Specific Task

Message SPROFILE_M_TASK_BEGIN sent to the task can be used to start pro-
filing of this selected task. In this case the samples are stored only if one of
the task threads was interrupted when the clock signal came.

If the interrupt came when the thread was running in the kernel space
only the counter of kernel samples is incremented. This counter serves for a
brief overview of how much often the kernel code was running.

The structure of the samples is very simple. It contains only the inter-
rupted IP register value:

/** Sample for task profiling. */

typedef struct {

uintptr_t pc; /**< IP register value. */

} sprofile_task_entry_t;

6.3.2 Profiling the Whole System

In this mode the samples are stored on every clock signal. The samples
belonging to the profiler itself are the only exception. These samples are
dropped because profiler should influence the results as few as possible.

In contrast to the task profiling, this mode stores also the samples be-
longing to the kernel space. These samples are also important to gain an
overview of all system operations.

The samples must definitely contain also an id of the interrupted task
in order to distinguish the running tasks from each other. But there is one
more question on the system sample structure.

Symbol Table Location

For each sample we need to identify also the corresponding symbol table.
For a task profiler this is simple – the symbol table can be loaded from its
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binary file. But for system profiler we need the binary file for every task
running in the system. Even worse we need the symbol table also for the
kernel itself.

How to identify the symbol table? The simplest solution is to add the
name of the task to every profiling sample. The corresponding binary file
can later be found according to the task name. The best aspect of this
solution is its simplicity. The history of all tasks which were running is kept
in the samples themselves.

The main problem is that it is uncertain that the real path of the binary
from which the task originated can be constructed simply from the task
name. Task name is basically only an information tag for the user. The real
path to the binary is known only to the particular task loader, which can
set the task name to any arbitrary string. Alternative solution should be
therefore based on storing the path to the binary files elsewhere for every
task which was running. In such case the samples would contain only the id
of the corresponding task.

Where to store the path to binary file which was loaded? The Naming
Service serves as the only userspace central point which is aware of all tasks.
Next to the connecting the clients to the server it is also used for passing the
return values from terminated tasks to their parents. So it can also serve
as a central repository for other task related information. Every user task
registers to the NS during its loader stage, every server registers all services
it offers. All tasks can therefore register their binaries to the NS. The profiler
can retrieve the path for every task from NS while it is going through the
samples.

The worst situation comes with the init tasks and the kernel. These are
loaded by the architecture boot loader and as such their binaries don’t even
need to be present in the file system. In such case the symbol tables must be
supplied by the user or the init tasks (and the kernel) would not be profiled
at all. Let us ignore the init tasks further in this section.

The profiler can theoretically retrieve all relevant data from the NS while
the profiling session is running. But some tasks can be created and termi-
nated without being noticed by the profiler. The NS should therefore keep
the task data even after the task terminates until the profiler requests them.
For this service some special operation mode of the NS should be created.

The pitfall in the solution relies in the danger of memory leaks. If the
profiler does not tell the NS to drop the path to the binary the NS would
store the data forever. The NS can keep an eye on the profiler if it is still
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running but this solution is not very elegant.
After serious consideration we implemented the former simple solution.

The latter is much more complicated and has some drawbacks though. The
whole problem is moreover only weakly connected with the thesis itself be-
cause it covers only the way how to obtain the symbol tables for system-wide
profiling.

Therefore the system sample structure contains both the task id and its
name. The corresponding header file contains this code:

/** Sample for system profiling */

typedef struct {

task_id_t taskid; /**< Id of the task */

char taskname[TASK_NAME_BUFLEN]; /**< Name of the task */

uintptr_t pc; /**< IP register value */

} sprofile_system_entry_t;

Choosing the Kernel Answerbox

One another important question had to be solved. For profiling selected
task we sent all profiling messages to the kernel answer box of this task, but
which answer box can be used for profiling whole system? Basically we need
one which will not disappear while the profiling session is running.

There are about three answerboxes which fulfill this requirement:

• First we might introduce special global answer box for communica-
tion with the system. This would be needless complication as other
answerboxes already exist in the system.

• Next we can use the answerbox of the kernel task. This task will not
terminate while the system is running.

• Last we can connect to the profiler itself making a connection loop.
The profiler answerbox will exist right as long as the profiler itself.

