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Podpora procesorů UltraSPARC III, IV, T1 a T2
v HelenOS

Katedra softwarového inženýrství

Vedoucí diplomové práce: Mgr. Martin Děcký
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Chapter 1

Introduction

1.1 Motivation

The world of today’s computers is very diverse, spanning from small embedded de-
vices to large servers. In the server machines, the maximum throughput and paral-
lelism plays the most important role; such machines often contain tens of processors.
In the past few years the producers have put an emphasis onto lowering the energy
consumption, which lead to development of multicore processors where multiple cen-
tral processing units are integrated in a single processor chip. Moreover, multithreaded
processors have been introduced, which are able to execute multiple threads per one
processor core in parallel, just by regularly switching among active register sets.

An interesting way how to investigate the features of the processors found in mod-
ern server machines is trying to add support for some selected family of those proces-
sors to some existing operating system which has not supported these processors so
far.

This thesis describes the process of adding support for the newer 64-bit SPARC
processors to the HelenOS operating system.

1.2 Goals

HelenOS is an experimental operating system being developed by volunteers – current
and former students of Faculty of Mathematics and Physics of Charles University in
Prague and a handful of external developers. It supports many processor architectures,
among which there are the 64-bit SPARC processors. By the time the work on this thesis
started, HelenOS had already supported some older 64-bit SPARC processor models.
The aim of this thesis is to add support even for the newer 64-bit SPARC processor
models so that all HelenOS features could be used on these models.

The processor models for which the support is intended are:

• the newer UltraSPARC III, IIIi, III+, IV and IV+ processors, and

• even newer UltraSPARC T1 and T2 processors.

The effort should result in a stable operating system with support for:

• multithreading,

• memory management,
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• userspace,

• multiprocessor configurations.

This thesis introduces the newer SPARC processors, describes the process of port-
ing HelenOS to those processors, and provides a comparison of the support for those
processors in HelenOS with other operating systems.

1.3 Getting the Sources

The sources are maintained in a Subversion repository. To get the trunk, use:

svn checkout \
svn://svn.helenos.org/HelenOS/trunk \
HelenOS

Apart from the trunk, a separate branch dedicated to this thesis called sparc ex-
ists. It is recommended to view the SVN log of the branch instead of the trunk to get
a detailed overview of the changes made to the sources by the author of this thesis.
Moreover, by the time this thesis was written, some changes from the branch had not
been merged into the trunk yet. To check out the branch, use:

svn checkout \
svn://svn.helenos.org/HelenOS/branches/sparc \
HelenOS

1.4 Acknowledgements

The work on HelenOS (initially called SPARTAN Kernel) was started by Jakub Jer-
mář. His work was joined by a group of other students of Faculty of Mathematics
and Physics who extended HelenOS considerably and added support for a lot of new
architectures. Support for the 64-bit SPARC processors was added by Jakub Jermář
in 2006. Concurrently with the work on this thesis some new features were added to
HelenOS. Let us point out

• loader, dynamic linker and debugger (by Jiří Svoboda),

• simple shell (by Tim Post),

• support for real-world Itanium servers (by Jakub Váňa) and

• a lot of further enhancements (by Jakub Jermář, Martin Děcký, Jiří Svoboda and
others).

The code written as a part of this thesis is intermixed with the code written mainly
as a part of [jj_thesis]. It is contained mainly in the following directories:

• boot/arch/sparc64/loader,

• contrib/util,

• kernel/arch/sparc64,
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• uspace/srv/fb and

• uspace/srv/kbd.

The code written as a part of this thesis is usually either located in a subdirectory
called sun4v or it is inside a block delimited by #if defined (US3) and #endif
directives. Some pieces of code which are a part of this thesis are, however, located in
different places. Similarly some pieces of code which were not written as a part of this
thesis have been borrowed and used in a sun4v directory or inside an #if .. #endif
block. Thus, the only way how to reliably identify pieces of code written as a part of
this thesis is inspecting the log of the sparc branch of the HelenOS SVN repository.

1.5 How to Read this Document

In the text of this thesis the particular processor models are described and compared,
the environments are briefly introduced, the original SPARC port is introduced and
the enhancements done as a part of this thesis are explained.

Chapter 2 introduces the HelenOS operating system and its architecture.
Chapter 3 describes the very basic properties of the SPARC 64-bit processors which

are common for all CPU models HelenOS supports.
Chapter 4 focuses on UltraSPARC III, III+, IIIi, IV and IV+ processors. In the chapter

properties specific to these processors are introduced and where suitable, a comparison
with their predecessors (UltraSPARC I, II and IIi) is provided.

In Chapter 5 the newest family of the SPARC 64-bit processors (UltraSPARC T1, T2)
is introduced. Its basic features and properties are described.

Chapter 6 summarizes the implementation of the original port of HelenOS onto the
SPARC 64-bit processors made by Jakub Jermář.

Then, the two most important chapters follow:
Chapter 7 describes the implementation of the port of HelenOS onto newer SPARC

64-bit processors (UltraSPARC III, III+, IIIi, IV and IV+).
Chapter 8 describes the implementation of the port of HelenOS onto the newest

SPARC 64-bit processors (UltraSPARC T1, T2).
Chapter 9 compares the port to the newer and the newest SPARC processors with

other HelenOS ports and with other operating systems.
Chapter 10 summarizes what has been achieved and outlines the perspectives of

the work.
In Glossary 11 the reader can find definitions of the terms used throughout this

book.
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Chapter 2

HelenOS Overview

HelenOS is composed of a tiny microkernel and of servers – a set of userspace tasks
providing basic operating system services. The microkernel is responsible for the
time management, scheduling and synchronization, and memory management. The
userspace servers implement the filesystems and drivers of devices such as frame-
buffer, keyboard or RAM disk.

HelenOS design is thoroughly described in [helenos]1. In this chapter only the most
significant design features are dealt with.

2.1 Time Management and Scheduling

Each processor regularly invokes a timer interrupt. HelenOS kernel handles these in-
terrupts. Kernel uses these interrupts to

• keep track of the real time, and

• preempt the threads if they are running too long, so that no thread can usurp the
whole CPU.

Upon a timer interrupt the kernel increments the variable representing the real time
by a number of microseconds which have passed since the last timer interrupt.

2.1.1 Threads

A thread is a basic unit of execution. An illusion is made that the threads run in par-
allel. On uniprocessor systems this is achieved by switching regularly among active
threads (round robin with multilevel feedback, separate run queues for each CPU). On
multiprocessor systems the threads may really run in parallel, each thread on its own
CPU; if the number of threads exceeds the number of CPUs, threads are alternated on
a particular CPU. To make all the CPUs roughly equally busy, a balancing thread is
running on background. Each CPU has its own load balancing thread; when it detects
that there are fewer ready threads than on an average CPU, it steels threads from the
busy CPUs.

Each thread has its own stack. User processes are called tasks in HelenOS. A task is
a group of threads which share the same virtual address space.

1Unfortunately some portions of that document may be obsolete.
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2.1.2 Fibrils

Fibrils are units of execution which are recognized purely by the userspace and which
the kernel is not aware of. Several fibrils may be mapped onto one ordinary userspace
thread.

2.2 Synchronization

2.2.1 Active Primitives

On the very low level, spinlock is used. The spinlock code tries to grab the lock by
atomically setting the variable it is associated with using an architecture-dependent
test-and-set instruction. If the variable is already set, the code actively waits (spins)
until the variable becomes unset again, then it retries to grab the lock.

The spinlock code is usually optimized so that on uniprocessor systems only the
preemption is disabled upon locking the spinlock, without spinning. On multipro-
cessors the preemption is disabled as well for the thread holding the lock, in order to
prevent the priority inversion problem.

2.2.2 Passive Primitives

The basic passive synchronization primitive is called a wait queue. All other passive
primitives build on it.

Wait queue allows a thread to sleep until an event associated with the queue occurs.
If the event occurs before the thread starts to wait for it, it is recorded in a counter called
missed wakeups. When some thread starts to wait for an event associated with a wait
queue for which the missed wakeups variable is greater than zero, the missed wakeups
variable is decremented by 1 and the thread does not have to sleep.

By pre-setting the missed wakeups to the number of threads which are allowed to
enter a critical section, the wait queue will behave exactly as a semaphore (with the
wait operation having the same effect as semaphore down operation and invoking the
wait queue event having the same effect as the semaphore up operation).

Mutex is just a binary semaphore. Read-write lock is implemented in a way such
that neither readers nor writers starve.

2.3 Memory Management

2.3.1 Frame Allocator

Upon startup, the kernel detects all available regions of the physical memory. The
frame allocator allocates contiguous regions of physical memory, the size of the regions
must be a power of two. For keeping track of all available regions of physical memory,
buddy system is used.

2.3.2 Slab Allocator

Slab allocator allocates objects to be used by the kernel. A typical kernel object is small
and kernel uses a lot of instances of the same type of object. Therefore it is reasonable
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to pre-allocate multiple objects of the same type at once, so that the average cost of an
object allocation is low and memory fragmentation is minimized.

That is exactly what the slab allocator does. It pre-allocates multiple instances of
objects of the same type. Pointers to those objects are stored in a cache and returned to
the kernel when the kernel asks for the objects. Objects which the kernel does not use
anymore are returned to the cache instead of being immediately deallocated.

If the kernel asks for an object type which the slab allocator has run out of, the slab
allocator pre-allocates a new set of objects of that type. Similarly, if the kernel starts to
run out of memory, the pre-allocated objects are deallocated.

The malloc function builds upon the slab allocator. The malloc function allocates
pieces of memory whose sizes are multiples of two. Special ‘pseudotypes’ of objects
are defined whose sizes are multiples of two. The malloc function then works by
allocating instances of this ‘pseudotype’.

2.3.3 Virtual-to-physical Mapping

HelenOS kernel makes use of paging. Segmentation is not used on any system which
supports it, nor can the kernel run on MMU-less machines.

The virtual-to-physical mappings are stored in a structure called page table. On
some architectures the page tables are managed by the hardware, while on others they
are managed by the kernel. Anyway, the interface for accessing the page tables is
unified in HelenOS. Three basic operations are defined: page_mapping_insert, p-
age_mapping_find and page_mapping_remove. The actual implementation of
these functions depends on the page table mechanism used for the given platform.
HelenOS defines two page table mechanisms – global hashtable (where mappings of
all the address spaces are stored) and hierarchical 4-level page tables.

2.4 Userspace Support

2.4.1 Passing Information from Kernel

Since kernel is able to gather some information about the host system which is not
accessible by userspace, a mechanism for passing pieces of information from the kernel
to userspace exists. The mechanism is called sysinfo. Kernel calls a special function,
passing a string (as a key) and a number (as a value) to it. The userspace task then picks
the value up by calling a function to which the key is passed. The sysinfo mechanism
is commonly used by device drivers to pass the address where the device is mapped
in the memory and other information.

2.4.2 IPC

Interprocess communication (IPC) is a mechanism via which the tasks communicate with
each other. It is heavily used for communication between server tasks and ordinary
applications. The IPC is asynchronous, analogous to phones (on the client side) and
answerboxes (on the server side).

In order to make the IPC mechanism easily usable, a framework called asynchronous
framework has been implemented. The asynchronous framework is described at the
project wiki ([wiki]).
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2.4.3 Important Servers

Name Server (ns)

The name server is a registry of all other servers. When a task needs to communicate
with a certain server S, it asks the nameserver for a phone to S.

VFS Server (vfs) and Filesystem Servers

VFS server is a key server in the filesystem implementation. It accepts requests for
filesystem operations from the tasks and dispatches them to servers which implement
particular filesystems (TMPFS, FAT).

RAM Disk Server

The RAM disk server represents a virtual block device which uses physical memory
as a storage. It is used by a filesystem implementation to store the initial user space
environment (tasks, configuration, etc.).

Keyboard (kbd), Framebuffer (fb)

The keyboard server encapsulates drivers of several different keyboard models. The
framebuffer server encapsulates

• drivers of several different framebuffer models, and

• drivers of several output devices which do not use a framebuffer (but for example
a serial line).

The servers provide a unified interface to its clients, so that the clients do not have
to bother with a particular type of input or output device.

Console

In the HelenOS user interface several virtual consoles may exist – each task that needs
an output has its own virtual console. The user can switch between the consoles. The
console server implements the virtual consoles mechanism.
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Chapter 3

64-bit SPARC Processors Overview

This thesis deals with two architectures of the SPARC 64-bit processors. The first archi-
tecture conforms to the SPARC V9 specification [sparc_v9] and it will be referred to as
sun4u throughout the thesis. The second architecture follows the newer UltraSPARC
Architecture 2005 specification [us2005hp] and will be referred to as sun4v throughout
the thesis. Strictly speaking the terms sun4u and sun4v are commonly used to denote
architecture of the whole machine rather than architecture of the processor. For sake of
simplicity, however, in this thesis these terms will be used to denote architecture of the
processors.

The SPARC V9 specification defines a common subset of properties that all con-
forming processor models must have. On the other hand, some properties1 are left
undefined in the SPARC V9 specification – they are further defined in so called imple-
mentation supplements. The SPARC V9-conformant processors can be logically grouped
into

• the older models UltraSPARC I, UltraSPARC II, UltraSPARC IIe and UltraSPARC
IIi, and

• the newer models UltraSPARC III, UltraSPARC IIIi, UltraSPARC III+, UltraSPARC
IV and UltraSPARC IV+.

Processors from the same group are very similar to each other. Since processors
from the former group have already been thoroughly described in [jj_thesis], this the-
sis will only focus on processors from the latter group. Common properties of the
processors from the latter group are summarized in a separate document called Joint
Programming Specification [jps]2.

UltraSPARC Architecture 2005 specification defines common properties of the sun4v
architecture processors. This thesis deals with the UltraSPARC T1 model (further de-
scribed in UltraSPARC T1 Supplement [t1hp]) and the UltraSPARC T2 model.

This chapter summarizes common features of both the sun4u and the sun4v pro-
cessors. Features which are specific to the particular architecture are summarized in
Chapter 4 and Chapter 5.

1Examples of such properties are: memory management unit, timer support, inter-processor inter-
rupts and some special registers and instructions.

2Joint Programming Specification is a common document created by Sun Microsystems and Fujitsu,
as Fujitsu also manufactures JPS-compliant processors called SPARC64® V. Fujitsu models are, however,
not covered in this thesis.
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3.1 Registers

This section deals with general purpose registers and an assorted set of control regis-
ters.

3.1.1 General Purpose Registers

Code running on a 64-bit SPARC processor can access 32 non-privileged 64-bit integer
registers at a given instant. These registers are denoted by symbols %r0 to %r31. They
are partitioned into global registers (%r0 to %r7, commonly also denoted by symbols
%g0 to %g7) and windowed registers (%r8 to %r31). Section 3.1.3 and Section 3.1.4 discuss
both global and windowed registers thoroughly.

3.1.2 Control Registers

Control registers are privileged registers, which represent the current state of the CPU.
They are discussed in Section 3.1.5.

3.1.3 Global Registers

Global register %g0 always reads as zero and writes to it are ignored.
There are multiple sets of global registers, but only one set is active at any given

moment. A normal globals set is active when no trap is being processed. When a trap
occurs, the normal globals set is shadowed by an alternative set. There are several al-
ternative sets of global registers; the actual number and names of those alternative sets,
however, depend on the architecture. See Section 4.1 for a description of the alternative
sets of the global registers on the sun4u processors and Section 5.4 for a description of
the alternative sets of the global registers on the sun4v processors.

3.1.4 Windowed Registers

Registers %r8 to %r31 are called windowed registers. They are partitioned into

• output registers %r8 to %r15, also denoted by %o0 to %o7, which are used by a
calling function to pass parameters to the callee and to read the return value,

• local registers %r16 to %r23, also denoted by %l0 to %l7, where the function can
store values of its local variables, and

• input registers %r24 to %r31, also denoted by %i0 to %i7, which are used by a
callee to read the parameters and pass the return value to the caller.

There are multiple sets of the windowed registers, but only one set is active at any
given instant. A set of windowed registers is called a register window. The number
of register windows is given by a CPU model-specific number NWINDOWS3. Register
windows are numbered by numbers 0 to NWINDOWS - 1. The window which follows
a window with number n has number (n + 1) modulo NWINDOWS. Therefore after the
(NWINDOWS - 1)-th window a 0-th window logically follows, as depicted on Figure 3.1.

3Which equals 8 on all processors mentioned in this thesis.
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1

2
Register window with number 1 is the currently active window.

Figure 3.1: Register Windows Arrangement.

Functions store their local variables and call parameters to the active register win-
dow. During a function call a new register window is allocated, shadowing the register
window of the caller. More precisely, in its prologue a function can issue the SAVE in-
struction, which results in deactivating the n-th register window and activating the (n
+ 1)-th (mod NWINDOWS) register window. Similarly, upon a return from a function
call the current register window is deallocated and the register window of the caller
becomes active again. More precisely, in its epilogue a function can issue the RESTORE
instruction, which results in deactivating the (n + 1)-th window and re-activating the
n-th window.

In order to make passing function parameters faster, output registers of the n-th reg-
ister window overlap with the input registers of the (n + 1)-th register window. Hence
performing the SAVE instruction causes that all values accessible via the output regis-
ters become accessible via the input registers. Overlapping of windows is depicted in
Figure 3.2.
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Figure 3.2: Overlapping of Registers.

If the SAVE instruction is issued and a new register window can not be allocated
(there is a limited amount of register windows), a trap to the operating system is
taken. Operating system copes with the situation by saving (in UltraSPARC termi-
nology spilling) the oldest register window onto the stack. Similarly, if a RESTORE in-
struction is issued and the register window to which the code wishes to switch has
been spilled to the stack, a trap to the operating system is taken. Operating system
copes with the situation by reloading (in UltraSPARC terminology filling) the values
from the stack to the register window.

There is a handful of control registers which describe the configuration of register
windows:

CWP, current window pointer

Contains the number of the currently active register window. It can contain val-
ues between 0 and NWINDOWS - 1.

CANSAVE

The value in the CANSAVE register denotes how many times the SAVE instruction
can be issued before a spill trap will be generated.

CANRESTORE

The value in the CANRESTORE register denotes how many times the RESTORE in-
struction can be issued before a fill trap will be generated.

OTHERWIN

This register is used to mark a contiguous block of register windows which be-
long to a different address space and their spilling should be therefore performed
by a different handler. Windows which belong to the different address space are
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called other windows. Windows which belong to the current address space are
called normal windows.

The following equation holds:

CANSAVE + CANRESTORE + OTHERWIN + 1 + 1 = NWINDOWS.

The first "1" in the equation represents the current register window. The second "1"
in the equation represents so called overlap window, which is a window whose output
registers overlap with the input registers of the first occupied window and whose in-
put registers, if all the windows had been occupied, would overlap with the output
registers of the last window. An example register window configuration is depicted in
figure Figure 3.3.
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Window number 1 is the current window. Value of the CANSAVE register is 2,
so the software can issue the SAVE instruction twice without invoking trap
to the privileged software. Value of the CANRESTORE register is 1, which
means that there is one more normal register window to which software
can switch by issuing the RESTORE instruction without the need to reload
register values from the memory stack. Value of the OTHERWIN register is
3, which means that there are three register windows which belong to a
different address space and their spilling will be performed by a different
spill handler. Window number 4 is an overlap window.

Figure 3.3: Example of Register Window Configuration.

Privileged software can define up to eight different spill handlers for normal win-
dows and up to eight spill handlers for other windows. Similarly, privileged software
can define up to eight different fill handlers for normal windows and up to eight fill
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handlers for other windows. The particular handler which will be used is selected
according to the value of the WSTATE register4.

The last thing related to windowed registers worth mentioning is a special mean-
ing of some registers. The %o6 register, as defined by the application binary interface
(ABI), is a stack pointer, i.e. an address of the top of the stack5. When the SAVE instruc-
tion is executed, the original value of the %o6 register becomes accessible via the %i6

register. The %i6 register is also called a frame pointer, because its value represents an
address6 of the stack frame (the top of the stack of the calling function). The %o7 regis-
ter is a register where a calling function stores the values of its program counter when
performing the call.

3.1.5 Control Registers

Here is a list of the very basic control registers, whose knowledge is recommended for
understanding the ongoing parts of this thesis.

PC, program counter

Contains the address of the instruction being currently executed.

NPC, next program counter

Contains the address of the instruction which is to be executed next.

PSTATE, processor state

Encapsulates values of several flags, such as the privilege level or the active set
of global registers.

3.2 Traps

A trap is a transfer of control to the privileged software. Examples of traps on 64-bit
SPARC processors include

• register window spills and fills (see Section 3.1.4),

• memory management exceptions,

• illegal instructions,

• hardware, inter-processor and timer interrupts.

3.2.1 Trap Levels

SPARC 64-bit processors allow nested traps. When a trap is being processed, another
trap can come and be processed without destroying the state of the first trap. The depth
of trap nesting is limited, though. The depth depends on the processor architecture,
but it is usually not bigger than five levels. The current trap level is represented by the

4The WSTATE register has six significant bits. Bits 0 to 2 contain the index of the spill (fill) handler
which will be used should the normal window trap. Bits 3 to 5 contain the index of the spill (fill) handler
which will be used should the other window trap.

5Address of the top of the stack is actually equal to %o6 + 0x7ff.
6Address of the top of the stack frame is actually equal to %i6 + 0x7ff.
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value of the TL register. When no trap is being processed, the TL register has value 0.
When a trap comes, the value of the TL register is increased by one.

When a trap comes, the state of the processor is snapshotted to special registers so
that it can be renewed as soon as the trap is processed. The registers are as follows:

TSTATE

Encapsulates the value of the CWP and PSTATE registers and other essential state
valid at the time the trap was taken.

TPC

Contains the value of the PC register valid at the time the trap was taken.

TNPC

Contains the value of the NPC register valid at the time the trap was taken.

There are multiple sets of TSTATE, TPC and TNPC registers, the number of the sets
equals to the number of trap levels above zero. If TL equals n > 0, the TSTATE, TPC
and TNPC registers always contain the state of the CPU valid the last time when TL was
equal to n - 1.

3.2.2 Trap Table

The type of the trap can be determined from the TT (trap type) register. The TT register
contains a number between 0 and 511, which acts as an index to the trap table. Each
entry in the trap table is a sequence of a limited number of instructions (32 for the most
common types, 8 for other types). The table is partitioned into two parts, the first part
contains trap handlers which will be invoked if the trap occurs when TL = 0, the second
part contains handlers which will be invoked if the trap occurs when TL > 0.

Trap table is placed in the main memory, its address is set using the privileged TBA

(trap base address) register.

3.2.3 Returning from a Trap

There are two instructions for returning from a trap: DONE and RETRY. They both de-
crease the trap level (TL) by one and restore the state saved in TSTATE, TPC and TNPC

registers. After the DONE instruction the control is transferred to the instruction which
follows the instruction last executed before the trap. After the RETRY instruction the
control is transferred to the instruction last executed before the trap, which means that
the instruction last executed before the trap is re-executed.

3.3 Memory

This section describes how memory is virtualized on UltraSPARC processors, intro-
duces memory access instructions and mentions how to access special registers using
these instructions.
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3.3.1 Virtualization

UltraSPARC processors are equipped with a memory management unit which trans-
lates virtual page numbers onto physical frame numbers7.The translations are man-
aged entirely by software, hardware provides only a small but fast cache of transla-
tions called translation lookaside buffer. The MMU supports 8 kB, 64 kB, 512 kB, and
4 MB page sizes.

Address translation mechanism can be split so that one translation mechanism is
used for instructions and a different one for data, even though the same physical mem-
ory is still used. Privileged software may, however, keep the same virtual-to-physical
mappings for both instructions and data.

3.3.2 Memory Access Instructions

There are only a few instructions for memory access: load instructions, store instruc-
tions and load-store instructions (which are used for synchronization purposes). All
arithmetical and logical operations are performed purely on registers without interact-
ing with memory. Load and store instructions are used not only to access memory, but
also to access I/O address spaces and some special registers.

3.3.3 Address Space Identifiers

When issuing a load or store instruction, an address space identifier (ASI) can be specified
as one of the instruction arguments. Address space identifier is a number between 0
and 255. Generally speaking, the address space identifier determines how the load or
store instruction is to be interpreted. Address space identifier influences

• whether an ordinary memory or a special register is accessed,

• whether accessing the address has a side effect (accessing I/O addresses),

• whether the data being loaded/stored are big-endian or little-endian,

• whether the memory management unit is bypassed (no virtual address transla-
tion),

• which virtual address space (context is SPARC terminology) is accessed,

• and other issues.

3.3.4 Memory Contexts

Virtual address spaces are called contexts. Memory management unit may concurrently
keep track of up to 213 contexts. Contexts are distinguished by context identifiers8, num-
bers between 0 and 213 - 1.

7On UltraSPARC Architecture 2005 it is a little bit more complicated.
8The term ‘context’ is also known as ASID on some architectures, do not confuse with ASI.
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Context Registers

Three contexts may be active concurrently. Which one of the three contexts will be
used for particular memory operations depends on the ASI used and on the current
trap level.

NUCLEUS

This context is used when the trap level (TL) is greater than 0, i.e. when a trap is
being processed. The context ID is hardwired to 0.

PRIMARY

Context used for normal memory access. Normal memory access is access with
ASI equal to ASI_PRIMARY9. This context’s ID is stored in the Primary Context
Register.

SECONDARY

Context used for memory access using ASI equal to ASI_SECONDARY. Whether
and how the access via ASI_SECONDARY is used depends purely on the software.
This context’s ID is stored in the Secondary Context Register.

3.3.5 Translation Lookaside Buffers

Translation tables are software-managed on the 64-bit SPARC processors. Hardware
keeps track of a limited set of translations in a translation lookaside buffer (TLB). There
are separate TLBs for instruction and data memory. The instruction TLB is commonly
referred to as ITLB and the data TLB is commonly referred to as DTLB. Depending on
the architecture, the TLB contains between 64 and 512 entries. On some architectures
there may be more than one ITLB and more than one DTLB in one memory manage-
ment unit.

Translation Table Entry

Translation table entry holds information for a single page mapping. It consists of a 64-
bit tag and data words. The tag contains the context identifier and the virtual address.
It is used to determine whether there is a hit. The data contains the physical address
and flags of the mapping. The flags determine whether the mapping is locked (i.e. can
not be automatically expelled from the TLB) or whether the mapped page is writable,
privileged, cacheable or executable.

3.3.6 Memory Management Traps

If a page which is not contained in the TLB is accessed, a trap is invoked. Privileged
software handles the trap by looking up the translations in its translation tables and (if
found) reloading the translation to the TLB. The basic MMU traps are:

Fast Data Access MMU Miss

An instruction accessed data not mapped in DTLB.

9Implicit ASI, the value of the ASI_PRIMARY constant is 0x80.
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Fast Data Access Protection

An instruction accessed data mapped as read-only in DTLB.

Fast Instruction Access MMU Miss

The code to be executed is not mapped in ITLB.

The traps are called ‘fast’, because in the trap table they can take up 32 instruc-
tions10. Thus, in most cases the trap can be handled purely by the code contained in
the trap table, without branching.

3.3.7 Translation Storage Buffers

Translation storage buffer is an in-memory cache of page mappings managed by oper-
ating system. It is used to quickly find a translation which cannot be found in the
TLB. Usage of TSB is optional, operating system can work completely without TSB.
For each context a separate TSB11 can be defined. The translation storage buffer is an
array indexed by a sequence of the n least significant bits of a page number. Number n
is defined by an operating system. An entry in the TSB consists of a TTE tag and TTE
data. The size of the tag is 8 bytes, as well as the size of the data. The total number
of entries in one TSB equals 2n, which is usually a number significantly greater than
the size of the TLB (moreover, each context has its own TSB, while the TLB is shared
among contexts).

Reloading the translation from the TSB is slower than looking it up in the TLB; the
SPARC processors, however, provide some hardware support for speeding it up: The
privileged software just supplies some essential information to the hardware, such as
the location of the TSB in the memory. Then, when the MMU trap comes, the hardware
automatically pre-computes the address of the TSB entry which potentially contains
the translation of the page which caused the trap. The privileged software then checks
whether the tag matches the page that has caused the trap; if so, it copies the entry to
the TLB, if not, it looks the translation up in its page tables.

3.4 Interrupts

This section briefly describes the most important interrupts – timer interrupts and
inter-processor interrupts.

3.4.1 Timer Interrupts

64-bit SPARC timer support is based on two registers: TICK and TICK_COMPARE. Value
represented by bits 0 to 62 of the TICK register is incremented by one at every clock
cycle12. When the value of the TICK register equals to the value of the (privileged)
TICK_COMPARE register, a tick interrupt is generated.

Newer UltraSPARC processors (JPS-compliant and sun4v) define two more regis-
ters: STICK and STICK_COMPARE. They have the same function as the TICK and TIC-

K_COMPARE registers. The only difference is that the value of bits 0 to 62 of the STICK

10Unlike most other traps, whose handler can take up to 8 instructions only.
11More precisely a pair of TSBs: one instruction TSB and one data TSB.
12Bit 63 controls read access to this register for the non-privileged software.
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register is not incremented at every clock cycle, but at a rate given by an external clock
signal.

3.4.2 Inter-processor Interrupts

Inter-processor interrupt (IPI) is an interrupt invoked by one CPU and received by a dif-
ferent CPU. An example of its usage is TLB-shootdown13 in a multiprocessor environ-
ment. During the inter-processor interrupt a short massage is passed from the sender
to the receiver. The message is called an interrupt vector. The length of the vector de-
pends on the processor (sub)architecture. Upon receiving the IPI, a trap is invoked
on the receiving CPU. The trap handler can read the vector using special registers.
What the sending CPU must do in order to invoke the IPI depends on the architec-
ture – sun4u processors write the message contents to special registers, whereas sun4v
processors will typically use a hypercall.

3.5 OpenBoot PROM

OpenBoot PROM (OBP) is not a part of the SPARC processors specifications, but it is
present in almost all SPARC machines. Since operating systems may use some infor-
mation OBP provides, this section will briefly introduce it.

OpenBoot PROM (OBP) is a firmware which is active from the moment the machine
is switched on and its purpose is to boot the operating system. Apart from booting,
OBP can also provide the operating system with some essential information. The in-
formation is structured in a tree-like structure called OBP tree. The operating system
can investigate the tree via OBP client interface14. The root node of the OBP tree repre-
sents the whole machine. Nodes deeper in the tree represent devices, memory, CPUs,
etc. With each node, a set of key-value pairs is associated, representing node proper-
ties. An example of a property of a memory node is the memory starting address. An
example of a property of a CPU node is a clock frequency.

The root node’s compatible property contains the name of the architecture, hence
it can be used to detect whether the host platform is sun4u or sun4v.

13When a mapping is modified of removed or when a virtual address space identifier becomes invalid
on one CPU, (portions of) TLB must be invalidated on other CPUs as well.

14When booted, the operating system has a pointer to a certain function in one of the registers. The
function is an entry point of the OBP client interface, via the entry point all OBP services are accessible.
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JPS-compliant Processors

The Joint Programming Specification [jps] is a document created by Sun Microsystems
and Fujitsu. It describes common features of processors belonging to the UltraSPARC
III subarchitecture. This chapter focuses on the UltraSPARC III, UltraSPARC III+, Ul-
traSPARC IIIi, UltraSPARC IV and UltraSPARC IV+ processors, but the information
presented here should hold for the Fujitsu processor models as well.

Manuals for the particular processor models can be downloaded from the following
site:

http://www.sun.com/processors/documentation.html

From the system programmer’s point of view, there are only a few differences be-
tween particular models. The differences concern mainly TLB size and the OBP tree
structure. The main difference between the UltraSPARC III and UltraSPARC IV series
is that UltraSPARC IV contains dual-core processors.

4.1 Registers

In Section 3.1.3 it has been mentioned that there are multiple sets of global registers
(%g0 to %g7) and that the normal globals set is shadowed by an alternative set when
processing a trap. It has also been mentioned that the number and nomenclature of the
alternative sets depends on the (sub)architecture.

As for the JPS-compliant processors, there are three alternative sets of global regis-
ters.

alternate globals

This set is active when a trap is being processed, except for interrupts and mem-
ory management traps.

memory globals

This set is active when a memory management trap is being processed.

interrupt globals

This set is active when an interrupt is being processed.
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4.1.1 Setting the Registers Set

The alternative global registers set is implicitly enabled upon the trap, similarly upon
the return from the trap the normal globals set is reactivated. The privileged code may,
however, activate an arbitrary global registers set explicitly. The currently active reg-
ister set is specified by the AG, MG and IG bits of the PSTATE register (see Section 3.1.5).
If all these bits are set to 0, normal globals set is used. If the AG bit is set to 1 and the
remaining two bits are set to 0, alternate globals set is used. If the MG bit is set to 1 and
the remaining two bits are set to 0, memory globals set is used. If the IG bit is set to 1 and
the remaining two bits are set to 0, interrupt globals set is used.

4.2 Memory Management

The UltraSPARC III subarchitecture slightly differs from the older UltraSPARC1 sub-
architecture. The virtual address space, whose size was 244 bytes on the older 64-bit
SPARC processors, is extended to 264 bytes on the UltraSPARC III subarchitecture. The
physical addresses, which could be at most 41 bits long on older 64-bit SPARC pro-
cessors, have been extended to 43 bits. There are multiple ITLBs and DTLBs in one
memory management unit.

4.2.1 Translation Lookaside Buffers

On older 64-bit SPARC processors there was only one ITLB and one DTLB, each hold-
ing at most 64 entries. On the UltraSPARC III subarchitecture there are multiple DTLBs
and multiple ITLBs.

There is one small DTLB which can hold both locked and unlocked entries.
There are two large DTLBs which can hold unlocked entries only.
There is one small ITLB which can hold both locked and unlocked entries.
There is one large ITLB which can hold unlocked entries only.
The size of the TLBs is slightly different on UltraSPARC III and UltraSPARC IV

series. The sizes are summarized in Table 4.1.

TLB size on UltraSPARC III size on UltraSPARC IV
small DTLB 16 16
big DTLB 512 512
small ITLB 16 16
big ITLB 128 512

Table 4.1: TLB sizes

As the locked entries can be contained in the small TLB only, the maximum number
of locked entries is limited to 16 on UltraSPARC JPS-compliant processors.

4.2.2 MMU Registers

This section describes how the translation table entry is reloaded to the TLB when the
MMU miss occurs. The process is almost the same as on older 64-bit SPARC processors.

1UltraSPARC I, UltraSPARC II, UltraSPARC IIi, UltraSPARC IIe – they are not covered in this thesis.
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TLB entries are manipulated via special registers, which are accessible through spe-
cial ASIs (see Section 3.3.3). The ASI numbers and virtual addresses through which
these special registers are accessible are defined in the Joint Programming Specifica-
tion [jps]. All of the registers mentioned exist in two variations – one for the ITLB and
one for the DTLB. For sake of simplicity, only one of those two registers is defined in
the following list.

MMU Tag Access Register

To this register the privileged software can write the translation entry tag which
is to be loaded into the TLB. The upper 51 bits contain bits 63 to 13 of the virtual
address. The lower 13 bits contain the context identifier. Upon MMU miss, the
MMU hardware implicitly writes both the virtual address and the context of the
faulting page to this register, so that the operating system does not have to touch
this register when processing the MMU miss. Nevertheless, the operating system
is free to explicitly change the value of this register if it needs to.

Data In Register

To this register the privileged software can write the translation entry data which
is to be loaded into the TLB. Writing to this register triggers an atomic write of
both the tag (stored in the MMU Tag Access Register) and the data to the TLB.
If any other entry must be evicted from the TLB, an automatic replacement algo-
rithm is initiated. The algorithm depends on the CPU model.

MMU Demap

Three demap operations are provided: demap page demaps a single entry from the TLB,
demap context demaps all entries with a given context identifier and demap all demaps
all entries in the TLB2. The demap operation is performed by writing an arbitrary value
via a special ASI (defined in [jps]) to the address of the format described in figure
Figure 4.1.

page number ignored type context 0

63 13 12 8 7 6 5 4 3 0

Figure 4.1: Demap Address Format.

Synchronous Fault Status Register (SFSR)

Instruction and Data Synchronous Fault Status Registers (SFSR) are privileged read-only
registers which describe an MMU fault. They encapsulate the ASI which caused the
fault and the exact condition that caused the fault (e.g. privilege violation, invalid ASI
value).

2Demap all is present on JPS-compliant processors, but not on older UltraSPARC I and UltraSPARC
II models.
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Direct Access to TLB

UltraSPARC I to UltraSPARC IV+ processors define privileged ASI-accessible registers
for direct diagnostic access to the TLBs. This feature is used for debugging purposes,
such as printing the whole contents of the TLBs by the operating system.

4.2.3 Translation Storage Buffer

The basic principle of the translation storage buffer has been briefly described in Sec-
tion 3.3.7. This section will shortly describe the interface provided by hardware to
the operating system on the sun4u architecture and compare the interface of the older
UltraSPARC processor models with the JPS-compliant models.

The size of the TSB is 2n, where n is a privileged software-defined number greater or
equal to 9 (which implies that the minimum number of TSB entries is 512). Hardware
provides support for the 8 kB and 64 kB page sizes. Privileged software interfaces
with the hardware by means of a handful of ASI registers. Again, each of the registers
presented here exists in two variations – one for ITSB and one for DTSB.

TSB Tag Target Register

This register is used by the privileged software to find out whether the TSB entry
tag matches the faulting page and context. Its format is the same as the format of
the TSB entry tag. This register is updated automatically by hardware upon an
MMU miss.

TSB Base Register

Privileged software sets the base address of the TSB using this register. Apart
from the base address, this register also encapsulates other parameters of the
TSB mechanism: the size of the TSB and whether the TSB is split (i.e. one half of
the TSB contains entries for 8kB pages and the second half contains entries for
the 64 kB page sizes). Figure Figure 4.2 illustrates the format of the register.

bits 64 to 13 of TSB base split reserved TSB size

63 13 12 11 3 2 0

Figure 4.2: TSB Base Register format.