The last solution was implemented as it keeps both sides of the con-
nection in the userspace. Also no special message handling in the kernel
is necessary. It may look like we cannot use another profiler for profiling
system profiler, but even this case (if requested) can be solved by running
two profilers and connect their phones from one to another.
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6.4 Work Done in Kernel Space

All files relevant to the profiling structures are stored in subdirectory profile
in the kernel generic sources. Here we find the main file sprofile.c.

The syscall handler of SYS_IPC_CONNECT_KBOX call starts special kernel
thread which waits for the IPC kbox messages. When the message is re-
ceived the kbox thread checks the type of the message and passes it to the
corresponding handling routine (either debugging or profiling subsystem).
Whole kernel part of profiling support thus runs in the context of the kbox
thread.

The kernel box thread takes care about all communication with the user
space profiler. On its request it starts and stops the profiling itself and also
passes the data from kernel sample buffer to the userspace profile tool.

Samples are collected by the sprofile() function in the kernel which
is periodically called while the profiling is running. There are several clock
sources which are described later in this section.

6.4.1 Real Time Clock Driver Implementation

On the IA-32 architecture the Real Time Clock (RTC) driver can be used
as a source of profiling events. For this purpose a limited driver of the clock
was implemented.

The driver is stored in kernel/arch/ia32/src/driver/rtc.c file. It
contains the most basic functions which can start and stop the interrupts
emitted by Real Time Clock chip as well as the handler which is registered
for handling these interrupts. The handler reinitializes the RTC chip and
calls the sprofile() routine.

The operations needed for setting the RTC circuit are done according to
Dallas Semiconductor DS12887 chip data sheet [3]. The values needed to
start and stop the chip operations are written to the clock chip port using
the standard system port output functions.

The RTC chip can be set to emit interrupts in one of predefined frequen-
cies only, that is from 2Hz to 8kHz in increasing powers of 2. RTC driver
thus cannot be set to an arbitrary sampling frequency.

6.4.2 Performance Monitoring Counters

Also driver for internal CPU Performance Monitoring Counters (PMC) was
implemented. Because these counters vary a lot from one architecture to
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another we support them only on IA-32 architecture. Unfortunately even
implementation of performance monitoring features is quite different on spe-
cific CPU models. Thus only CPUs produced by Intel vendor are supported.
The CPU must further be one of Intel P6 family (Pentium Pro, Pentium II,
. . . ) or newer because earlier models are missing Performance Monitoring
features at all (or has these quite different in case of Intel Pentium model).
The used counter is nowadays considered as a part of an Architectural Per-
formance Monitoring features and as such should be present in all future
models of IA-32 architecture processors made by Intel vendor. See Chapter
30 of Intel IA-32 Architecture Software Developer’s manual [11] for more in-
formation. Nice example of basic usage of PMC registers for counting CPU
cycles can be found in [15].

Setting the Appropriate Registers

Although majority of CPU models offer usually many performance mon-
itoring counters, only one of them is used for profiling. All performance
monitoring features are set by writing into different Model Specific Reg-
isters (MSR). Usually there is one for selecting the event to monitor (the
Performance Event Select register) and another one for counting itself (the
Performance Monitoring Counter register).

The Performance Monitoring Counter register is firstly set to some pre-
defined value (explained later). Then the monitored event and few other
options are set into the Performance Event Select register. After this oper-
ation the CPU increases the counter by one on each event of the selected
type. On counter overflow the CPU emits the Non-Maskable interrupt1

(NMI) which is used for profiling.
There are several monitoring events which can be used for statistical pro-

filing. Basically we need one which is continuously occurring not regarding
on what the CPU is exactly doing. These events vary from one CPU model
to another2, but basically following options can be counted:

• Unhalted core cycles event

• Instruction retired event

1Number 2 on IA-32 architecture
2Especially newer models with Hyper-Threading and Virtual Machine extensions in-

troduced many new performance monitoring events depending on virtual cores
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The latter event does not occur regularly because processing of every
instruction took different amount of cycles on today’s CPUs. Therefore the
first mentioned event was chosen, which has also the same event code on
most CPU models. As we can see the cycles are not counted while the
CPU is halted which leads to the fact that also profiling interrupts are not
generated while the CPU is halted. But as the CPU is halted only when
there is no thread to run (and also no code to profile) this is not a problem.

The interrupt is emitted on the counter overflow. The counter is therefore
preset to some high value in order to cause its overflow quite often. From
the CPU clock frequency the right value can be computed and the counter
can be preset to emit the interrupt in the requested profiling time period.