TSB 8kB Pointer Register

This register contains the precomputed address of the TSB entry whose tag poten-
tially matches the faulting page. As entries in the TSB are indexed by a sequence
of only n least significant bytes of the page number, collisions may occur in the
TSB; therefore the privileged software must perform additional checks that the
entry really matches the faulting page.

This register provides the entry address for the case of 8kB pages. Similarly, there
exists an analogous register for 64kB page sizes.
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Extension Registers

Up until now, all information about the TSB was valid for both the older UltraSPARC
64-bit processors and for the JPS-compliant processors. Extension registers are a fea-
ture introduced in the Joint Programming Specification, which enables privileged soft-
ware to use three separate TSBs concurrently: for the primary, secondary and nucleus
contexts.

It has already been stated that the operating system can define a separate TSB for
every memory context (virtual address space). On the SPARC 64-bit processors three
memory contexts can be concurrently active (primary, secondary and nucleus), yet
only one TSB Base Register is present. Therefore, every time the software is about to
make a memory access using ASI_SECONDARY and the TSB Base Address register still
contains base address of the primary context TSB, the TSB Base Address register must
be updated3.

Joint Programming Specification solves this issue by introducing three more regis-
ters: TSB Nucleus Extension Register, TSB Primary Extension Register, and TSB Secondary
Extension Register. The first two exist for both data and instruction address spaces, the
last one exists for data address space only. Their format is exactly the same as the for-
mat of the TSB Base Address Register. When pre-computing a pointer to the TSB entry,
hardware does not use TSB Base Address Register directly, but its value is first XOR-ed
with the corresponding extension register. This enables a backward compatibility with
older 64-bit SPARC processors: if the system is unwilling to use the extension regis-
ters, it sets them to 0, hence the address will be precomputed only using the TSB Base
Address Register, i.e. the same way as on the older processor models.

4.2.4 Caches

SPARC 64-bit processors contain separate caches for instruction memory and data
memory. Older processor models do not automatically keep instruction and data
caches coherent. When a piece of code is modified during program execution4, the
FLUSH instruction is needed to synchronize data and instruction address spaces. The
FLUSH instruction must be called for every doubleword5 which has been modified.

Newer, JPS-compliant, processors automatically keep instruction and data caches
coherent. The FLUSH instruction is still needed, though, but only in order to flush the
instruction pipeline.

4.3 CPUs

4.3.1 CPU Identification

In a multiprocessor environment it is essential to distinguish between particular CPUs.
Each CPU is identified by an integer number called module ID (MID) or agent ID (AID).
The code can find the identifier of the CPU it is executed on by inspecting an inter-
connect bus register, which is called UPA config register on older sun4u processors and

3And similarly for other combinations of contexts.
4Code which modifies instruction stream during its execution is commonly referred to as self modi-

fying code (SMC).
5Doubleword is 8 bytes large.
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Fireplane config register on newer sun4u processors6. The register is accessible through
a special ASI. The format of the register depends on the processor model, moreover
the length of the MID/AID field may differ too. Table 4.2 summarizes the name of the
processor ID, its size and name of the register it is accessible through in particular
processor models.

UltraSPARC CPU model register name field
name

OBP
property length

I, II, IIi UPA Config MID upa-portid 5 bits
III, III+, IV, IV+ Fireplane Config MID portid 10 bits
IIIi Fireplane Config AID cpuid 5 bits

Table 4.2: Processor IDs

CPU nodes in the OBP tree contain a property, whose value equals to the identifier
of the CPU. The name of the property key varies among processor models, see table
Table 4.2.

4.3.2 CPU Model Determination

Particular processor models are slightly different. Operating systems may detect the
model by means of the VERSION register. The VERSION register is a privileged register
which encapsulates the CPU manufacturer code and the CPU model code.

4.3.3 Dual-core UltraSPARC IV Processors

The main difference between the UltraSPARC IV series processors and the rest of the
sun4u processors is that the UltraSPARC IV processors have two processor cores.

From the system programmer’s point of view the processor core behaves like a
standalone CPU. The only thing the operating system must be aware of is a different
layout of the OBP tree. Single-core processor is represented by a single node in the OBP
tree. All CPU properties accessible via OBP are associated with the node. Dual-core
processor, however, is represented by an OBP node called ‘cmp’ (an acronym meaning
chip multiprocessing), which has two subnodes representing the cores. The majority of
the CPU properties accessible via OBP is associated with the subnodes.

Also the Agent ID (see Section 4.3.1) property is contained under the subnode. The
Agent ID is a 10-bit integer. The most significant bit is 0 if the ID belongs to the first
processor core and it is 1 if the ID belongs to the second core. The least significant bits
identify the particular chip.

4.3.4 Inter-processor Interrupts

This section briefly describes the process of sending and receiving an interrupt vector.

6UPA and Fireplane are names of the interconnect buses on older and newer sun4u processors re-
spectively.
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Sending an Interrupt Vector

The sending CPU writes the vector data to special privileged ASI-accessible registers
called interrupt vector data registers. On older sun4u architectures there are three inter-
rupt vector data registers, on JPS-compliant processors there are eight such registers.
The size of each register is 64 bits. The interrupt is triggered by writing to the interrupt
vector dispatch register. One field of the interrupt vector dispatch register is the ID of the
target CPU (see Section 4.3.1), other fields are hard-wired to a constant defined in [jps].
The status can be determined from the BUSY and NACK fields of the interrupt dispatch
status register.

Receiving the Interrupt Vector

On the receiving CPU, a trap is invoked. The trap handler then reads the incoming
data from the interrupt data registers. Analogously to the interrupt vector data, on older
sun4u CPUs there are three interrupt data registers, on JPS-compliant CPUs there are
eight interrupt data registers. Their size is 64 bits.
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UltraSPARC Architecture 2005

The UltraSPARC Architecture 2005 specification [us2005hp] is a document describing
the newest architecture of the SPARC 64-bit processors, commonly referred to as sun4v.
Even though the sun4v architecture has a lot of features common with the already de-
scribed sun4u architecture (see Chapter 4), there are substantial differences the system
programmer must be aware of.

This chapter briefly describes the general properties of the UltraSPARC Architec-
ture 2005, focusing on two processor models – UltraSPARC T1 (also known under its
codename Niagara) and UltraSPARC T2 (also known under its codename Niagara 2).

5.1 Virtual Processors

The UltraSPARC T1 and T2 processors are multicore and multithreaded. In the sun4u
architecture there have already been multicore processors – UltraSPARC IV and Ultra-
SPARC IV+. In addition, the sun4v processors are multithreaded – in each processor
core there are multiple sets of all registers, each set belonging to one strand (‘hardware
thread’), and the processor core switches between running threads each clock cycle.

If there are 6 cores on one chip, each core able to run 4 strands (which is one of
the possible configurations), to the software it appears as if there have been 24 proces-
sors. If four threads are running on a processor core, the throughput of a single thread
is roughly 4 times smaller than the throughput of the whole processor core, but the
overall throughput of the whole processor core is improved significantly:

• If multiple threads run on the system, they may run concurrently without the
need of software context switching.

• This approach eliminates stalling of the processor during a cache miss. If a cache
miss occurs in a thread, the thread is excluded from being switched to until the
value is reloaded from the main memory, but the processor core keeps executing
the code of the other threads.

The Niagara processors are fairly described in a Wikipedia article UltraSPARC T1
[wiki_t1].

35



CHAPTER 5. ULTRASPARC . . . 5.2. HYPERVISOR

5.2 Hypervisor

Hypervisor is an integral part of all UltraSPARC Architecture 2005 processors. It is
thoroughly described in [hypervisor].

5.2.1 Overview

Hypervisor is a piece of firmware which lays between the sun4v hardware and the
privileged software. Hypervisor is present on all sun4v machines and the operating
system cannot disable it. Hypervisor makes porting the operating systems to other
sun4v subarchitectures much easier, since the hypervisor isolates the operating system
from hardware details. Hypervisor enables the system to be split into so called logical
domains. From the operating system’s perspective the logical domain behaves like a
standalone machine1. A system administrator may allocate a group of virtual proces-
sors for one logical domain. In each logical domain a different operating system may
run.
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Figure 5.1: The sun4v Architecture

In order to protect the isolation of the logical domains and to make it impossible for
the operating system to disable the hypervisor, the sun4v processors define some regis-
ters, traps and instructions as hyperprivileged. The term ‘hyperprivileged’ is analogous
to terms privileged and non-privileged. The sun4v processors can, apart from the privi-
leged and non-privileged protection modes, run in so called hyperprivileged mode. The

1This is a right place to mention, as a curiosity, the origin of the sun4u and sun4v abbreviations.
Letter ‘u’ in the sun4u abbreviation comes from the name of the system bus in some sun4u processors –
UPA. The system bus in the sun4v architecture is virtualized, hence the letter ‘v’.
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code running in the hyperprivileged mode can use all the registers, ASIs, instructions
and traps of the CPU – hyperprivileged, privileged and non-privileged. The code run-
ning in the privileged mode can only access privileged and non-privileged ABI. The
code running in the non-privileged mode can only access non-privileged ABI.

Only the hypervisor can run in the hyperprivileged mode. The operating system
kernel will typically run in the privileged mode, whereas the user applications will
only run in the non-privileged mode. The privileged ABI does not offer any means
by which the operating system could perform operations such as adding a new page
mapping or starting a CPU. These operations can only be performed using hypervisor
API calls.

Figure 5.1 illustrates relations between the hypervisor and other parts of the sun4v-
based system.

5.2.2 Hypercalls

A hypercall is analogous to a syscall. While using the syscall the user process can ask
the kernel for some service, using the hypercall the kernel can ask the hypervisor for
some service.

Calling Conventions

Calling conventions define how the hypercall parameters are passed from the privi-
leged code to the hypervisor and how the return value is passed from the hypervisor
to the privileged code.

The transfer of control from the privileged to the hyperprivileged code is done us-
ing the ta2 instruction. The trap codes used are 0x80 and above. Traps with code 0x80
and above are always hyperprivileged.

Parameters of the hypercall are always passed in the output registers %o0 to %o4.
The error code of the hypercall can be subsequently read from the %o0 register.

Hypercalls can be divided into hyperfast, fast and core. Hyperfast hypercalls are hy-
percalls for which the function number is encoded in the trap code. Fast hypercalls are
hypercalls for which the function number is passed in a register; all fast hypercalls
share the same trap number. Core hypercall is a special kind of hypercall which is used
to set the version of the hypervisor API interface; it is guaranteed to remain the same
in all versions of the hypervisor.

Hyperfast Hypercalls

The function number of the hyperfast hypercall is determined from the trap code of the
TA instruction. MMU Map Address and MMU Unmap Address are examples of hyperfast
hypercalls. See the example Example 5.1 to see how the hyperfast traps are used.

2ta stands for trap always.
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set 0x4000, %o0 ! pass the hypercall parameters
! in output registers

set 1, %o1
mov %g3, %o2
set 1, %o3

ta 0x83 ! perform the hypercall, 0x83 is the trap code
! for the MMU_MAP_ADDR trap

Example 5.1: Hyperfast Hypercalls

Fast Hypercalls

The function number of the fast hypercall is passed in the %o5 register, the trap code is
always 0x80. CPU Start, Console Putchar and MMU Demap All are examples of the fast
hypercalls. See the example Example 5.2 to see how the fast hypercalls are used.

set 0x46, %o0 ! set hypercall parameters to output registers
set 0x61, %o5 ! function number goes to the %o5 register

ta 0x80 ! call the hypervisor

Example 5.2: Fast Hypercalls

5.2.3 Machine Description

Machine description (MD) is a data structure provided by the hypervisor to the privi-
leged software which describes the whole machine. It contains similar information as
the OBP tree (see Section 3.5). The basic difference between the OBP tree and the ma-
chine description is that the OBP can be inactive, in which case the OBP tree cannot be
retrieved (OBP is not isolated from the operating system, so it is easy for the operating
system to disable it). Since the hypervisor is always active, the machine description
can always be retrieved.

Machine description is a tree-like structure. The basic building block of the machine
description is an MD node. Each node holds a set of properties. There are several types
of nodes:

• CPU node, which holds information about a single CPU, such as its ID and clock
frequency,

• memory block node, which holds information about a block of virtual domain’s
memory, such as its base address and size,

• platform node, which holds information about the platform the privileged soft-
ware is running on,

• and others.

The machine description can be retrieved via a (fast) MACH_DESC hypercall. The
hypercall takes an address of a buffer, to which the MD will be copied, as its parameter.
The format of the MD is described in [hypervisor].
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5.3 Memory Management

On classical processor architectures there is usually only one level of memory virtual-
ization: mapping of virtual memory pages onto physical memory frames. The sun4v
architecture adds one more level. Virtual memory is not mapped onto physical mem-
ory directly. Instead, virtual memory is mapped onto so called real memory. Real mem-
ory is also virtualized. Translation of the real memory pages onto physical memory
pages is managed by the hyperprivileged software.

Real memory address spaces are called partitions, which is a term analogous to con-
text. Each logical domain has its own partition. Partitions are identified by partition
IDs. Figure 5.2 shows how pages of virtual memory are mapped onto real memory
and how real memory is mapped onto physical memory.

context 1 context 2 context 3

partition 1

context 1 context 2 context 3

partition 2

physical memory

logical domain 1 logical domain 2

Figure 5.2: Two Levels of Memory Virtualization

Operating system kernel is fully isolated from the mechanism of this three-level
memory virtualization. The kernel only takes care of the virtual-to-real mappings; the
physical memory is completely hidden for the kernel.

5.3.1 Virtual to Physical Mapping

TLBs are hidden from the kernel. All registers for direct access to the TLB are hy-
perprivileged. The only way the kernel can manipulate page mappings is using the
hypervisor API.

MMU Flags

Some hypervisor API calls which manipulate virtual-to-real mappings can operate on
both instruction MMU and data MMU. Whether to operate on IMMU, DMMU, or both
is specified by one of the hypercall parameters called MMU flags. MMU flags is an
integer value; its bit number 0 is set if and only if the operation is to be applied on
DMMU, its bit number 1 is set if and only if the operation is to be applied on IMMU,
other bits are unset.

Installing a Mapping

The virtual-to-real mapping can be specified in one of three ways.

• Privileged software installs a non-permanent (not locked) mapping using the
MMU_MAP_ADDR hypercall. The hypercall takes virtual address, context ID, TTE
and MMU flags as its parameters.
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• Privileged software installs a permanent (locked) mapping using the MMU_MAP_-
PERM_ADDR hypercall. The hypercall takes virtual address, TTE and MMU flags
as its parameters. Note that the hypercall does not take context ID as its argument
– permanent mappings can only be installed for context number 0 (nucleus and
kernel).

• Privileged software sets up a translation storage buffer (TSB). Upon an MMU
miss the hypervisor automatically reloads the missing mapping from the TSB to
the TLB.

Translation Storage Buffers

The sun4v translation storage buffers are slightly enhanced in comparison with the
sun4u TSBs. On sun4v, multiple TSBs can be specified for a given context. Moreover,
the TSBs can be n-way set associative, where n is a number between 1 and 4, inclusive.
The privileged software need not make any use of these enhancements; if only one TSB
is installed for each context and if the TSB is defined as direct mapped3, the privileged
code managing the TSBs will be compatible with the one for sun4u.

The TSBs are set, as usual on sun4v, using hypervisor API calls. There are two
hypercalls installing the TSBs – MMU_TSB_CTX0 installs the TSBs for context number 0,
MMU_TSB_CTXNON0 installs the TSBs for context other than 0. For both hypercalls, TSBs
are described by an array of structures called TSB description. The hypercalls take the
size of the array and the pointer to the array start as its arguments. The TSB description
encapsulates

• the size of the pages mapped,

• TSB associativity,

• TSB size,

• real address of the TSB.

5.3.2 MMU Miss Handling

MMU miss traps are hyperprivileged. This means that when an MMU miss occurs,
a trap to the hypervisor is taken, not to the kernel. The hypervisor tries to find the
mapping in the TSB (if installed for the trapping context). If the mapping is found
in the TSB, hypervisor automatically installs the mapping into the TLB and restarts
the instruction which caused the trap, without an intervention of the kernel. If the
TSB is not installed for the trapping context or the mapping is not found in the TSB,
hypervisor jumps to the kernel trap table to the kernel MMU miss handler4.

3Direct mapped means ‘1-way set associative’.
4Note that even though the MMU miss is hyperprivileged, the privileged software can still define

its handler. The difference from the sun4u architecture is that the privileged handler is not used right
upon the miss, but only if the hypervisor fails to find the mapping in the TSB.
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5.3.3 MMU Fault Status Area

MMU Fault Status Area is an in-memory structure to which, upon an MMU fault, the
hypervisor5 stores the description of the fault. The structure is partitioned into two
parts, one part describing instruction memory faults, the other one describing data
memory faults. For each virtual processor a separate MMU Fault Status Area is speci-
fied. MMU Fault Status Area encapsulates

• fault type (MMU miss, protection violation, invalid real address, invalid virtual
address, unaligned access,...),

• fault address,

• fault context.

Privileged software may specify the location of the MMU Fault Status Area using a
hypervisor API call MMU_FAULT_AREA_CONF.

5.4 Traps

5.4.1 Privileged and Hyperprivileged Traps

The sun4v architecture recognizes two types of traps – privileged and hyperprivileged.
The trap can be delivered either to the privileged or the hyperprivileged software,
based on the type of the trap and the privilege level at which the trap occurred.

trapping privilege level trap type delivered to
non-privileged privileged privileged SW
non-privileged hyperprivileged hyperprivileged SW
privileged privileged privileged SW
privileged hyperprivileged hyperprivileged SW
hyperprivileged privileged hyperprivileged SW
hyperprivileged hyperprivileged hyperprivileged SW

Table 5.1: Trap Handling

5.4.2 Trap Levels

Trap levels have been introduced is Section 3.2.1. On sun4v processors there are MAXTL
trap levels above level 0, where MAXTL is an implementation-dependant number6.
The number of trap levels above zero at which the privileged software can run is MAX-
PTL, where MAXPTL is an implementation-dependant number7. Since MAXTL >
MAXPTL, above MAXPTL there are always several trap levels at which only a hyper-
privileged software can run. Should the trap occur in privileged code at level MAX-
PTL, the trap will be always delivered to the hypervisor.

5Or it can be the processor itself, if implemented so.
6It can be a number between 4 and 7.
7It can be a number between 2 and 6 and it is always less than MAXTL.
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Global Registers

On 64-bit SPARC processors there are always multiple sets of global registers, one set
being active when no trap is being processed, and a few other sets, one of which is
active when a trap is being processed.

On the sun4u processors each alternative set is associated with the type of the trap:
there is an alternative set for MMU traps, alternative set for interrupt traps and alter-
native set for other traps.

On the sun4v processors each alternative set is associated with the trap level, more
precisely, the active global registers set is determined by the value of the GL register.
Conventionally the value of the GL register is kept the same as the value of the TL

register.

Higher Global Sets not Preserved

Due to the seamless activity of the hypervisor, the privileged software may never rely
that the global registers from a greater level than the current one will be preserved. For
instance, if the privileged software currently running at level TL = 0 writes a value to
a global register from level GL = 1, the value may be lost any time. The reason is that
during the MMU miss a hyperprivileged handler will be invoked (see Section 5.3.2) on
TL = 1, thus using global set at GL = 1, potentially overwriting the value the privileged
software stored there.

5.5 Miscellaneous

5.5.1 Scratchpad Registers

The UltraSPARC Architecture 2005 specification defines a set of eight privileged ASI-
accessible registers which can be used for arbitrary purpose by the software. Four
of them are guaranteed to be accessible by the privileged software. They are called
scratchpad registers. All scratchpad registers are accessed using the same ASI, but a
different virtual address.

The first scratchpad register is conventionally used to store the ID of the processor.
The second scratchpad register is conventionally used to store the real address of the
MMU Fault Status Area. Generally, the scratchpad registers are read in performance-
critical trap handlers, where the number of instructions executed matters.

5.5.2 Some Hyperprivileged Registers

Some registers which are privileged in the sun4u architecture have been made hyper-
privileged in the sun4v architecture.

TICK Register

The ticked register can be read from the privileged software, but writing to it is hyperpriv-
ileged. Hence, the system may not set this register to zero when initializing the timer.
Instead, it must add the value of the TICK register at the time of timer initialization to
the initial value of the TICK_COMPARE register.
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VERSION register

The VERSION register cannot be read from on sun4v from the privileged code. There-
fore, there is no way the privileged software could detect the particular processor
model. Since the privileged software is isolated from the processor thanks to the hyper-
visor, information about the particular model is not that important for the privileged
software.
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Chapter 6

Original UltraSPARC HelenOS Port

This chapter briefly describes the original port of HelenOS onto the 64-bit SPARC pro-
cessors. The original port, created by Jakub Jermář, supported UltraSPARC I, Ultra-
SPARC II and UltraSPARC IIi processors. This chapter focuses on those aspects of the
original port whose knowledge is essential for understanding the following two chap-
ters: Chapter 7 describes the enhancements made to the original port to run HelenOS
on the JPS-compliant processors, Chapter 8 describes enhancements made to the orig-
inal port to run HelenOS on sun4v processors. For details on the original port see
[jj_thesis].

6.1 Boot Process and Kernel Startup

The product of the HelenOS build process is a binary file, called image.boot, which
is referred to as bootable image. The bootable image encapsulates

• kernel image,

• initial tasks (processes),

• initial RAM disk, and

• a ‘small loader program’, whose main purpose is to place the previous three com-
ponents to a well-defined location in memory, and jump to the first instruction of
the kernel image.

The bootable image is sufficient for booting HelenOS over network – the firmware
loads the bootable image via the TFTP protocol and jumps to the first instruction of the
‘small loader program’.

6.1.1 Bootable CD

For booting HelenOS from a disk (e.g. a CD-ROM), bootable image is not sufficient.
A bootable disk image must be created. A bootable disk is a formated disk with a stan-
dard filesystem (ext2, ISO-9660) containing a special sector called boot sector. On the
disk filesystem the bootable image is located. The boot sector contains a bootloader, a
third party program, whose purpose is to pick up the bootable image from the disk’s
filesystem, load it to the memory and jump to its first instruction (in our case the first
instruction of the ‘small loader program’).
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The third party bootloader used in HelenOS bootable disk is called SILO. Basic
information about SILO can be found at http://silo.auxio.org. The bootable
CD is created using the mkisofs utility. The utility takes these parameters:

• binary file which will be copied to the boot sector, and

• a directory tree which will be copied to the bootable disk filesystem.

The former is a file distributed along with SILO, called isofs.b, the latter is a
directory tree containing all the SILO binaries and the HelenOS bootable image.

6.1.2 Bootloader

This section describes the ‘small loader program’ mentioned in the previous section.
From now on it will be referred to as bootloader.

The main purpose of the bootloader is to relocate the kernel, initial tasks and the
RAM disk image to a well defined location, to make a copy of the OBP tree, and to
jump to the first instruction of the kernel. The reason for relocating is that SILO has
loaded the bootable image to address 0x4000, but the kernel expects to be located at
0x4000001. The reason for copying the OBP tree is that the HelenOS kernel will take a
complete control over the machine, disabling the OBP, hence the kernel will have no
chance to access the OBP tree via the OBP client interface. Since the HelenOS kernel
will need some information contained in the OBP tree, a copy of the tree is made before
starting the kernel.

Since the OBP resides in the same virtual address space as the bootloader, the boot-
loader needs to claim a piece of memory from the OBP. Claiming the memory means
telling the OBP that the memory will be used by the bootloader and that OBP should
not use it. HelenOS bootloader claims a block of memory starting at 0x400000 and big
enough to incorporate kernel, init tasks, initial RAM disk, copy of the OBP tree and
helper structures. On the UltraSPARC I, II and IIi processors claiming such a block of
memory always succeeds.

One of the helper structures passed from the bootloader to the kernel is a memory
map, which contains information about the staring address and size of each memory
segment of the physical memory. The memory map is actually redundant, as the kernel
could derive it from the copy of the OBP tree, but it is passed anyway for kernel’s
convenience.

Another important task of the bootloader is to wake the application (non-bootstrap)
processors up.

6.1.3 Kernel Initialization

The basic thing the kernel must do is take over the TLBs and the trap table – so far the
TLBs and the trap table have been managed by the OBP. After the takeover the OBP
will be completely disabled, the traps will be handled purely by the HelenOS kernel
and the kernel will have a complete control over the memory management.

1Address 0x400000 is nice, given it is the starting address of the second 4MB page. The kernel image
is smaller than 4 MB, so if the kernel locks the second 4MB page in the TLB, the kernel code will be
always mapped. The first 4MB page is intensionally left unlocked: if it was locked, then virtual address
0 would always be mapped and there would be no way to detect dereferencing a null pointer.
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TLBs Takeover

During the takeover the kernel will remove any existing mappings from the TLB and
install a locked entry mapping the second 4MB page – i.e. the page containing kernel
code and data. Virtual address 0x400000 will be mapped onto a physical address C +
0x400000, where C is the starting address of the physical memory2. The takeover is
performed in two stages: first, the DMMU is taken over, then the IMMU is taken over.

Taking over the DMMU is straightforward. The DTLB is invalidated and a locked
entry mapping the second 4MB page is installed in context 0.

Taking over the ITLB is not that straightforward. The problem is that the ITLB is
mapping the code being executed. The problem is tackled as follows: First, an entry
mapping the second 4MB page is inserted in context 1. Then, the code switches to
context 1. From context 1, it invalidates all entries in context 0 and installs a mapping
for the second 4MB page in context 0. Then the code switches back to context 0.

8kB Page TTE Template

During the startup phase the kernel initializes a global 64-bit variable called kern-
el_8k_tlb_data_template. The variable is a template of a valid 8-kB cacheable
writable privileged translation table entry. When installing a mapping for the kernel
in the MMU miss handler, the faulting page number is added to the template and the
result is inserted to the TLB.

6.2 Preemptible Trap Handler

Preemptible Trap Handler is a routine which is called upon some traps3. It makes ar-
rangements for calling a higher level service routine. Thanks to the preemptible trap
handler the higher level service routine may be executed on trap level 0, the routine
may be written in the C language, and it may call the scheduler. The preemptible trap
handler ensures that the global registers and the valid register windows will not be cor-
rupted and that the handling of the trap will be fully transparent for the thread which
caused the trap. The design also ensures that the maximum number of trap levels will
not be exceeded.

The handler is implemented as an assembly language macro. The handler expects
the address of the higher level service routine to be in the %g1 register and the argument
of the service routine in the %g2 register. The handler must be called from trap level 1.
The exact steps performed by the handler depend on whether the trapping thread is a
user thread or a kernel thread and whether the trap is a syscall or not.

6.2.1 Trapping from the Kernel

If the trapping thread is a kernel thread, the following steps are performed:

1. A new stack frame and new register window are allocated. If allocating the reg-
ister windows causes a spill trap, the window will be spilled to the kernel stack.

2The starting address of the physical memory will usually be 0. On some machines, however, mem-
ory may start at non-zero addresses. An example situation when this may happen is that there is no
dimm inserted into the first memory slot on the motherboard.

3The traps are: timer interrupts, hardware interrupts, MMU misses, syscalls, illegal operations.
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2. Higher level service routine address is copied to the %l0 register, its argument is
copied to the %o0 register.

3. The TSTATE, TPC and TNPC registers are backed up onto the kernel stack.

4. Trap level is set to 0.

5. Normal global register set is activated (i.e. the higher level service routine will
not use alternate, interrupt nor memory globals).

6. Global registers %g1 to %g7 are backed up to local registers %l1 to %l7. Registers
%l1 to %l7 will not be corrupted, because the higher level service routine will
allocate its own window.

7. Higher level service routine is called. Its address has been set to the %l0 register
in step 2.

8. Actions from steps 3 to 6 are reverted: global registers are restored, alternate
globals set is activated, trap level is set to 1, trap state registers are restored.

9. If the CWP has changed since the time before calling the service routine4, the cur-
rent register window will be relocated to its original position.

10. The window allocated in step 1 is deallocated and the instruction causing the trap
is restarted.

6.2.2 Trapping from the Userspace

If the thread which caused the trap is a userspace thread, the behavior of the pre-
emptible trap handler will be much more complex. The register windows which be-
long to the thread causing the trap cannot be spilled onto the stack, as the userspace
stack may not be mapped in the TLB. Since the preemptible trap handler does not
want to risk a nested MMU trap here, the userspace windows are spilled to so called
userspace window buffer. The userspace window buffer is a structure which exists for
each userspace thread, it is big enough to incorporate all the register windows5. The
buffer belongs to the kernel address space (context 0), whose MMU misses will not
cause a nested MMU trap (see Section 6.3.1).

Upon a context switch to thread T, the address of the top of T’s userspace window
buffer is stored into the %g7 register of the alternate globals set. The %g7 register is
updated upon window spills to the userspace window buffer. Upon a preemption of
thread T the %g7 register is snapshotted so that it can be re-set next time T is switched
to again.

The exact steps the handler must do when the trap comes from userspace are as
follows (the description assumes the trap is not a syscall):

4If the scheduler has not been called from the higher level service routine, the number of function
calls and returns from function must be equal, so the CWP must be the same. This means that the CWP
could only change if the scheduler has been called in the service routine. During the context switch in
HelenOS, all register windows except the active one are always spilled to stack, so if the CWP changed,
it means that there is just one active window.

5Given each register window contains 8 input and 8 local registers, there can be at most 7 valid
register windows and each windowed register is 8 bytes long, the size of the buffer must be (8 + 8)*7*8
bytes.
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1. The WSTATE register is configured such that all normal window spills will go to
the userspace window buffer.

2. A new stack frame and new register window are allocated. If allocating the reg-
ister windows causes a spill trap, the window will be spilled to the userspace
window buffer.

3. All windows which belong to the trapping thread are marked as other, i.e. the
value of the OTHERWIN register is set to the value of the CANRESTORE register.

4. Context 0 is set as a primary context (so far the context of the trapping thread has
been the primary context) before leaving nucleus.

5. The WSTATE register is configured such that all normal window spills will go to
the kernel stack and all other window spills will go to the userspace window
buffer.

6. Service routine address and arguments are copied to the %l0 and %o0 registers,
trap state registers are backed up onto a kernel stack, trap level is set to 0 (nucleus
is left), global variables are saved.

7. The service routine is called.

8. Global variables are restored, trap level is set to 1, trap state registers are restored,
the current register window is relocated to the location where it was before the
trap (if needed).

9. The primary context register is set to the ID of the userspace context of the thread
which caused the trap.

10. Register windows which have been spilled onto the userspace window buffer are
restored.

11. The register window allocated in step 2 is deallocated and the instruction which
caused the trap is restarted.

As for the syscalls, the handler is very similar. Instead of calling a higher level
service routine, a syscall handler is called (which can take more parameters than just
one). In the end, the instruction which caused the trap is not restarted, but the control
is transferred to the subsequent instruction (instead of RETRY, DONE is issued).

6.3 Memory Management

6.3.1 Handling MMU Misses

The MMU miss handler behaves in a different way depending on whether the miss
was caused by a kernel or a userspace thread.
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Handling Kernel MMU Misses

If an MMU miss trap occurs in the kernel, the trapping page with virtual address VA
is mapped onto a physical address PA = VA + C, where C is the starting address of the
physical memory. The kernel MMU miss handler is written in the assembly language
and its code fits into 32 instructions, so the handler fits into one trap table entry and
branching is not needed (see Section 3.2.2). The handler does not use any higher level
service routine when installing the mapping for the kernel, so the preemptible trap
handler is not called.

Handling Userspace MMU Misses

If the MMU miss trap occurs in userspace, the handler first tries to find the mapping
in the TSB. If the mapping is not found in the TSB, a higher level service routine is
called (via the preemptible trap handler). The service routine finds the translation in
the HelenOS translation table and installs the mapping to the TLB and TSB. The service
routine takes the value of the MMU Tag Access Register as its argument.

When handling userspace data MMU miss, a certain anomaly may occur. Imagine
a userspace thread issues a SAVE instruction. If CANSAVE equals 0, a spill trap is taken
and the trap level is set to 1. The spill handler tries to save one of the register windows
onto a userspace stack. If the stack is not mapped in the TLB, data access MMU miss
occurs, in which case the trap level is set to 2. If the mapping is not found in TSB, a
higher level service routine must be called via the preemptible trap handler. But the
preemptible handler expects to be called from trap level 1, not 2!

In such a case we just lower the trap level to 1, pretending the MMU trap is not
nested in a window spill trap, but that it is a standalone MMU trap which occurred on
trap level 0. Then the higher level service routine is called (via the preemptible trap
handler). Once the MMU trap is resolved, the SAVE instruction is restarted. It (again)
causes a spill trap (as the spill trap has not been handled yet), but this time spilling the
window succeeds, since the userspace stack is already mapped.

6.3.2 Caches and the Illegal Aliasing Problem

Illegal alias is an undesired state of page mappings which the system programmer
must be aware of and which is a little tricky to avoid. Alias is a virtual-to-physical
mapping which maps two virtual addresses v1 and v2 (belonging to the same virtual
address space) onto the same physical address p. The next two paragraphs aim to
explain what is meant by the term illegal alias.

Caches on the UltraSPARC I, II and IIi processors are virtually indexed, which means
that the index where the entry will be placed in the cache is computed from the virtual
address. They are physically tagged, which means that a physical address is used to
recognize a hit. The 14 least significant bits of the address form an index to the cache;
since the caches are direct mapped, the size of the cache is 214 = 16 kB entries, twice as
much as the size of an 8kB page. The pages whose bit 13 is 0 are depicted gray and the
pages whose bit 13 bit is 1 are depicted black in Figure 6.1. In figure (a) the value 0xAA
is saved on a physical address mapped by two virtual addresses. The value is cached at
two different places of the cache (because the cache index is computed from the virtual
address and the virtual addresses have different colors); this state is, however, illegal!
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Figure 6.1: Illegal Alias

When a new value 0xBB is written to the first (‘gray’) virtual address, the value does
not get propagated to the second (‘black’) entry in the cache. During the subsequent
read from the ‘black’ virtual address the cached value will probably be used, hence the
out-of-date value will be read.

HelenOS avoids illegal page mappings by emulating 16kB pages – when installing
a new virtual-to-physical mapping, two neighboring 8kB pages are mapped concur-
rently (the first page having ‘gray’ color, the second one having ‘black’ color) onto
physical frames with the same colors. Thus it may never happen that two pages of
different colors get mapped onto the same physical frame, thus it may never happen
that there are two entries in the cache caching value from the same physical address.

6.3.3 Other Memory Management Issues

Context Switch and the Secondary Context Register

The secondary context register is written to by a higher level service routine which
performs the context switch. It is used to temporarily hold the context ID which will
be copied to the primary context register upon jumping to userspace. The reason why
the context ID is not written to the primary context register directly is that the con-
text switch is performed by a higher level service routine on trap level 0 (i.e. not nu-
cleus), thus writing to the primary context register would cause an immediate switch
of memory context and the handler’s memory would cease to be mapped. Jumping
to userspace is performed from nucleus, so changing the value of the primary context
register from there is safe.
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Translation Storage Buffers

The translation storage buffers for a memory context take up 64 kB, thus fit into exactly
one 64kB page. The page is split into two equally-sized parts, the first part holds the
ITSB, the second one holds the DTSB. When the context the TSBs belong to is active,
the TSB page is locked in the TLB, so accessing the TSBs never causes a nested MMU
trap.

Kernel mappings (context 0) are not included in the translation storage buffer. Con-
text 0 contains only identity mappings (or identity with displacement, if the physical
memory starts at non-zero address) so the usage of the TSB makes little sense.

Locked Entries

On UltraSPARC I, II and IIi the TLB can contain 64 locked entries. HelenOS usually
uses only a small amount of locked entries – the kernel is locked in the 4MB page and
the active TSB is locked in the 64kB page.

6.4 Miscellaneous

6.4.1 Crosscalls

A crosscall is a kind of function call in which the caller runs on a different CPU than
the callee. In HelenOS it is used for TLB shootdown6. The crosscalls are implemented
using inter-processor interrupts (see Section 3.4.2). UltraSPARC I and II processors
allow to pass three 64-bit values in interrupt vector data, but HelenOS uses only one
64-bit value: to pass the address of the function being called. The remaining two 64-bit
values are unused.

6.4.2 Device Drivers

Information about the attached devices is obtained from the OBP tree. Each device is
represented by a node in the OBP device tree. Among the node properties there are
addresses and sizes of the device registers.

6When a mapping is modified or removed or when a virtual address space identifier becomes invalid
on one CPU, (portions of) TLB must be invalidated on other CPUs as well.
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Chapter 7

Porting HelenOS to JPS Processors

Enhancements which enable running HelenOS on UltraSPARC III, IIIi, III+, IV and IV+
processors were made by Pavel Římský in 2008 and 2009 as a part of his master thesis.

7.1 Overview

7.1.1 Supported Environments

HelenOS is able to run on two types of machines equipped with an UltraSPARC III
series CPU: a Simics-simulated1 Serengeti machine and a real SunBlade 1500 worksta-
tion. Serengeti is Sun Microsystems’ mid-range server. It can contain up to 24 Ultra-
SPARC III, III+, IV or IV+ processors. SunBlade 1500 is Sun Microsystems’ workstation
containing one UltraSPARC IIIi processor.

7.1.2 Enhancements Overview

Basically, two types of enhancements had to be done to make HelenOS run on JPS-
compliant processors.

• Some registers have slightly different format and there are a few brand new reg-
isters. The formats of the registers had to be redefined in HelenOS sources. These
changes are not very interesting, the fundamental part of the work was to care-
fully read the specifications and find out which differences affect HelenOS and
how to cope with them.