Setting the Interrupt Controller

The interrupts themselves are emitted on the local part of the APIC (Ad-
vanced Programmable Interrupt Controller). This controller must be en-
abled and set up to receive the NMI interrupts on the CPU before the
profiling starts. Unfortunately one serious drawback arises from this fact -
HelenOS system does not use the APIC controller on IA-32 architecture in
single CPU configuration. It uses the standard PIC (Intel 8259 chip or its
descendant) controller instead. As the result the Performance Monitoring
counters on HelenOS cannot trigger an interrupt in single processor config-
uration. If there are more than one CPU then everything works fine.

The HelenOS should be later modified to use APIC even in single CPU
configuration. However this work is beyond the scope of this thesis.

6.4.3 Setting the Clock in SMP Environment

Setting the clock event source requires some more special handling if there
are more than one processor present in the system. For profiling we need
to receive the interrupt on all system CPUs, however this is not the done
automatically.

RTC Clock Chip

The RTC chip generates the interrupts without any attention on how many
CPUs are there in the system. The interrupt is passed to the IO part of the
APIC controller which decides to which CPU the interrupt will be delivered.
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We need the interrupt to be immediately delivered on all CPUs in the
system in order to profile all code running in the system. Therefore we
need some special hardware which will spread the interrupt on all CPUs.
Fortunately every SMP system contains such device called IPI. This device
can broadcast simple3 piece of information between the CPUs. The CPU
which receives the RTC interrupt triggers another interrupt by broadcasting
over the IPI bus. The sprofile() function is called in the handler of this
IPI interrupt.

PMC Registers

Setting the PMC registers requires also special handling on Multi Processor
systems. These registers are specific to every CPU core, so their setting must
be done on all cores. If we set these counters for example in the handler
of profile start message, then they will be set only on the CPU on which
the current kernel answer box thread was running in the moment when the
message was received.

As a result we have to employ some technique for running a code on all
CPUs. There are following options for this purpose:

• Global clock start flag

• CPU bind kernel threads

• Signal broadcast over IPI between CPUs

The former solution is based on the global flag which is periodically
checked4 on all CPUs. If we set this flag from the message handler, all CPU
sooner or later observes this fact and sets their PMC registers appropriately.
The benefit is that we don’t need any special constructs, the drawback is
that the flag must be periodically checked even when the profiling subsystem
is not used. It can also take a long time till all CPUs notice the flag.

The second option is based on starting several special kernel threads from
the start message handler. Every thread can be bound to a different pro-
cessor. After these threads are scheduled they simply set the PMC registers
and end. This solution is very cumbrous because a creation of a new thread
is quite time consuming operation. Also it might take a long time till the

3Usually just one byte long
4For example in the system clock handler
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threads are scheduled to run thus the clock start might be delayed from the
message handler.

Last but probably the best solution is to employ the IPI bus again to
broadcast the signal to set the PMC registers between the CPUs. There is
no bigger overhead and the PMC counters are set almost immediately after
the start message is received.

6.4.4 Starting the Profiler

Receiving every type of message is served by special routine. Starting and
stopping the profiler is done by few independent operations:

• At First the task (or system) must be marked as being profiled. This
mark is checked in profiler clock handler to decide which samples are
going to be stored.

• Further some kind of clock signal source must be enabled. This oper-
ation might need some architecture-specific actions as different types
of computers have also different types of supporting hardware. Basi-
cally the Performance Counter in the CPU, the Real Time Clock or
the common system clock handler can be used as a source of profiling
events.

For keeping track of how many profilers are there running in the system
one global atomic variable is used. The relevant hardware source of profiling
events is enabled if this number is higher than zero; if it falls to zero the
hardware device is stopped.

6.4.5 Stopping the Profiler

Stopping the profiler is just the opposite operation to starting. The hardware
used for emitting the signals is stopped and the task or system mark is
removed so no samples are gathered anymore.

6.4.6 Pausing the Profiler

Pausing the profiler is quite simple operation. Only the state mark is
changed to its paused variant according to the profiling type being paused.
This state means no more samples are stored, but the profiling session can
be easily restored by just returning the state mark to its original value.
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6.4.7 Storing Profiling Samples

The profiling samples are gathered in the profiling routine which is executed
as an action taken on profiling clock events. Usually it is the main part of
the corresponding interrupt handler.

The Instruction Pointer register value is gained from the interrupted
task state, which is saved to the cpu_t structure in advance in the system
interrupt handler.

The profiling sample is built in the handler and inserted in the small
kernel sample buffer. The task name needed for the system profiling is taken
from the global TASK variable. If the kernel was interrupted an empty string
is used as the task name. It is later used by the userspace profiler to identify
the kernel samples.

6.4.8 Passing the Data to User Space Profiler

For reading the profiling samples the userspace profiler must first send the
SPROFILE_M_DATA_READ message to the profiled task kernel answerbox. Sent
call is not answered immediately. Kernel rather stores the call in the task
structure and answers it later when it has enough profiling samples to be
sent. It is also answered also when the profiled task ends to pass the very
last samples.

If all threads of the profiled task are sleeping no new samples are gen-
erated. But in this case the profiler will not receive any message and the
user might get worried whether the profiling session is still alive. The call
is therefore sometimes answered from the system clock handler even if there
are no new samples.

For the data reading itself we use the standard IPC_M_DATA_READ mes-
sage method. Thank to it the kernel routine answers the message with
the source address of the samples and the size of them to be sent to the
profiler. The standard system message handling procedure copies the data
themselves.

6.5 User Space Task Profiler Implementation

For profiling other tasks the user space profiler called profile was introduced.
The profiler was designed as an interactive application. It continuously
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receives the profiling data from the kernel and stores them in its buffer
while waiting for user commands which are also immediately served.

Some of its common routines are implemented as a part of the standard
system library (libc) as is common for the operating system libraries. These
involve the profiling message handling in particular. However as these rou-
tines are especially important for the profiler we will refer to them here as
they were part of the profiler itself.

6.5.1 Task Profiler Initialization

Task profiler offers two ways for establishing the profiling session with the
profiled task:

• To start profiling an already running task just run profiler with the -t

option followed by the selected task’s id. Profiler establishes the con-
nection to the task kernel answerbox and begins waiting for profiling
samples from the kernel.

• For starting new task from scratch with attaching the profiler from the
very beginning just run the profiler with the full path to the application
binary. The profiler will load it, create the profiling connection and
finally run it.

As the profiler knows the path to the application binary (either from the
command line or from the sysinfo interface) it can locate it and load symbol
table from the ELF image.

This operation might not succeed either because of ELF image was cre-
ated without the symbol table or ELF image is missing at all. Therefore all
symbol tables are also added to the file system by the HelenOS build system
in a plain text files produced by standard Unix tool ‘nm’. If loading the
symbol tables from ELF image fails the attempt to load the symbol tables
also from the text symbol files is done.

The symbol table in a plain text file produced by the ‘nm’ tool typically
looks like the following example:

00001074 T __entry

000010c0 t profiling_abort

00001150 t cev_fibril

00001200 t data_fibril
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000013f0 T main

00001ca0 t comparator

First column here specifies the value of the symbol, second the symbol
type and the last the name of the symbol. As the symbol type is not impor-
tant for profiling this column is discarded and all symbols are loaded to the
symbol table. For more information see the manual page for the ‘nm’ tool.

If both symbol tables are not found the profiler declines to run. Without
symbol table the profiler samples cannot be translated to the function names
and therefore the profiling has no sense at all.

6.5.2 Profiler Standard Operation

After starting the profiling session and parsing the symbol tables few new
fibrils are created to simplify the whole work:

• The data fibril which periodically sends the IPC_M_DATA_READ message
to the kernel and concatenates the incoming chunks into one userspace
buffer.

• User commands received from the console in the form of console events
are monitored by the cev fibril.

• The original thread code waits on conditional variable for signal from
these fibrils. When the signal is emitted it serves the request.

The key pressed by the user is detected and stored in the global variable
by the cev fibril. Then it wakes up the main thread, which processes this
command.

There were also some dangerous pitfalls on using fibrils. For example
fibril stack is created as a part of a new fibril. But this stack has (nowadays)
fixed size, if it overflows it can easily corrupt other structures on the heap.
Because all fibril operations are done strictly in the userspace, kernel has no
way how to detect such corruption. Corresponding task is not killed as is
usual on thread stack overflow.