• OpenBoot PROM tree layout is a little bit different and on some machines the
firmware behaves in a very specific way. Even though the main goal was to add
support for newer CPU models, the hardest work did not concern the CPUs, but
the firmware. Especially the version of OBP found on the Serengeti machine has
a lot of anomalies. This was further complicated by the fact that the firmware is
very badly documented.

7.1.3 Limitations

HelenOS is able to run on a Simics-simulated Serengeti machine with up to four pro-
cessor chips (and since the UltraSPARC IV and IV+ processors are dual-core, the max-

1Simics is a full system simulator.
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imum number of CPUs is eight). The only reason why the number of CPUs is lim-
ited is that when the CPU on the fifth chip is being woken up via OBP, the simulator
crashes. It occurs both on 3.0 and 4.0 versions of the Simics simulator. The reason is
that the simulator probably does not implement Instruction Breakpoint Register (which
is a JPS-mandatory ASI-accessible register) which the firmware (see Section 7.2) for
some reason uses when waking up the CPUs.

Input and output is possible through a serial line on Serengeti. Theoretically a
graphic card could be connected to the Serengeti machine; the simulator, however, is
not able to simulate such a configuration reliably. Since Serengeti is a server machine,
graphic output has only little importance.

HelenOS running on the SunBlade 1500 machine writes its output to the frame-
buffer. Input is not possible, since only a USB keyboard can be attached to the SunBlade
1500 machine and HelenOS has no USB support yet.

7.1.4 Integration with the Original UltraSPARC Port

In the kernel, the source code of the original port and the JPS port are mixed – typically
one source file contains parts which are common for both CPU series, specific parts are
enclosed in the #ifdef .. #endif block. Example 7.1 demonstrates how the code of
the original port and the JPS port are separated.

/** TLB Demap Operation Address. */
union tlb_demap_addr {
uint64_t value;
struct {

uint64_t vpn: 51; /**< Virtual Address bits 63:13. */
#if defined (US)

unsigned : 6; /**< Ignored. */
unsigned type : 1; /**< The type of demap operation. */

#elif defined (US3)
unsigned : 5; /**< Ignored. */
unsigned type: 2; /**< The type of demap operation. */

#endif
unsigned context : 2; /**< Context register selection. */
unsigned : 4; /**< Zero. */

} __attribute__ ((packed));
};
typedef union tlb_demap_addr tlb_demap_addr_t;

Example 7.1: Separating Original and JPS Port Code

In the bootloader, the code of the original port and the JPS port are mixed too, but
they are not separated by preprocessor directives. Instead, an autodetection is used to
decide what actions are to be performed on the host CPU model. The autodetection is
based on reading the value of the VERSION register, which tells the bootloader the exact
host CPU model.

The autodetection enables the bootloader to be generic to some extent, so that it
does not have to be recompiled every time the CPU model is changed. Since the kernel
is much more complex and it contains far more CPU model-specific definitions, the
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preprocessor directives are used instead of the autodetection (which implies that the
kernel must be recompiled every time the target CPU model is changed).

7.2 Serengeti and its Firmware

The Serengeti machine is equipped with an untypical version of the OpenBoot PROM.
It is called COBP, because it is written mainly in the C language, while the standard
versions of OBP are written in the Forth language. The firmware is based on the imple-
mentation called SmartFirmware implemented by the Codegen (www.codegen.com)
company. The firmware affects mainly the way how HelenOS is booted. The version
of the OBP on the referenced machine is 5.17.0.

7.2.1 SILO not Compatible with the Firmware

The basic problem is that SILO (version 1.4.11 is used) is not fully compatible with
the Serengeti machine firmware. The Serengeti machine firmware supposes that in the
bootable CD bootsector there will be a plain binary code. The isofs.b file, which
is copied to the bootsector (see Section 6.1.1) is not a plain binary, but it contains an
a.out header.

When booting from the bootable CD, without further provisions the following mes-
sage would be printed instead of running SILO:
SmartFirmware, Copyright (C) 1996-2001. All rights reserved.
Boot path: /ssm@0,0/pci@19,700000/scsi@2/disk@6,0:f Boot args:
ERROR: Illegal instruction
debugger entered.
ok

The illegal instruction exception is actually caused by the CPU interpreting the first
four bytes of the a.out header as an instruction.

The problem is solved by ripping out the a.out header from the isofs.b file be-
fore making the bootable CD (in other words, patching the SILO binaries). A cleaner
solution would be to modify SILO source files and compile them along with HelenOS.
The problem is that SILO is not cross-compilable (a SPARC machine is needed to
compile SILO), whereas HelenOS is cross-compilable. Making SILO cross-compilable
would be beyond the scope of the thesis.

The isofs.b file is patched using the xdd command line utility. The utility is able
to convert given binary file to its hexadecimal representation and the binary represen-
tation back to the binary form. It is also able to skip a given number of bytes. The
complete reference to xdd can be found in its manual pages.

A piece of code which downloads and patches the SILO binaries can be found in
the contrib/util/DownloadAndPatchSILO.sh file. Ripping the a.out header
from the isofs.b file is performed by this line:
(((xxd -p -l 512 isofs.b) && \
(xxd -p -s 544 isofs.b)) | xxd -r -p) \

> isofs.b.patched

The first 512 bytes are zero and they are kept zero even in the patched file. Bytes
number 512 to 544 (the a.out header) are completely removed, so consequently the
size of the file is decreased by 32 bytes.
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7.2.2 Other Serengeti Firmware Properties

The anomaly mentioned in the previous paragraph is not the only property specific for
the Serengeti firmware. This section briefly mentions the rest of the most important
ones.

Constrained Memory to Claim

On standard (non-Serengeti) UltraSPARC machines OBP guarantees that it will restrict
its usage of virtual memory such that the block of memory from address 8 kB to 10 MB
will be free to be claimed by the bootloader. Thus the kernel image, init tasks, RAM
disk and helper structures will easily fit into the memory which can be claimed.

Unfortunately, this is not the case of the Serengeti machine firmware. On Serengeti
machine the firmware uses some bits of memory from address 0x600000 and higher, so
the bootloader cannot claim more than 6 MB of contiguous memory which resides at
the beginning of the address space.

Since HelenOS kernel does not use the OBP once booted, it may use the whole mem-
ory without claiming. During the boot phase, however, this feature of the firmware is
very limiting. The bootable image, init tasks and the RAM disk must be kept suffi-
ciently small. It is achieved by not compiling parts of code which are not necessarily
needed (for example drivers of some devices which can not be attached to Serengeti),
not including some tasks which are not essential or by using the TMPFS RAM disk
instead of the FAT RAM disk. As soon as HelenOS has got a disk driver, there will be
no need to use the RAM disk anymore and the problem will hopefully disappear.

It is also worth mentioning that SILO is not aware of the constrained memory prob-
lem. As a consequence, SILO can not be given the RAM disk in a separate file, oth-
erwise it would try to load the RAM disk to the part of the memory which it could
not claim. Therefore, the RAM disk is supplied in the same file as the bootable image
(which SILO, fortunately, puts to the memory it can claim).

OBP Tree Layout

There are small differences in the OBP tree layout of the pre-JPS processors and the JPS
processors which HelenOS must be aware of.

On non-Serengeti machines the CPU nodes are children of the root node, on Serengeti,
they are children of the ‘/ssm’ node2. The type of the machine is detected by looking
whether the ‘/ssm’ node is present. If so, the CPU nodes are looked up in the ‘/ssm’
node, if not, they are looked up directly in the root node. The following code snippet
comes from the kernel/arch/sparc64/include/cpu_node.h file:

parent = ofw_tree_find_child(ofw_tree_lookup("/"), "ssm@0,0");
if (parent == NULL)

parent = ofw_tree_lookup("/");

As a curiosity, let us mention one anomaly of the Serengeti OBP client interface: if
the client interface is asked to return all children of the root node, it surprisingly does
not return ‘/ssm’. In HelenOS this is fixed by the bootloader by explicitly sticking the
‘/ssm’ node under the root node of the OBP tree copy.

2SSM is a cache coherency protocol used on machines with a large number of CPUs.
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Apart from the ‘ssm’ node, another difference in the OBP tree layout is the different
name of the processor ID property as described in Section 4.3.1. In this case the code
just tries all the three possibilities (‘portid’, ‘upa-portid’ and ‘cpuid’) and tests, which
one is valid for the given OBP tree. The following code snippet comes from kernel-
/arch/sparc64/src/cpu/cpu.c:

/* Read the "upa-portid" OBP property,... */
prop = ofw_tree_getprop(node, "upa-portid");

/* ...if it is not present, try "portid",... */
if ((!prop) || (!prop->value))

prop = ofw_tree_getprop(node, "portid");

/* ...if it is not present either, try "cpuid". */
if ((!prop) || (!prop->value))

prop = ofw_tree_getprop(node, "cpuid");

WSTATE Register not Set to 0

While on standard (non-Serengeti) SPARC-based systems the value of the WSTATE reg-
ister is set to zero by the time the control is passed from OBP to the kernel, on Serengeti
it is surprisingly set to 5. In the original HelenOS port explicitly setting the WSTATE reg-
ister to 0 was not needed, but on Serengeti it is essential. The WSTATE register is cleared
very early after the kernel is passed control from the bootloader by the following in-
struction:

wrpr %g0, 0, %wstate

7.3 Memory Subsystem

The physical address space is larger on JPS-compliant processors in comparison with
the older UltraSPARC models3, which affects many things. First some parts of the code
where the size of the physical memory address space had been hard-wired had to be
rewritten and the size defined as a symbolic constant: in the kernel startup routine in
the start.S file a new constant PHYSMEM_ADDR_SIZE has been defined, which rep-
resents the number of bits of the physical space address. Additionally a huge number
of registers’ formats had to be redefined.

7.3.1 Translation Lookaside Buffers

There are multiple ITLBs and DTLBs in one JPS-compliant MMU and they are basically
larger than those of the older UltraSPARC processors. The TLBs within one MMU are
identified by TLB numbers, which are symbolic constants in HelenOS:

• TLB_DSMALL (16-entry data TLB), TLB_DBIG_0 (the first big data TLB), TLB_-
DBIG_1 (the second big data TLB), and

• TLB_ISMALL (16-entry instruction TLB) and TLB_IBIG (the big instruction TLB).

3It uses 43-bit addresses instead of 41-bit.
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The number of entries is returned by functions

• tlb_dsmall_size, which returns the size of the small DTLB (always 16),

• tlb_dbig_size, which returns the size of the big DTLB (always 512),

• tlb_ismall_size, which returns the size of the small ITLB (always 16), and

• tlb_ibig_size, which returns the size of the big ITLB – reads the VERSION

register and then returns 128 (if running on UltraSPARC III, IIIi or III+ CPU) or
512 (if running on UltraSPARC IV or IV+ processor).

The sun4u processors enable a direct diagnostic access to the translation lookaside
buffers. The registers for a direct access to the TLBs are ASI-accessible and their virtual
address encodes the TLB number and the entry number (on the pre-JPS processors it
encapsulated only the entry number).

HelenOS contains a handful of functions which directly access the TLBs. These
function have been modified to reflect the TLBs on the JPS processors – they take a
TLB number as an additional argument.

The original headers looked like this:

/* reading "data" portion of the ITLB entry */
static inline uint64_t itlb_data_access_read(index_t entry)

/* writing "data" portion of the ITLB entry */
static inline void itlb_data_access_write(

index_t entry, uint64_t value)

/* ... */

In the JPS port they had to be adapted in this way (the TLB number was added):

static inline uint64_t itlb_data_access_read(
int tlb, index_t entry)

static inline void itlb_data_access_write(int tlb, index_t entry,
uint64_t value)

/* ... */

In the JPS port the body of the already mentioned functions contains (apart from the
code borrowed from the original port) encoding the TLB number to the virtual address
of the TLB register:

/* reg contains the virtual address */
reg.value = 0;

/* encode the TLB number (JPS only) */
reg.tlb_number = tlb;

/* encode the entry number */
reg.local_tlb_entry = entry;

/* write to the TLB register via the virtual address */
asi_u64_write(ASI_ITLB_DATA_ACCESS_REG, reg.value, value);
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These functions are called from withing functions for invalidating the TLB entries
and from a function for printing the contents of the whole TLB, which have been ob-
viously modified too. Functions for invalidating the contents of the TLB must now
invalidate entries in all the TLBs (while in the original port just one – the only present
– TLB had to be invalidated). Analogously, the function for printing the contents of the
TLB now prints the contents of all the TLBs. See the kernel/arch/sparc64/src/-
mm/tlb.c source file for more details.

TLB Demap

In the HelenOS SPARC port a function called tlb_invalidate_all is defined to
invalidate all the unlocked entries of the TLB.

As mentioned in Section 4.2.2, the JPS-compliant processors’ demap operation is
able to demap (apart from a particular mapping and a particular context) all the un-
locked entries in the TLB. In the original port, demapping tho whole TLB was achieved
by iterating through all the TLB entries using the registers for a direct diagnostic ac-
cess and setting the ‘valid’ bit to false for all the unlocked entries. Demapping all
unmapped entries has been optimized in the JPS port, now all the ITLB and DTLB
entries are demapped by issuing a single operation.

7.3.2 Caches

Illegal Aliases

The illegal alias problem described in Section 6.3.2 appears on JPS processors as well
– caches on JPS processors are virtually indexed too. The size of the cache is 64 kB,
but the cache is 4-way set associative, which means that the index to the cache has the
same size as on the older UltraSPARC processors. This means that exactly the same
solution – emulating 16kB pages – can be used.

SMC Functions Optimization

SMC stands for self-modifying code. As mentioned in Section 4.2.4, on older UltraSPARC
processors the FLUSH instruction had to be issued whenever the code modified the in-
struction stream, in order to synchronize the instruction cache with the data cache. The
JPS processors keep the caches synchronized automatically, so the FLUSH instruction
is only needed to flush the pipeline. The sparc64-specific functions which are called
whenever the instruction stream is modified have been optimized in the JPS HelenOS
port.

Before the change, each word of the piece of code which was modified had to be
flushed:

/*
* Synchronizes data and instruction caches for

* memory block starting on address "a" and

* being "l" bytes long.

*/
for (i = 0; i < l; i += FLUSH_INVAL_MIN)

flush((void *) a + i);

Now on the JPS-compliant CPUs only the pipeline is flushed:
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flush_pipeline();

Since flushing the pipeline takes the same amount of time as flushing a single in-
struction, if a block of length L is flushed on a JPS-compliant processor, the optimized
code is L times faster than without the optimization.

7.3.3 Miscellaneous

Locked Entries

Locked entries can be contained only in the small TLB, which implies that the max-
imum number of locked entries on JPS processors is 16. This is not a big problem
for HelenOS, because HelenOS uses only a very limited amount of locked entries (see
Section 6.3.3).

The maximum number of locked entries in the data TLB is determined by the DTL-
B_MAX_LOCKED_ENTRIES constant, which is #defined as DTLB_ENTRY_COUNT for
the older UltraSPARC CPUs and as 16 on the JPS-compliant CPUs.

Non-contiguous Physical Memory

Not only that the physical memory can start at non-zero addresses (see Section 6.1.3),
but its address space may be discontinuous, i.e. ‘contain holes’. On the SunBlade 1500
machine on which the author of this thesis tested the port it has been observed that
the first block of the physical memory starts at address 0 and it is 2 GB large, and
the second block of physical memory starts at address 8 GB and it is also 2 GB large.
Physical addresses from 2 GB to 8 GB are not assigned to any physical memory, so
writing to them causes an exception.

The SunBlade 1500 which HelenOS has been tested on is the only supported ma-
chine with such a weird memory layout.

As for now, HelenOS just ignores the second block of memory and uses only the
first one. Port to the SunBlade 1500 machine has been meant only as a proof-of-concept
implementation whose purpose was to show that the changes made to the code are
not Serengeti-specific, but generic in the UltraSPARC III-world, so solving the non-
contiguous memory issue has only a little importance.

TSB Extension Registers

The TSB extension registers (see Section 4.2.3) are set to zero. This means that the TSB
code of the original UltraSPARC HelenOS port can be reused.

Usage of the nucleus extension register makes no sense, because in the nucleus the
context 0 is active; context 0 (in HelenOS) bypasses the TSB.

Usage of the secondary context register makes no sense either, because in HelenOS
there is no piece of code where two virtual address spaces are accessed alternately, both
address spaces having their mappings in the TSB. In the memcpy_from_userspac-
e and memcpy_to_userspace functions the code accesses both the kernel address
space (context zero) and the userspace address space (secondary context), but the TSB
is not used for the kernel so the TSB Base Register may contain the base address of
the userspace TSB. Hence in HelenOS there is no need to keep track of the TSB base
addresses for both the primary and the secondary context at the same time.
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Functions for reading and writing to the extension registers have been implemented
anyway, so if, in the future, someone decides to redesign HelenOS, the extension reg-
isters will be ready to use.

7.4 Processors

This section describes things related to CPUs, such as inter-processor interrupts, TICK
interrupts, processor identification and processor models.

7.4.1 Interconnect Bus Configuration Register

Older UltraSPARC processors and the JPS-compliant processors use different models
of the interconnect bus; the bus is called UPA on the older UltraSPARC processors
and Fireplane on the newer UltraSPARC processors. From the kernel developer point
of view the interconnect bus is not very important, since the kernel only uses one of
the bus registers (UPA/Fireplane bus configuration register) to read the MID of the
processor. Anyway, in the original UltraSPARC HelenOS port the constant for the
interconnect bus configuration register ASI was called ASI_UPA_CONFIG, which has
been changed to a more general name ASI_ICBUS_CONFIG.

7.4.2 Inter-processor Interrupts

Interrupt vector is composed of eight 64-bit registers, on older UltraSPARC processors
it was composed of three 64-bit registers.

As well as in the original UltraSPARC HelenOS port (see Section 6.4.1), only one of
these registers is used.

Constants defining the virtual addresses of the eight registers have been defined
anyway, so the code is prepared for further extension. The constants are defined in the
kernel/arch/sparc64/src/smp/ipi.c file and they are called VA_INTR_W_DAT-

A_0 to VA_INTR_W_DATA_7.

7.4.3 Timer Interrupts

JPS defines a new register: STICK (see Section 3.4.1). It is analogous to the TICK register,
but unlike TICK, it is incremented at the rate determined by the external clock signal
rather than the CPU clock.

HelenOS makes no use of the STICK register; it must be, however, aware of it. The
kernel must, upon timer initialization, disable STICK interrupts and clear any pending
ones, because the OBP may have used the STICK and STICK_COMPARE registers. With-
out doing so, it could happen that the value of the STICK register would become equal
to the value of the STICK_COMPARE register, triggering a spurious tick interrupt.

Disabling the STICK interrupts and clearing the pending ones is done in the tic-
k_init function in the kernel/arch/sparc64/src/drivers/tick.c file, right
after the initialization of the tick interrupts.
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7.4.4 CPU Models

HelenOS supports a large set of different UltraSPARC-based CPU models. There are
not many differences between the particular CPU models the operating system must
be aware of. Some of the few exceptions are the width of the MID register, TLB size or
OBP layout. The CPU model is detected by inspecting the VERSION register.