6.5.3 Symbol Parsing and Printing

After command ‘p’ is detected all samples received so far are assigned to the
corresponding symbols in the symbol table and the whole table is printed.
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The crucial point is that there can be very high count of samples. To gain
enough samples during every system clock tick the profiling timer should
be run in frequency of kilohertz at least. If every sample has just 4 bytes
(as one standard 32-bit platform register) we get a data flow of several
tens of kilobytes per second. After few minutes of profiling we have several
hundred thousands of samples. Because all these samples must be parsed
and assigned to the symbols the parsing can be quite time consuming.

Having a speed as a first demand in mind the first solution for sample
parsing was based on making a bitmap of all possible sample values. The
bitmap items contained counts of so far found samples of value equal to the
item index in the map. The parsing of the samples was as fast as possible
as every sample was read exactly once and the corresponding field value was
just incremented by one.

The solution was even implemented however its drawbacks were very
serious. The main problem is that we have to fit all possible Instruction
Pointer register values in the given (limited) memory space. The IP register
can point to anywhere in the virtual memory, thus the possible values can
be any from the values allowed by the architecture byte range.

Some sort of hashing can be employed in order to fit more register values
into the (much smaller) table. The most easy hash function would just drop
high-order bits from the sample value as most of the user code begins at the
lower address and is not larger than few megabytes.

However this operation would introduce some magic barrier in the pro-
cessing which is definitely unwanted. That’s why another solution was im-
plemented for assigning samples to the binary symbols.

Symbols in the symbol table are now sorted according to their values and
every sample is later parsed and assigned to the symbol using binary search.
This solution is definitely slower than the bitmap as for every sample we
need several accesses to the symbol table. However as the typical binary has
a few thousands of symbols at most the binary search tree has about ten or
eleven layers. The solution was used for parsing of one hundred thousand
samples and the parsing still took less than one second.

6.6 System Profiler Implementation

The system profiler (sprofile) works in a very similar way as the task
profiler. Also most of the code of the system and task profilers is very similar.
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But because their usage is relatively different two separated applications
were made through.

The first difference between the both is that the system profiler connects
to its own kernel answerbox every time it is run. It therefore does not need
any task id or pathname, in fact there are no options at all. After the connec-
tion is established the system profiler sends the SPROFILE_M_SYSTEM_BEGIN

message to the kbox instead of the task method variant. The standard op-
eration procedure is the same except the assignment of the samples to the
symbols because there are more than one symbol table.

6.6.1 Assigning the Samples to Task Symbols

Task profiler loads the symbol table before it starts the actual profiling.
Without the table the profiler fails because the profiling is worthless. But
the system profiler cannot do so because it even does not know which tasks
will be really running during the profiling session. It can obtain the list of
currently running tasks from the sysinfo interface, but it is more than likely
that other tasks will be loaded. This is probably the real cause why the user
executed the profiler itself.

The kernel copies the name of the task to every sample which can be
used to identify the symbol table. This is quite time consuming operation
and it also remarkably enlarges the size of the data copied during answering
the profiling data read call. However it is necessary because copying just
the task id would not suffice to identify the task binary.

When parsing the samples the profiler first checks the task id. The
corresponding symbol table from the cache is used if there is one already
present. Otherwise the symbol table is loaded in the way just as it is done
in the task profiler. Then it assigns the sample to the symbol table. The
symbol table cache is represented by a simple linked list because usually
there are no more than ten running tasks in the system.

6.7 Interpreting the Results

After the profiler is asked to print the results all symbols are sorted according
to the count of their samples. Functions with most samples are echoed the
first. These functions should consume also the most part of the application
time, but this must not be necessary the rule. If there are several threads
running in the task, these threads might have run concurrently in SMP
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environment. Few threads can run on one CPU simultaneously whereas
another thread can seize the whole CPU for itself. Therefore the latter can
spent more CPU computing time and so produce more samples.

Example application and its profiling output is given in Appendix B.4.
As we can see there are some unknown samples recorded if PMC interrupts
were used as an event source. These samples do not belong to the profiled
task, they should not be present in the output at all. They are caused by
recording some random samples which is possible only due to the fact that
interrupts caused by PMC are not maskable (NMI). The NMI interrupts hits
some place in the kernel (where normal interrupts are prohibited) where the
IP value is incorrectly copied. Unfortunately it is very hard to identify this
place only from the incorrect IP value. Fortunately much less than one
percent of the samples has such bad values. Therefore the profiling is still
perfectly usable.

Standard interrupts (caused eg. by RTC chip) do not record similar dam-
aged samples.