Bootloader

In the bootloader, the model is determined in the detect_subarchitecture func-
tion in the main.c file. The detect_subarchitecture function reads the value of
the VERSION register. First, it decides whether the model it is running on is one of the
older models (UltraSPARC I, II, IIi) or a JPS-compliant model (UltraSPARC III, IIIi, III+,
IV, IV+). For the older models, it sets the value of the subarchitecture variable to
the SUBARCH_US value. For the JPS-compliant models, it sets the value of the suba-
rchitecture variable to the SUBARCH_US3 value. For the JPS-compliant processors
it also checks whether the CPU model is UltraSPARC IIIi. If so, the MID register mask
is set to (1 « 5) - 1, because on UltraSPARC IIIi the MID register is 5 bits wide. For the
pre-JPS processors the MID mask is set to (1 « 5) - 1 as well. On the JPS processors other
than UltraSPARC IIIi the MID mask is set to (1 « 10) - 1, because the MID is 10 bits wide
on these processors.

In the bootloader, the information about the CPU model is further used from the
assembly language routine which jumps to the kernel. Before jumping to the kernel,
the instruction cache must be invalidated. Since invalidating the cache is an expensive
operation and it is not needed on the JPS processors, it is skipped if the subarchite-
cture variable equals SUBARCH_US3.

The MID mask is used when waking up the application processors. In order to skip
waking up the current processor, we must know the MID of the current processor. The
MID is obtained by ANDing the value of the ASI-accessible FIREPLANE_CONFIG register
with the MID mask.

Kernel

In the kernel, C language functions are defined:

• is_us, which returns true if and only if the CPU’s model is UltraSPARC I, II or
IIi,

• is_us_iii, which returns true if and only if the CPU’s model is UltraSPARC
III, IIIi or III+, and

• is_us_iv, which returns true if and only if the CPU’s model is UltraSPARC IV
or IV+.

The information returned by those functions is used when traversing the OBP tree
copy in order to detect the number of CPUs, detect CPU frequencies or wake the ap-
plication processors up. The most important issue is that the code must know whether
the host processors are single or dual-core. As only the UltraSPARC IV and IV+ proces-
sors are dual-core, the code for detection of number of CPUs, detecting CPU frequen-
cies and waking application processors up is slightly different for is_us_iv returning
true and is_us_iv returning false. For more details on detecting the number of
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CPUs, detecting their frequency and waking the application processors up, see Section
7.4.5.

To state the width of the MID register or the TLB size, a finer granularity of the CPU
model detection is needed, because the width of the MID register is 5 bits on Ultra-
SPARC IIIi, but 10 bits on UltraSPARC III. Since such a granularity is not needed on
many places of the code, no special functions have been written for such purpose and
the VERSION register is inspected directly at the place where it is needed. This is the
case of the tlb_ibig_size function, which returns the size of the big instruction TLB
(see Section 7.3.1) and of the read_mid function, which reads the MID of the current
CPU (see the kernel/arch/sparc64/include/sun4u/cpu.h file).

7.4.5 Dual-core UltraSPARC IV Processors

UltraSPARC IV and UltraSPARC IV+ are the first SPARC-based processors which are
dual-core. Because of that, the original UltraSPARC port (see Chapter 6) did not sup-
port dual-core processors at all and the support had to be added as a part of the JPS
port.

From the system programmer’s perspective, nothing special must be done to make
HelenOS run on dual-core processors, the situation is almost the same as for the con-
ventional multiprocessors. Only detecting the number of CPUs, detecting their fre-
quency and waking the application processors up is affected by the difference in the
OBP layout.

Detecting the Number of CPUs

The number of CPUs is detected in the smp_init function. The algorithm is slightly
different for single-core and dual-core processors, due to differences in the OBP layout.

If HelenOS is running on a single-core CPU, it iterates through all the ‘cpu’ nodes
and for each node it increases the counter of the CPUs by one, just as in the original
port.

If HelenOS detects that it is running on an UltraSPARC IV or IV+ CPU, it iterates
through all the ‘cmp’ nodes and for each ‘cmp’ node it increases the counter by two.

Detecting CPU Frequencies

CPU frequencies are detected in the cpu_arch_init function. Again, the algorithm
is slightly different for single-core and dual-core processors. Algorithm for the single-
core is the same as in the original port.

If HelenOS detects that it is running on an UltraSPARC IV or IV+ CPU, it iterates
through all the ‘cmp’ nodes. For each ‘cmp’ node N it detects frequencies of CPUs
represented by N’s children called ‘cpu@0’ and ‘cpu@1’.

Waking Processors Up

CPUs are woken up in the kmp_init function. Again, the algorithm is slightly differ-
ent for single-core and dual-core processors. Algorithm for the single-core is the same
as in the original port.
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If HelenOS detects that it is running on an UltraSPARC IV or IV+ CPU, it iterates
through all the ‘cmp’ nodes. For each ‘cmp’ node N it wakes up the CPUs represented
by N’s children called ‘cpu@0’ and ‘cpu@1’.

7.5 Device Drivers

For the Serengeti machine a driver of the serial input and output has been written. For
the SunBlade 1500 machine a framebuffer driver had to be adapted slightly to work
correctly.

7.5.1 SunBlade 1500 Framebuffer

In the SunBlade 1500 machine a graphics device called SUNW,XVR-100 is installed. The
device has almost the same properties as the SUNW,m64B device, which had already
been supported by HelenOS. Only two small changes had to be made.

• The driver had to be made aware that a device called SUNW,XVR-100 exists, so
that it is able to recognize the device in the OBP tree.

• On most framebuffers the starting address of the framebuffer memory (as read
from the OBP tree property) corresponds to the first pixel (left top corner). This
is not the case of the SUNW,XVR-100 device, whose first pixel corresponds to an
address S + 0x8000, where S is the starting address of the framebuffer memory.
Addresses S to S + 0x7fff are valid, but writing to them has no effect.

Debugging Using Stripes

As a curiosity, let us mention that drawing to the framebuffer was, at some stage,
the only way of debugging the HelenOS port on the SunBlade machine. If the kernel
crashes before the output gets initialized, it is not possible to use printf to identify the
exact point of failure. With some help of the OpenBoot PROM, however, it is possible
to find the physical address of the framebuffer and draw something to the screen by
storing a value to the framebuffer.

If there was a function f which was suspected of causing a failure, a piece of code
which was drawing a stripe onto the screen was added to several places of the function
body. By counting the number of stripes having been drawn it was possible to localize
the place of failure inside the body of function f.

A drawback of this solution was that it did not work when f was (directly or indi-
rectly) recursive – if f failed in the nested call but succeeded earlier in the call chain,
all the stripes were drawn and it seemed as if f had not failed at all. This was fixed
by introducing a static variable incremented each time f was called. The stripes were
then drawn to different areas of the screen, depending on the value of the static vari-
able. The nested call of f was therefore drawing the stripes onto a different area of the
screen than the call preceding in the call chain.

7.5.2 Serengeti Console

The Serengeti console (SGCN) is a means of input and output on the Serengeti machine.
SGCN is a non-standard chip to which a keyboard and output device can be attached
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using a serial line. Since the SGCN chip is non-standard, its documentation is not
publicly available. Nevertheless, a functional implementation of the SGCN driver for
HelenOS has been achieved.

The implementation is based on reverse engineering of the analogous driver for
OpenSolaris.

SGCN Memory

The operating system communicates with the Serengeti console via a shared memory.
Within the address space of one of the Serengeti PCI buses4 an SBBC nexus5 ad-

dress space is embedded. In the OBP tree SBBC is not present, so its address cannot
be computed by standard means. The SBBC starting physical address could be cer-
tainly determined by investigating the PCI bus. As HelenOS has no full-featured PCI
driver for the UltraSPARC processors yet, the SBBC nexus address is hardwired to
0x63000000000 – that is the address where the SBBC is mapped on the Simics-simulated
Serengeti system.

Within the SBBC nexus address space, an SRAM address space is embedded. SRAM
is a shared memory used for communication between the operating system and some
devices (such as SGCN). The offset of the SRAM address space within the SBBC ad-
dress space is 0x900000 + n, where n is a number read from the ‘iosram-toc’ property
of the ‘/chosen’ OBP tree node.

At the beginning of the SRAM there is a table of contents – an array of structures
describing all the subareas of the SRAM. Each structure contains a key – a string which
determines the purpose of the subarea described by the structure – and an offset within
the SRAM of the subarea. Examples of the keys are ‘SOLCONS’ (standing for ‘Solaris
console’6) or ‘OBPCONS’ (standing for ‘OpenBoot PROM console’). As for HelenOS,
the ‘OpenBoot PROM console’ subarea is used for communication with SGCN. The
reason is that the OBP, before it was shot down by the HelenOS kernel, had done all the
necessary setup and the ‘OBPCONS’ subarea is ready to use. Theoretically the ‘SOL-
CONS’ could be used as well, but that would require doing some additional setup,
which would not be an easy task given the SGCN is not documented.

HelenOS SGCN Driver Initialization

First, the address of the IOSRAM is computed in the init_sram_begin function.
The function reads the iosram-toc property of the /chosen OBP node. Then it
adds the value read to the SBBC nexus address (which is hard-wired to 0x900000 as
described in the previous section). The physical memory at the computed address is
immediately mapped to the kernel address space using the generic HelenOS function
hw_map. When the IOSRAM memory is mapped, its virtual address is saved to a global
variable called sram_begin.

After that, the sgcn_buffer_begin_init function computes the address of the
SGCN buffer. It first asserts that the IOSRAM contains a magic at its beginning. After

4There can be multiple PCI buses.
5SBBC nexus is a PCI device, found in Serengeti servers, used for communication between the kernel

(or OBP) and the Service Processor. The Service Processor is a ‘small computer’ used to control the
Serengeti server.

6Which indicates that the designers of Serengeti probably expected that Serengeti would never run
anything else than Solaris.
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that it browses the table of contents and looks up the entry with the ‘OBPCONS’ key.
From the entry it reads the offset to the ‘OBPCONS’ buffer and adds the offset to the
IOSRAM address. The result is an absolute address to the ‘OBPCONS’ buffer, which is
saved to the global sgcn_buffer_begin variable.

SGCN Buffers

The OBPCONS subarea contains two buffers: an output buffer used by the driver to
print characters and an input buffer used by the driver to read characters typed on the
keyboard.

The state of the buffers is described by header present at the beginning of the sub-
area. In HelenOS the header is accessed via a C structure. The header contains these
main fields:

IN read pointer

Index of the first character in the input buffer which has not been read by the
driver yet.

IN write pointer

Index of the last character which has been written to the input buffer by the con-
troller.

OUT read pointer

Index of the first character in the output buffer which has not been read by the
controller yet.

OUT write pointer

Index of the last character which has been written to the input buffer by the
driver.

The buffer is addressed in a circular manner, i.e. when a character was written at
the last index, the next character will be written at index 0.

Accessing the Buffer from HelenOS

A structure called sgcn_buffer_header_t has been defined, which represents the
SGCN buffer header, as described in the previous section. For convenience, some
macros have been #defined by means of which the buffer header or the buffer it-
self can be accessed. The macros compute the address within the buffer and convert
the result to the pointer of a desired type.

Macro SGCN_BUFFER uses the value of the sgcn_buffer_begin which was com-
puted during the HelenOS SGCN driver initialization:

/*
* Returns a pointer to the object of a given type

* which is placed at the given offset from the

* console buffer beginning.

*/
#define SGCN_BUFFER(type, offset) \

((type *) (sgcn_buffer_begin + (offset)))

Upon this macro the SGCN_BUFFER_HEADER macro builds:
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/** Returns a pointer to the console buffer header. */
#define SGCN_BUFFER_HEADER

(SGCN_BUFFER(sgcn_buffer_header_t, 0))

The SGCN_BUFFER_HEADER macro is used when accessing the input/output read-
/write pointers:

/* determines the size of the buffer */
uint32_t begin = SGCN_BUFFER_HEADER->out_begin;
uint32_t end = SGCN_BUFFER_HEADER->out_end;
uint32_t size = end - begin;

Reading from the Buffer

Since implementing the SGCN driver is not a focal point of this thesis, reading from
the SGCN input is implemented in a simpler way: using polling, not the interrupts.

A background thread regularly checks whether the IN read and IN write pointers
differ. If so, it reads all characters from the IN read position up until the IN write position
and updates the IN read pointer.

Writing to the Buffer

When the SGCN driver would like to print a character, it first computes the index in
the output buffer to which to store the character code. The index is

new_ptr = (out_write_ptr + 1) % buffer_size

If at new_ptr there is a character which has not been read by the controller yet, the
driver actively waits until the new_ptr position gets free.

while (out_read_pointer == new_ptr)

;

Active waiting is acceptable in this case, since

• the case when the new_ptr position is occupied by an unread character is rare,
because the size of the buffer is big enough (several thousands of characters),

• it will take only a very short time before the controller picks the unread character
up, and

• the thread which prints to the output would have to wait anyway.

Integrating the Driver into HelenOS

By the time the SGCN driver was written, HelenOS had already used the serial console
input and output – in the MSIM (simulated MIPS) port. To prevent code duplication,
portions of the MSIM console input and output which were not MSIM-specific were
extracted. The portions are now used by both the SGCN driver and the MSIM console
driver.
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Userspace SGCN Driver

The kernel SGCN driver pre-computes the address and size of the ‘OBPCONS’ mem-
ory area and passes it to its userspace counterpart. The userspace driver then maps the
area to its address space and works the same way as the kernel driver.

7.6 Miscellaneous

7.6.1 Setting Color Palette

If the color depth is set to 8 bits, each byte in the framebuffer acts as an index to the
color palette. This is different from the 16-bit (24-bit) color depth, where the couple
(triplet) of bytes encodes directly the red, green and blue components of the color.

In the previous implementation of the HelenOS SPARC port the color palette was
not explicitly set, so the palette contained colors set by the OBP. Therefore, if the 8-bit
color depth was configured, the framebuffer showed wrong colors.

During the work on this thesis the author discovered a way how to set the color
palette using the OBP client interface. The respective OBP method is called color!
and it is to be called from the screen node of the OBP tree for every color to be set in
the palette. The method expects an index to the palette, intensity of red, intensity of
green and intensity of blue on the stack.

The palette is set such that the most significant three bits of the color index encode
the intensity of the red component, the following two bits encode the intensity of the
green component and the least significant three bits of the index encode the intensity of
the blue component. The HelenOS framebuffer driver can therefore, if the 8-bit depth
is set, treat the framebuffer in a similar way as in the 16-bit or 24-bit mode.

The palette must be set in the bootloader, before the OBP is disabled.
This solves the problem pointed out in [jj_thesis] in section 4.3.7 – Handling I/O

Devices, Summary of Hardware Support.
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Porting HelenOS to sun4v Processors

Enhancements which enable running HelenOS on the sun4v processors were made by
Pavel Římský in 2008 and 2009 as a part of his master thesis.

8.1 Overview

8.1.1 Supported Environments

HelenOS is able to run on a Simics-simulated Sun Fire T2000 server with an UltraSPARC
T1 processor and on a real Sun Fire T1000 Enterprise server with an UltraSPARC T1
processor. The machine simulated by Simics is a little bit simplified in comparison
with its real-world counterpart: the processor frequency is hardwired to 5 MHz and
the physical memory size is hardwired to 256 MB, but it is sufficient for development
purposes.

8.1.2 Enhancements Overview

As well as during porting HelenOS to the JPS-compliant processors, some register for-
mats had to be changed. This kind of changes, however, is not that interesting. While
in the JPS port it was one of the few things to be changed, in the sun4v port redefining
registers is only a small portion of the labor.

Porting HelenOS to the sun4v architecture required to write a new algorithm of
TLBs takeover, to implement the hypercalls mechanism, to modify some memory man-
agement routines, to modify the preemptible trap handler, to write (at least simplistic)
drivers of input and output and to make a handful of other minor changes.

In comparison with the JPS port, only a small amount of changes concerns Open-
Boot PROM. Luckily, the sun4v port does not have to rely on the OpenBoot that much
since a lot of actions can be performed via the hypervisor instead. Moreover, the hy-
pervisor is perfectly documented (unlike OBP).

8.1.3 Integration with the sun4u Port

The kernel code of the sun4u port and the code of the sun4v port are separated as
follows:
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• If in the sun4u port there was a header file path_to_file/xxx.h which con-
tained some definitions which had to be adapted for sun4v, the header file was
split into

– path_to_file/sun4u/xxx.h, which contains only definitions specific for
sun4u,

– path_to_file/sun4v/xxx.h, which contains only definitions specific for
sun4v, and

– path_to_file/xxx.h, which contains definitions common for both sun4u
and sun4v, and which includes either path_to_file/sun4u/xxx.h or
path_to_file/sun4v/xxx.h depending on symbolic constants SUN4U
and SUN4V being defined. This is an example for file cpu.h:

#if defined (SUN4U)
#include <arch/sun4u/cpu.h>

#elif defined (SUN4V)
#include <arch/sun4v/cpu.h>

#endif

/* definitions common for both sun4u and sun4v */

Example 8.1: Example of a Common Header File

Other files always include the common file, not the specific file, so that they do
not have to worry about the particular UltraSPARC architecture – correct defini-
tions will always be included. The symbolic constants SUN4U and SUN4V are
defined in the Makefile.

• If in the sun4u port there was a C file path_to_file/xxx.c which contained
some definitions which had to be adapted for sun4v, the file was split into

– path_to_file/sun4u/xxx.c, which contains only definitions specific for
sun4u,

– path_to_file/sun4v/xxx.c, which contains only definitions specific for
sun4v, and

– path_to_file/xxx.c, which contains definitions common for both sun4u
and sun4v.

The Makefile ensures that always the correct files will be compiled and linked.

In the bootloader an autodetection is used – the OBP root node ‘compatible’ prop-
erty indicates whether the CPU’s architecture is sun4u or sun4v.

Comparison with Linux

The way how the sun4v-specific code is integrated into the SPARC port differs between
Linux and HelenOS. The most notable difference is that Linux does not separate the
sun4u-specific and sun4v-specific pieces of code by means of the preprocessor #i-
f nor #ifdef clauses, but it uses a runtime autodetection of the architecture. The

69



CHAPTER 8. PORTING HELENOS . . . 8.2. BOOTLOADER AND KERNEL . . .

architecture is detected by analyzing the OBP tree. In the arch/sparc64/kernel-
/head.S file the host CPU type is detected and if its architecture is sun4v, a global
variable is_sun4v is set to 1. This variable is inspected from a plenty of places in the
code.