The example also shows that samples recorded during task profiling per-
fectly correspond to the supposed time spent in the functions. Unfortunately
there are not yet any more reasonable applications running on HelenOS sys-
tem which would deserve practical profiling.

Usually ‘tetris’ application is used for testing various HelenOS features.
However for profiling this is not a good tester candidate because it’s main
thread is sleeping most of the time. It is either waiting for an input from a
user or a clock signal to move game blocks.

6.8 Future Improvements

How can be the profiling interface improved? The implemented solution
offers just basic functions which suffice for profiling both user tasks and the
whole system. Ideas for improvements are the following:

• Profiling now recognizes a task as a base unit. More precise distinc-
tion based on threads can be made. Simple adding the thread id to
the profiling sample structure is sufficient for later assignment of the
samples to the individual threads.

• The CPU Performance counters are used in a very simple way which is
enough for emitting the profiling events. The implementation should
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be ported to different architectures at first, but also major expansion of
the solution is advisable. The counters can serve for monitoring many
different events such as counts of swapped pages, memory accesses and
interrupt counts. As the measuring is done by the CPU itself it is by far
the most precise solution. Some smart framework which would allow
definition of all performance counters on other architectures would
significantly simplify the goal.

• Even different things than the pure CPU usage can be profiled. For
example the memory usage or network traffic statistics for specific task
might be useful.

As we can see there are several ways how this work can be expanded.
However the aim of this thesis was to build the basis for the task profiling
which was accomplished. As with any other work there will always be ways
how to make it better.
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Chapter 7

Conclusion

7.1 Achievements

Among the main achievements of the thesis we consider the introduction
of the original monitoring facility to the HelenOS system. Before the work
on the thesis started there was no way how to obtain even the most ba-
sic data such as a list of running tasks. We created the whole monitoring
subsystem together with corresponding userspace tools. This facility can
monitor several other kernel subsystems. Also the measuring of other statis-
tic information like the memory and the CPU usage per thread and per task
was added. The HelenOS operating system gained tools needed for its later
evolution towards the fully working operating system.

Next to the monitoring facility itself we developed original system and
task profilers. In these days there is hardly any practical usage of these
profilers because there are almost no applications which can be run on He-
lenOS and which are reasonable to profile. The application with the biggest
practical usage by far is the ‘tetris’ game, which however does not load
the system very extensively and as such it does not produce many profiling
samples. For testing purposes some dummy load applications were made
though. However the profilers will have to wait to bring their benefits until
more user applications can run on HelenOS system.

We can declare that all goals of the thesis listed in the Section 1.1 were
accomplished. All work was done in a tight cooperation with main HelenOS
contributors so the monitoring interface was already accepted to the devel-
opment mainline. An overview of all newly created userspace tools is given
at Appendix A. Some example outputs are shown in Appendix B.
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7.2 Future Evolution

Several ideas how to improve both the monitoring interface and the profiler
support were already presented at the end of relevant chapters. It should
be noted that to keep the income of this thesis persistent the monitoring
interface must be kept up to date every time a new feature is presented to
the HelenOS system.

In the short future a development of new user space tasks can be ex-
pected. Recently a file system and a networking support were introduced
and both brought new server tasks to the system. A new framework for mon-
itoring these ‘system servers’ should be made for better a understanding of
the operations performed by the user tasks. This framework can either work
in a way of receiving statistical messages from the servers or it can follow all
IPC communication between the tasks and the servers to build an overview
of the operations on its own.

There is also a space for expanding the support for the statistical pro-
filing. The task binaries for system profiling can be stored in the central
store. The Real Time clock driver should be introduced on all other archi-
tectures supported by the HelenOS system. Also the Performance Monitor-
ing Counter support should be expanded to support other CPU models. It
should be further extended to monitor all statistical information measured
by the counters themselves. As almost any CPU type has a different set of
the Counter registers some framework which would simplify the definition
of the counters for another CPU models might be useful.
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Appendix A

Userspace tools overview

Following Appendix lists all tools which were created for user interaction
with both monitoring and profiling interfaces. Also some example outputs
are listed. All monitoring tools follow customs common to all UNIX system
descendants. However thanks to the original environment of the HelenOS
system they are still quite different.

A.1 Tasks utility

The ‘tasks’ utility can be used for listing of all tasks running in the system.
For every task its count of threads, amount of allocated virtual memory and
its current user and system time are listed. Tasks tool can also print system
load and the CPU usage.