The implantation of the sun4v code into Linux is sometimes not very straightfor-
ward. Let us have a look at one trick which is used to make certain MMU functions do
a sun4v-specific job. Linux SPARC port defines several generic functions for handling
TLB misses, which are overridden by the sun4v-specific functions if the host CPU’s
architecture is sun4v; for example, tl0_iamiss is overridden by sun4v_itlb_mi-
ss or tl1_iamiss is overridden by sun4v_itlb_miss (to understand this text, it is
not important to know what these functions do). An interesting thing is the mechanism
how the functions are overridden. Actually, the generic functions are patched. If the de-
tected architecture is sun4v, the very first instruction of each such generic function is
replaced by a branch to the corresponding sun4v-specific function (by modifying the
instruction memory) at runtime. The code doing this can be found in the arch/spa-
rc64/kernel/sun4v_tlb_miss.S file.

In Linux the sun4u and sun4v sources are not so strictly separated as in HelenOS.
In a big number of *.c and *.h files the sun4u-specific and sun4v-specific parts are
intermixed. Some source files have ‘sun4v’ in their names, such as sun4v_icev.S –
those ones contain only sun4v-specific pieces of code. The names of the sun4v-specific
functions, structures, etc. usually start with ‘sun4v’.

Due to the use of the #if and #ifdef clauses the way how architecture-specific
parts of HelenOS code are separated is much more straightforward and clean – no such
ugly things as patching the code of the generic functions is used. Because the sun4v
HelenOS bootable image contains only sun4v-specific code (except for the bootloader),
the image is small. The drawback is that the sun4u and sun4v HelenOS bootable im-
ages must be compiled separately.

Comparison with Solaris

The way how the sun4u and sun4v sources are separated in Solaris very much resem-
bles the way how it is achieved in HelenOS. The majority of the sun4u-specific pieces of
code is in the uts/sun4u directory, the majority of the sun4v-specific pieces of code is
in the uts/sun4v directory. The uts/sun4 directory contains code common for both
sun4u and sun4v with a few pieces of code specific to one of these platforms (the pieces
are separated by #ifdef sun4u .. #endif and #ifdef sun4v .. #endif clauses).

The difference between Solaris and HelenOS is the directory structure level at which
the sun4u and sun4v sources are split. While in Solaris the sun4u and sun4v subdi-
rectories are almost at the top of the directory structure, in HelenOS they are the leaf
directories.

8.2 Bootloader and Kernel Startup

8.2.1 Bootloader

One of the very first modifications which had to be made to HelenOS to support the
sun4v architecture was adding a piece of code which would detect whether the host
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CPU architecture is sun4u or sun4v. The detection is performed in the detect_ar-
chitecture function, which is called as soon as the HelenOS bootloader is passed
control by SILO.

Whether the CPU architecture is sun4u or sun4v is determined by inspecting the
OBP root node ‘compatible’ property. If the value of the property is ‘sun4v’, the boot-
loader concludes that the architecture is sun4v. Otherwise the bootloader concludes
that the architecture is sun4u. The reason why the bootloader does not check that the
property values is ‘sun4u’ before making the conclusion is that on some sun4u ma-
chines the property value may be different from ‘sun4u’; for example, on the Serengeti
machine the ‘compatible’ property has value ‘SUNW,Serengeti’. Hence sun4u is con-
sidered to be the default. The information about the architecture is saved to the a-
rchitecture variable. It contains either the value of the COMPATIBLE_SUN4U or
COMPATIBLE_SUN4V symbolic constant.

The information about the architecture affects several issues of the bootloader. Copy-
ing kernel image, copying the initial tasks and allocating memory for the RAM disk is
the same for both sun4u and sun4v, as well as passing the memory map to the kernel.
On sun4u a copy of the OBP tree is made, while on sun4v the machine description is
used instead of the OBP tree. On sun4u a color palette is set, while sun4v machines
have no framebuffer, so there is no point in setting the palette. On sun4u the proces-
sor model is detected, while on sun4v there is no need to do it, since the privileged
software is shadowed from the processor model details thanks to the hypervisor.

OBP-established Page Mapping

When SILO booted, the OBP had established a virtual-to-real memory mapping. This
mapping is not an identity (because the real memory starts at a non-zero address),
which is not surprising. However, the mapping even does not map virtual address 0
onto the starting address of the real memory, but onto an address which is 0x400000
bytes (4 MB) higher. The reason is that the OBP occupies the first 4 MB of the real
memory (so neither SILO nor the bootable image may be placed there) and this real
memory is mapped in a different way.

In order to keep the HelenOS bootloader (which expects identity virtual-to-real
mapping) simple and to avoid code relocation, the problem is overcome in this man-
ner: we pretend that the real memory starts 0x400000 bytes further than it actually
does (and hence pretend that the real memory is 0x400000 bytes smaller). So the mem-
ory map is patched like this (note that the bootloader, for sake of simplicity, does not
distinguish between the terms ‘real’ and ‘physical’ memory as the code is common for
both the sun4u and sun4v architectures):

// pretend the physical memory starts 4 MB further
bootinfo.physmem_start += 0x400000;

// pretend the first zone starts 4 MB further
bootinfo.memmap.zones[0].start += 0x400000;

// pretend the first zone is 4 MB smaller
bootinfo.memmap.zones[0].size -= 0x400000;
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8.2.2 Kernel Startup

The kernel is passed control from the bootloader in the kernel/arch/sparc64/s-
rc/sun4v/start.S file code. First, the very basic information passed by the boot-
loader – the starting address of the physical memory, the information whether the host
CPU is a bootstrap CPU and the boot info structure – is processed and set aside to
the local registers. Then the basic state registers (CANSAVE, CANRESTORE, OTHERWIN,
CLEANWIN, WSTATE, TL, PSTATE) are initialized. After that the trap table base address
register is set to point to the HelenOS trap table (before that it used to point to the OBP
trap table). These steps are almost identical to those of the original UltraSPARC port.
Then some more interesting steps come, as described in the following subsections.

MMU Takeover

The UltraSPARC Architecture 2005 specification states that the MMUs are disabled
upon the system startup and that before using them they must be explicitly enabled
by a hypercall. The kernel, however, does not have to take it into account, as the
OpenBoot PROM has already enabled the MMUs. All it must do is take a full control
over the TLBs from the OBP1.

Taking over the TLBs works in almost the same way as on the sun4u architecture
(see Section 6.1.3). The main difference is that the ITLB is taken over concurrently with
the DTLB, which is easy since the hypercalls which install the mappings can operate
on both the TLBs simultaneously.

The individual steps of the takeover are as follows:

1. The second 4MB page, where the kernel is loaded, is mapped in context 1 using
the MMU_MAP_ADDR hypercall.

2. Context 1 is switched to.

3. From within context 1, all mappings in context 0 are demapped using the MMU_-
DEMAP_CTX hypercall.

4. A permanent mapping of the kernel (i.e. The second 4MB page) is installed to
context 0.

5. Context 0 is switched to again.

6. From within context 0, all mappings in context 1 are demapped (cleanup).

Thanks to the fact that UltraSPARC Architecture 2005 processors do not require any
memory synchronization instruction (FLUSH etc.) after a store to an MMU register, the
code is much simpler than the analogous code for the sun4u architecture.

Setting MMU Fault Status Area

The MMU fault status area is defined in an assembly language file called start.S,
which is the file in which the routine for taking over the MMU is defined. The size of
the MMU fault status area is MMU_FSA_SIZE * MAX_NUM_STRANDS, where MMU_FSA_SIZE

1This is true only on the bootstrap processor. On the application processors the MMU must be
enabled explicitly, see Section 8.8.7.
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is the size of the MMU fault status area structure for one virtual processor and MAX_-

NUM_STRANDS is the maximum number of virtual CPUs HelenOS supports. The MMU
fault status area is set up just after taking over the MMUs using the MMU_FAULT_AREA-
_CONF hypercall, which takes the real address of the area as its argument.

Scratchpad Registers

To the first scratchpad register an ID of the current CPU is written, so that the ID can
be quickly read (without the need of performing a hypercall) in time-critical sections
of the code, such as trap handlers. To the second scratchpad register the real address
of the MMU fault status area is snapshotted for the same reason.

Once the first and second scratchpad registers are set, they will be only read from
the HelenOS kernel, never written to.

When switching to a new thread, the address of the thread’s kernel stack is snap-
shotted to the third scratchpad register and the address of the thread’s userspace win-
dow buffer is snapshotted to the fourth scratchpad register.

Scratchpad Registers: Comparison with Linux and Solaris

Both Linux and Solaris use the scratchpad registers for the same purpose. The first and
second scratchpad registers are used for the same purpose as in HelenOS, usage of the
third and the fourth scratchpad registers differs from HelenOS.

In Linux and Solaris, the third scratchpad register (SCRATCHPAD_UTSB1) encapsu-
lates the base address and the size of the first TSB of the active userspace process, the
fourth scratchpad register (SCRATCHPAD_UTSB2) encapsulates the base address and
the size of the second TSB of the active userspace process or it contains NULL if the
process has only one TSB. These registers are written to during a context switch and
they are read in the TLB miss handler when a translation is not found in the TSB. They
speed up refilling the TSB with the translation.

In HelenOS only one TSB is used by each process (task) and its address and size is
read directly from the in-memory structure which describes the TSBs of the process.
The two spare scratchpad registers can then hold pointers to the kernel stack and the
userspace window buffer.

Finishing the Startup

When the MMU fault status area is configured, 8kB TTE template is precomputed just
as in Section 6.1.3, the stack is configured and a generic C language initialization rou-
tine is called.

8.3 Hypercalls

Hypercalls are used by almost all subsystems of the sun4v HelenOS kernel – by input
and output drivers, by the memory management routines, for obtaining the machine
description, for waking the application processor up and for operations related to inter-
processor interrupts.
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Symbolic constants have been defined for SW trap numbers, function numbers and
return codes. Apart from that a few assembly language macros and C routines have
been defined, which perform the hypercall.

8.3.1 Performing Hypercalls from Assembly

Before making a hypervisor API call an assembly language code must set the output
registers properly. After that it just invokes one of these two macros:

• __HYPERCALL_FAST(function_number), when a fast hypercall is to be per-
formed, or

• __HYPERCALL_HYPERFAST(sw_trap_number), when a hyperfast hypercall is
to be performed.

In Example 8.2 calling the hypervisor API (more specifically demapping the whole
context) is illustrated.

! demap all in context 0
set 0, %o0
set 0, %o1
set 0, %o2
set MMU_FLAG_DTLB | MMU_FLAG_ITLB, %o3
__HYPERCALL_FAST(MMU_DEMAP_CTX)

Example 8.2: Calling Hypervisor from Assembly

8.3.2 Performing Hypercalls from C

There are two groups of C routines that make a hypervisor API call.
The first one is used for hypercalls which, apart from the error code, produce no

output. This group contains:

• Six routines for performing a fast hypercall, each routine takes a different number
of input arguments. The name of each routine is __hypercall_fastn, where
n is the number of the hypercall input arguments. For example, calling a fast
hypervisor service which takes 3 arguments and returns no values (apart from
the error code) would look like this:

err = __hypercall_fast3(
MMU_UNMAP_PERM_ADDR, tsb, 0, MMU_FLAG_DTLB);

• One routine for performing a hyperfast hypercall. The routine takes five argu-
ments. Should the hypervisor service take less, the redundant arguments must
be zero. For example, creating new MMU mapping would look like this:

__hypercall_hyperfast(
page, ASID_KERNEL, data.value, MMU_FLAG_DTLB, 0,
MMU_MAP_ADDR);
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The second group contains one routine for performing a fast hypercall which re-
turns, apart from the error code, one output value. The routine takes five arguments.
Should the hypervisor service take less, the redundant arguments must be zero. For
example, obtaining the CPU ID would look like this:

err = __hypercall_fast_ret1(0, 0, 0, 0, 0, CPU_MYID, &myid);

As for the implementation of these functions, the only interesting thing is the way
how the return value is retrieved in the __hypercall_fast_ret1 function. First,
the __hypercall_fast function is called, then the return value is picked up from
the %o1 register:

uint64_t errno = __hypercall_fast(
p1, p2, p3, p4, p5, function_number);

if (ret1 != NULL) {
asm volatile ("mov %%o1, %0\n" : "=r" (*ret1));

}

8.3.3 Comparison with Linux and Solaris

Neither Linux nor Solaris define generic functions for performing a hypercall; they
both define separate wrapper functions for each particular hypercall type. To make a
hypercall, the kernel calls the corresponding wrapper.

The wrapper functions are defined in assembly language as leaf-optimized. They
use the fact that both the function calls and hypercalls use the output registers to pass
the call parameters, so the wrapper functions do not have to touch the output registers
(except for the %o5 register which holds the function number of the fast hypercall), but
can simply let the values passed in the wrapper function call be passed as parameters
of the hypercall. The typical function making the hypercall just sets the function num-
ber, invokes the trap and returns. This is an example of the CONS_PUTCHAR wrapper in
Linux:

.globl sun4v_con_putchar

.type sun4v_con_putchar, #function
sun4v_con_putchar:

mov HV_FAST_CONS_PUTCHAR, %o5
ta HV_FAST_TRAP
retl
.size sun4v_con_putchar, .-sun4v_con_putchar

In HelenOS the hypercall mechanism is defined consistently with the syscall mech-
anism. Since almost every hypercall type is used only once from the HelenOS code,
defining a separate function for each hypercall type would produce a lot of redundant
code which would have to be maintained.

8.4 CPUs

This section deals with the machine description traversal and with one issue related to
the TICK register.
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8.4.1 Machine Description

Machine description (MD) is a data structure provided by the hypervisor which de-
scribes the host system (see Section 5.2.3 for further details). The code for the machine
description traversal can be found in the kernel/arch/sparc64/src/sun4v/md-
.c file.

In HelenOS the machine description is used to retrieve some essential information
about the CPUs – their count, their cpuids and their clock frequencies. It is also used
to find the physical cores the particular virtual processors are backed by. The pieces of
code the machine description traversal is used from can be found in the kernel/-
arch/sparc64/src/smp/sun4v/smp.c and kernel/arch/sparc64/src/cp-
u/sun4v/cpu.c files.

Let us briefly summarize the most important functions related to the machine de-
scription traversal. The md_init function initializes some helper data structures used
for the MD traversal. The md_get_root function returns the root node of the MD.
The md_next_node function takes the last visited node and a name of a node, it re-
turns the first not-yet-visited node with the given name (the function is used to iterate
through all the nodes with a given name, e.g. ‘cpu’, without bothering with the tree-
like structure of the MD). The md_get_child_iterator function returns an iterator
used to iterate through all the children of a given node. The md_next_child function
takes a child iterator and it returns the first not-yet-visited child.

8.4.2 TICK Register

In the original UltraSPARC HelenOS port the TICK register was set to zero upon the ini-
tialization of the timer, and the TICK_COMPARE register was set to value t – the number
of instructions after which the first timer interrupt should be triggered.

Since on sun4v the TICK register is hyperprivileged, it cannot be set to zero, so the
original value v must be kept there. As a consequence, the TICK_COMPARE register must
be set to v + t then.

The STICK register is not used at all in the sun4v HelenOS port, as well as it is not
used in the JPS port. On the UltraSPARC T1 processor the STICK register is actually an
alias of the TICK register.

8.5 Memory Management

Memory management in the sun4v HelenOS port is similar to the one found in the
original UltraSPARC port. The basic difference is that on sun4v the hypercalls are used
instead of directly accessing the MMU registers.

8.5.1 Caches

Fortunately, the illegal alias problem (see Section 6.3.2) does not occur on sun4v. The
size of the Niagara data cache is 8kB only. Thanks to that, the sun4v HelenOS port
does not emulate the 16kB pages. Upon an MMU miss an 8kB page is installed.
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8.5.2 MMU Miss Handler

The MMU miss handler is an assembly language routine entered from the privileged
trap table. Unlike on sun4u, it contains no code for looking up the translation in the
TSB. The reason is that once the privileged MMU miss handler is entered, the hypervi-
sor has already unsuccessfully tried to look the translation up in the TSB, as described
in Section 5.3.2.

The sun4v handler does not fit into 32 instructions, so a branch is needed. The
reason why 32 instructions are not enough is mainly that the output registers must be
snapshotted to the global registers (at GL = 1) before the they can be used to pass hy-
percall arguments, and they must be restored from the global registers once the trap
is handled. Due to the fact that the hypercalls will use a total amount of four out-
put registers, the handler will inevitably need eight instructions solely for saving and
restoring the output registers. Note that allocating a new register window would be a
risk here, as it could cause a nested trap.

The steps of the miss handler are very similar to those of the sun4u handler, with
minor differences. This is what the sun4v handler actually does:

1. The real address of the MMU Fault Status Area is read from the second scratch-
pad register.

2. The faulting context is read from the MMU Fault Status Area. The context is read
via the MMU bypass ASI, since a real address of the MMU Fault Status Area has
been read from the second scratchpad register.

3. The faulting virtual page number is read from the MMU Fault Status Area. The
page number is read via the MMU bypass ASI, since a real address of the MMU
Fault Status Area has been read from the second scratchpad register.

4. If the faulting context is not a kernel context (zero), a higher level service routine
is called.

5. If the faulting page has number zero, it means the kernel may be dereferencing a
null pointer, so a higher level service routine is called.

6. For the kernel context and non-zero pages a kernel mapping is installed, as de-
scribed in the following section.

Handling Kernel Misses

Mapping for the kernel is being installed in a separate assembly routine called ins-
tall_identity_mapping, thus the number of instructions is not limited to 32. A
jump to the install_identity_mapping routine is done directly in the MMU miss
handler. The MMU miss handler leaves the virtual address in the %g1 register from
where the install_identity_mapping routine picks it up.

Before installing the kernel mapping, output registers are snapshotted to global
registers (as already pointed out). Not all output registers need to be snapshotted,
only those which will be used for passing parameters to hypercalls during installing
the mapping, i.e. %o0 to %o3.
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mov %o0, %g3
...
mov %o3, %g6

Similarly as on sun4u, kernel MMU misses on sun4v are handled by installing a
mapping obeying formula

PA = VA + C + 0x400000,

where C is the starting address of the physical memory. The constant 0x400000 has
to be added due to the issue described in Section 8.2.1).

The TTE is composed by ADDing the faulting virtual address to the 8kB TTE tem-
plate, which has been prepared during the kernel startup (see Section 8.2.2). The trans-
lation is installed via the MMU_MAP_ADDR hypercall.

When the mapping has been installed, registers %o0 to %o3 are restored from the
globals and the instruction which caused the trap is restarted.

Kernel Misses: Comparison with Linux

Let us have a look how Linux copes with the fact that only 32 instructions may fit into
the MMU miss entry in the trap table.

In Linux, the DMMU miss handler (sun4v_dtlb_miss in the sun4v_tlb_mis-
s.S file) takes 37 instructions, so it (as well as in HelenOS) does not fit into one trap
table entry. Linux uses branching too, but unlike in HelenOS, the branch is not very
apparent.

In the Linux sparc64 port in the trap table (arch/sparc64/kernel/ttable.S)
there is an entry called tl0_damiss, which handles the DMMU misses. In runtime
the tl0_damiss is patched (as described in Section 8.1.3) so that when tl0_damiss
is invoked, a branch is taken and the code of sun4v_dtlb_miss is executed. So the
branch is not explicitly in the code, but it is effectively performed. Since sun4v_dtl-
b_miss resides outside the trap table, it may contain more than 32 instructions.