Tasks utility is very similar to standard ‘ps’ utility found in all descen-
dants of the original UNIX system.

Usage: tasks [OPTIONS]

Options:
-t,--task task_id List threads of the given task
-a,--all List all threads
-l,--load Print system load
-c,--cpu List CPUs
-h,--help Print this usage information

Without any options all tasks are listed

74



A.2 Stats utility

‘Stats’ command is the simplest one. It shows just the system uptime and
load. Its output is very similar to the output of common utility ‘uptime’.

Usage: stats

A.3 Top utility

Top is the most powerful utility from all mentioned here. It has abilities of
all other utilities together and even more.

Usage: top

‘Top’ is run without any options. Every second it retrieves a new moni-
toring dataset. The difference between last two datasets is used to compute
the percentage statistics. Therefore it takes a second to run the utility and
retrieve the initial two datasets.

As is common the upper part of the output shows the statistics of the
whole system. Here we find system time and date, uptime, sizes of free and
allocated memory and CPU utilization overview.

All data in ‘top’ are updated every second, last two datasets are kept and
all numbers are recomputed using differences between the two. There are
few commands which can be used to switch ‘top’ to different modes showing
different statistics:

• Command i shows IPC statistics of all messages sent between the
tasks.

• Command e shows statistics of times spent by handling every single
interrupt type.

• Command t switches top back to the initial state where task statistics
are showed.

A.4 Profile utility

The ‘profile’ tool can be used either on an already running task or it can
start a new task from scratch. If a new task is requested full path to the
task binary must be supplied.
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Usage: profile [taskname|-t task_id]

Options:

-t task_id Connect to the already running task task id

After the profiler has started several commands can be used:

• Command ‘q’ ends the profiler as well as the whole profiling session.

• Command ‘a’ pauses the current profiling.

• Command ‘e’ ends the profiling session without quitting the profiler.

• Command ‘p’ parses the samples received since the last printing and
prints the profiling tables with counts of samples for each function.

Because the parsing and printing of the profiling samples can be very
time consuming it should be used only when profiling itself is not running.
Otherwise same samples might get lost.

A.5 Sprofile utility

Sprofile utility is very similar to the profile tool. It differs only in its imple-
mentation as it profiles all system code. There are no options because there
is no task to be selected.

Usage: sprofile

76



Appendix B

Example outputs

Following sections show example outputs from all tools which were created
for the thesis.

B.1 Tasks

Only first few lines of tasks utility are displayed.

/ # tasks

ID Threads Mem uTime sTime Name

1 5 0 0: 0 0: 0 kernel

2 1 102400 0:513 1:142 init:ns

4 1 131072 0: 6 0: 3 init:devmap

B.2 Stats

/ # stats

00:01:34, up 0 days, 0 hours, 1 minutes, 34 seconds,

load average: 0.85 0.18 0.03

B.3 Top

Figure B.1 shows example output of running ‘top’ utility. The picture was
taken on a system with one extensively running thread.
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Figure B.1: Example output from ‘top’ utility

B.4 Profile

Following snippet shows a source code of a task which was profiled using
profile tool. The task was compiled without any optimizations1 to keep calls
to all functions.

void a(void) {

uint64_t i;

for (i = 0; i < MANY; ++i)

;

}

void b(void) {

uint64_t i;

for (i = 0; i < MANY; ++i)

;

}

1Option -O0 of the common gcc compiler
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void main(int argc, char *argv[])

{

a();

a();

b();

return 0;

}

The results from the profiler are shown below. The profiling frequency
was set to 2048Hz and the Performance Monitoring Counters were used as
the source of the clock events. If Real Time Clock chip had been used as
the source instead, the heap symbol samples would not be recorded. This
symbol was recorded by accident caused by usage of NMI interrupts.

/ # profile -t 34

Task profiler.

Loaded symbol table from ELF file app/tester

Profiling task 34 ’tester’ started

Commands: [Q]uit, p[A]use profiling, [E]nd profiling, [P]rint data

If you want the most accurate profiling data, do NOT press

’P’ while profiling is running.

-------------------

Printing data:

Samples: 27845 total, 27495 user, 350 kernel

Address Samples Symbol

---------- -------- ------>

0x10a8 13936 a

0x112a 6761 f

0x10e9 6758 b

0xe000 40 _heap
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