Handling Userspace Misses

Userspace MMU misses are handled in a similar way as in the sun4u port.
One thing which deserves a description is the way how the faulting context and

address is passed from the (assembly language) MMU miss handler to the higher level
service routine.

In the sun4u HelenOS port the higher level service routine is passed a value of
the TLB Tag Access register (register from which the faulting context and address can
be determined) as its parameter. Since on sun4v the faulting context and address is
not read from the TLB Tag Access register but from the MMU Fault Status area, the
information about the fault is passed in a different way to the service routine. Both the
context and the address must be encoded into one 64-bit value, because only one 64-bit
parameter may be passed to the service routine. Specifically, the faulting page address
is encoded into bits 63 to 13 and the faulting context is encoded into bits 12 to 0 of the
value being passed.

Another notable issue is a simplification of some functions due to the illegal alias
problem not occurring on sun4v. The itlb_pte_copy function (which copies a TTE

78



CHAPTER 8. PORTING HELENOS . . . 8.5. MEMORY MANAGEMENT

from the translation table to the TLB) takes the index parameter on sun4u, which is 0
if the lower 8kB sub-page of the simulated 16kB page is to be copied and 1 if the higher
8kB sub-page of the simulated 16kB page is to be copied to the TLB. On sun4v this is
not necessary, as in the sun4v port the 16kB pages are not simulated.

8.5.3 Translation Storage Buffers

The sun4v HelenOS port makes use of the TSB for non-kernel mappings (the same
way as the sun4u port does) – for each memory context there exists one TSB. The only
difference from the sun4u port is that when the MMU miss trap comes, the hypervisor
tries to automatically reload the missing mapping from the TSB (see Section 5.3.2), so
in the sun4v port there is no code for reloading the mapping from the TSB. There is,
however, code for the TSB initialization and for installing entries to the TSB. The code
is very similar to the one of sun4u.

As pointed out in Section 5.3.1, translation storage buffers on sun4v have some
extra features, such as multiple way set associativity. For the time being, the HelenOS
port makes no use of these features. Only one direct mapped TSB is used for each
context. The size of the TSB is 64 kilobytes, as in the sun4u port, so the code for adding
entries to the TSB and for initializing the TSB is very similar to the analogous code for
sun4u. Since the size of one TSB entry is 16 bytes, the total number of TSB entries is
4096.

TSB Description

The TSB Description is a structure, which is passed to the hypervisor when setting
up the TSBs, describing the properties of a particular TSB (see Section 5.3.1 for more
details). In HelenOS the structure is defined in the kernel/arch/sparc64/inclu-
de/mm/sun4v/tsb.h file and it is called tsb_descr_t.

TSB Initialization

The TSB is being initialized in the constructor of the address space.
First, a 64kB page is allocated for the TSB. The page is not partitioned into instruc-

tion and data TSB (unlike on sun4u), but the whole page is used for both instruction
and data translations.

Second, the TSB Description structure is initialized. The TSB Description structure
is referenced from a structure called as_arch_t, which is a structure describing the
platform-specific properties of a particular address space. In the TSB Descriptions the
address of the just allocated 64kB page is set, TSB associativity is set to 1, the size of the
pages being mapped is set to 8 kB and the number of entries is set to 4096.

At the end the TSB page is filled with zeros.

Installing the TSB

The TSB is installed via an MMU_TSB_CTXNON0 hypervisor API call to which the TSB
description is passed. This is done every time the TSB context is switched – in the
as_install_arch function.
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Manipulating the TSB

Functions which manipulate the TSBs (add new mappings to the TSB and invalidate
the TSB) are located in the kernel/arch/sparc64/src/mm/sun4v/as.c and the
kernel/arch/sparc64/src/mm/sun4v/tsb.c files. The basic things in which
they differ from the analogous functions for the sun4u architecture are:

• They do not simulate the 16kB pages, since on sun4v the illegal alias problem
does not occur. This simplifies implementation of some functions. For example,
the itsb_pte_copy, which copies the instruction memory page table entry to
the TSB, does not have to take the index parameter which would determine
whether the lower 8kB entry or the higher 8kB page entry of the faulting 16kB
page is to be copied. In the sun4u port the function looked as follows:

void itsb_pte_copy(pte_t *t, index_t index)
{
/* ... */
ASSERT(index <= 1);
as = t->as;
entry = ((t->page >> MMU_PAGE_WIDTH) + index)

& TSB_INDEX_MASK;
/* ... */

}

This has been simplified in the sun4v port:

void itsb_pte_copy(pte_t *t)
{
/* ... */
as = t->as;
entry = (t->page >> MMU_PAGE_WIDTH) & TSB_INDEX_MASK;
/* ... */

}

• There is one common TSB for both the instruction and data memories (the hyper-
visor API provides no means how to instruct the hypervisor to use separate TSBs
for instruction and data memories). Whereas in the sun4u port the 64kB page
which held the TSB was split into the ITSB and DTSB parts, in the sun4v port one
64kB page holds TSB entries for both the instruction and data translations. As a
consequence, the index to the TSB is calculated in a different way.

The following example shows how the entries are retrieved inside the ITSB and
DTSB respectively in the sun4u port:

as->arch.itsb[entry_index & (ITSB_ENTRY_COUNT - 1)]
as->arch.dtsb[entry_index & (DTSB_ENTRY_COUNT - 1)]

And this is how the TSB entry is retrieved in the sun4v port:

as->arch.tsb_description.tsb_base[
entry_index & (TSB_ENTRY_COUNT - 1)]
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• The way how the TSB entry is invalidated during its update is different. Gen-
erally, when updating a TSB entry, the entry must be invalidated first, then a
memory barrier must be issued, then the entry can be updated, then the memory
barrier must be issued again and finally the entry can be made valid again. In the
sun4u port the entry is invalidated by setting the most significant bit of the TSB
tag to 1 (this is our internal convention introduced in the original UltraSPARC
HelenOS port). This bit is ignored by the HW, but it is used by the MMU miss
handler to verify whether the entry is valid when reloading the entry from the
TSB. Since on sun4v hypervisor is the one who reloads entries from the TSB, not
the kernel MMU handler, setting the most significant bit would have no effect (re-
call it is just our internal convention). So in the sun4v port the TTE data’s ‘valid’
bit is set to zero instead in order to invalidate a given entry.

TLB Miss Handling

When a TLB miss occurs, the hypervisor tries to reload the missing mapping from
the TSB. If the TSB description has not been supplied to the hypervisor for the given
memory context, the hypervisor calls the Fast Data Access MMU Miss or Fast Instruc-
tion Access MMU Miss handler from the privileged trap table. If the description has
been supplied to the hypervisor for the given memory context, but the translation is
not present in the TSB, the hypervisor calls the Data Access MMU Miss or Instruction
Access MMU Miss handler from the privileged trap table. In the HelenOS privileged
trap table the Data Access MMU Miss and Instruction Access MMU Miss handlers just
unconditionally branch to the Fast Data Access MMU Miss and Fast Instruction Access
MMU Miss handlers respectively. The miss is then handled as outlined in Section 8.5.2.

Comparison with Linux

Linux uses TSB for both the kernel and the userspace. If configured so, Linux uses
two TSBs for one userspace process – one which holds mapping for ‘small’ pages and
one which holds mappings for ‘big’ pages. How big the ‘small’ and ‘big’ pages are is
defined in compile-time.

Linux, as well as HelenOS, uses only direct-mapped TSBs.
An interesting thing about Linux TSBs is that the TSBs can have dynamic size –

Linux kernel is able to increase the size of a TSB on the fly. For further details, see
[dyn_tsb].

8.6 Preemptible Trap Handler

The sun4u preemptible trap handler has been moved to the arch/sparc64/src/-
trap/sun4u/trap_table.S file, while a new file arch/sparc64/src/trap/s-
un4v/trap_table.S has been created to incorporate the preemptible trap handler
for the sun4v architecture. Even though the sun4u and sun4v handlers do not differ
much, they have been placed to separate files in order to preserve readability of such
an important and error-prone piece of code.

Preemptible trap handlers for sun4u and sun4v have a lot of aspects in common
and their code looks very similar. Handler for sun4v, however, must cope with three
apparent problems which are not present on sun4u:
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• The number of trap levels usable by the privileged software is smaller than on
sun4u. Not more than two levels are possible above level zero.

• Alternate, memory and interrupt globals have been replaced by alternative glob-
als depending on the value of the GL register.

• If a privileged software running on trap level TL = 0 stores some values to global
registers at GL = 1, there is no guarantee that the values will not be overwritten by
the hypervisor (as described in Section 5.4.2). This is different from sun4u where
the privileged software could save anything to some of the alternative global sets
and no-one could destroy such values.

8.6.1 Limited Trap Levels

Privileged software may use only two trap levels above level zero. HelenOS’s usage of
particular trap levels is as follows:

level 0

Normal execution, no trap being handled (or the trap is being handled by a
higher level service routine).

level 1

Register window traps, MMU traps and interrupts.

level 2

Kernel MMU misses caused by the preemptible trap handler accessing the stack
or the userspace window buffer.

Without additional modifications the preemptible trap handler could easily bring
the CPU to trap level 3:

1. The preemptible handler is entered when the processor works on trap level 1.

2. The preemptible handler needs to issue the SAVE instruction in its prologue. This
may lead to a spill trap, bringing the CPU to trap level 2.

3. If the stack is not mapped, handling the register window trap will cause a nested
MMU miss trap, bringing the CPU to trap level 3.

Analogously the same situation may occur when issuing the RESTORE instruction
in the preemptible trap handler’s epilogue.

A solution of this problem is to avoid the spill and fill traps by proactively spilling
the register window if the CANSAVE register equals 0 and proactively filling the window
if the CANRESTORE register equals 0, just before issuing the SAVE or RESTORE instruction.

The following code snippet illustrates what must be done before issuing the SAVE

instruction in the preemptible trap handler.

rdpr %cansave, %g3 ! find the value of the CANSAVE register
brnz %g3, 2f ! skip spilling if CANSAVE is not zero
nop
INLINE_SPILL %g3, %g4 ! actively spill the register window

2:
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/* ask for new register window */
save %sp, -PREEMPTIBLE_HANDLER_STACK_FRAME_SIZE, %sp

INLINE_SPILL is an assembly language macro which spills the register window at
CWP + 2 (mod NWINDOWS) onto the stack. Therefore the subsequent SAVE instruction
may not cause any trap, since it will always be issued with the CANSAVE register being
non-zero. The macro is defined directly in the trap_table.S file.

Analogously there exists a macro for spilling the active register window to the
userspace window buffer. The macro is called INLINE_SPILL_TO_WBUF. The macro
is called from the preemptible trap handler if the trap occurred in a userspace task and
a SAVE instruction would cause an undesired spill exception which would be handled
by spilling the active window to the userspace window buffer. There is no need to
implement a macro for filling the registers from the userspace window buffer, because
the registers are filled in the preemptible trap handler epilogue.

8.6.2 Alternative Globals Set

On sun4u the alternate globals set was used during the execution of the preemptible
trap handler. In the sun4v handler, the globals set from GL = 1 is used instead.

One problem is, however, connected with the alternative globals set. In Section 6.3.1
it has been mentioned that the address of the thread’s kernel stack and the thread’s
userspace window buffer is saved to the alternative global registers %g6 and %g7 re-
spectively. This is, however, not possible on sun4v due to the fact that hypervisor
might overwrite the alternative globals (see Section 5.4.2).

Original Solution

There are many ways how the problem can be overcome. The author of this thesis first
tried a solution in which the address of the kernel stack and the userspace window
buffer was stored to the memory. The solution worked fine, but accessing the memory
is slow, so it was later replaced with a different solution. First, let us explain the original
solution.

In this solution the addresses of the stack and the window buffer are stored to the
memory instead of registers. For each virtual processor an instance of a data structure
defined like this exists:

typedef struct {
uintptr_t kstack;
uintptr_t wbuf;

} __attribute__ ((packed)) kstack_wbuf_ptr;

The kstack attribute contains the address of the top of the kernel stack of the
thread, which is currently active on the given virtual processor. The wbuf attribute
contains the address of the top of the userspace window buffer of the thread, which is
currently active on the given virtual processor. The structures are arranged in an array
defined in the start.S file2.

Data in this array are updated during the context switch. They are read and up-
dated by the preemptible trap handler and also by the register window spill handler,
which is used for userspace windows marked as other (the rationale behind marking

2The file containing the first code to be executed when the kernel boots.
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some windows as other is explained in Section 6.2.2). An assembly language macro
is defined which finds an address of the kstack_wbuf_ptr for the current virtual
processor. To understand the macro, see the inline comments:

/*
* Computes the pointer to the kstack_wbuf_ptr structure of

* the current CPU.

*
* Parameters:

* tmpreg1 global register to be used for scratching purposes

* result register where the resulting pointer will be saved

*/
.macro get_kstack_wbuf_ptr tmpreg1, result

! load CPUID to tmpreg1
or %g0, SCRATCHPAD_CPUID, \tmpreg1
ldxa [\tmpreg1] ASI_SCRATCHPAD, \tmpreg1

! compute offset within the array of kstack_wbuf_ptr
! structures (each such structure is 16 bytes long)
mulx \tmpreg1, KSTACK_WBUF_PTR_SIZE, \tmpreg1

! compute the pointer to the structure for the current CPU
sethi %hi(kstack_wbuf_ptrs), \result
or \result, %lo(kstack_wbuf_ptrs), \result
add \result, \tmpreg1, \result

.endm

Note that the number of instructions of this routine is 6. This is important because
this routine is also used from within the window spill handler, in which the maximum
number of instructions is limited to 32.

The Current Implementation

In the current implementation the scratchpad registers are used. The third scratch-
pad register is used as a storage of the kernel stack address and the fourth scratchpad
register is used as a storage of the userspace window buffer address.

As an example let us show how the kernel stack address is retrieved in the pre-
emptible trap handler prologue:

set SCRATCHPAD_KSTACK, %g4
ldxa [%g4] ASI_SCRATCHPAD, %g6
save %g6, -PREEMPTIBLE_HANDLER_STACK_FRAME_SIZE, %sp

In the early stage of the porting effort the author first tried to avoid wasting the
scratchpad registers for this purpose, in case they would be needed for some different
purpose in the future. Anyway, when HelenOS started to work correctly on Niagara
without the third and fourth scratchpad registers being touched, the author decided to
optimize the kernel by using the scratchpad register for holding the stack and window
buffer addresses.
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Comparison with Solaris

In Solaris there is a routine analogous to the preemptible trap handler which is called
sys_trap. The register windows which belong to the user process in which the trap
occurred are saved to the userspace window buffer, which is called wbuf in Solaris. In
Solaris the pointer to the kernel stack and the userspace window buffer is saved to an
in-memory structure, similarly as in HelenOS in the original solution.

In Solaris a global array called cpu exists. The array is indexed by CPU IDs. Each
element of the array is a pointer to the struct cpu structure. The structure contains
a platform-specific part called mcpu (‘m’ standing for ‘machine’). The mcpu structure
contains

• a pointer to the kernel stack,

• a variable counting the number of register windows which are currently in the
userspace window buffer,

• the userspace window buffer itself.

In Solaris macros for retrieving the pointer to the kernel stack and the window
buffer from this in-memory structure are defined. They are used from the sys_trap
routine.

In Solaris the scratchpad registers can not be used for snapshotting these pointers,
since the scratchpad registers are used for different purpose, as described in Section
8.2.2.

8.7 Niagara Input and Output

Both the Simics-simulated Sun Fire T2000 server and the real Sun Fire T1000 Enterprise
server contain no framebuffer. Input and output is possible only via a serial line. The
hypervisor API provides hypercalls for putting a character to the serial output and for
reading a character from the serial input. HelenOS uses purely these hypercalls for
input and output, no special device driver is implemented (even though the input and
output functionality is contained in a separate module in the drivers directory, it is
not a real device driver, but a kind of pseudodriver).

8.7.1 Output from Kernel

Output from the kernel is very simple; to print a character, the kernel calls the CONS_-
PUTCHAR hypercall, passing the character to be printed in the %o0 register.

The only problem the pseudodriver must cope with is that if the output buffer is
full, the hypercall will refuse to print the character and it will return the EWOULDBLOCK
error code. Since it takes only a very short instant until the buffer ceases to be full,
the pseudodriver just spins as long as the EWOULDBLOCK code is being returned. Once
the EOK code is returned, the pseudodriver knows the character has been successfully
printed.

Surprisingly, on the Simics-simulated machine HelenOS never noticed hypervisor
returning the EWOULDBLOCK code, the output worked even without the spinning. On
the real machine, on the other hand, even printing the very first character failed (prob-
ably because the output buffer became full due to OBP). Adding the spinning was one
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of the very few things which had to be adapted to make HelenOS run on a real Niagara
machine. The author thinks that EWOULDBLOCK was never returned because Simics sim-
ulates a machine with a 5MHz processor, which is a far cry from the real processors, so
the Simics machine is too slow to make the output buffer full.

8.7.2 Input to Kernel

To read a character from the serial line, HelenOS input pseudodriver issues the CON-

S_GETCHAR hypercall. The hypercall takes no input parameters. If there is a pending
character in the input buffer, the hypercall picks the character from the buffer, returns
EOK as an error code and returns the character read in the %o1 register.

Since the input is performed by actively requesting the hypervisor, the input pseu-
dodriver works in a polled mode. This is essential because the hypervisor may not
notify the kernel via interrupts.

8.7.3 Userspace I/O Driver

HelenOS is a microkernel, so userspace device drivers are ordinary user processes
(tasks). Before dwelling on the details of the userspace Niagara I/O driver, let us sum-
marize how a HelenOS task can communicate with a device. The tasks may

• map a region of the device memory into their address space,

• register themselves to be notified of interrupts and

• ask the kernel to execute a few load and store operations upon an interrupt; the
load and store operations to be executed are specified by means of so called pseu-
docode.

It is not possible, however, for a task to issue a hypercall. Without an additional
support from the kernel, the userspace tasks have no way how to make input and
output operations purely by hypercalls. In HelenOS the userspace I/O drivers have
their kernel counterparts. The counterparts provide that additional support for the
userspace drivers.

Input to Userspace

If the input is not grabbed by the kernel (i.e. the system is not switched to the kernel
console) and the kernel detects that there is a character to be read, the kernel input
driver reads the character, saves it to a temporary storage and notifies the userspace of
a fictional interrupt. The value of the character read is passed to the userspace via a
pseudocode (a new pseudocode instruction CMD_NIAGARA_GETCHAR is defined for this
purpose).

Output from Userspace

Userspace output is done by writing the output to an area of memory shared between
the userspace output driver and the kernel output driver. The area is owned by the ker-
nel output driver, which publishes the area’s real address and size and the userspace
counterpart just maps this area into its own address space. The kernel output driver

86



CHAPTER 8. PORTING HELENOS . . . 8.8. MULTIPROCESSING

regularly checks the area (in the same thread as the keyboard polling takes place) and
prints any characters to the output using hypercalls.

Conclusion

The way how the I/O operations are performed from the userspace is a little bit cum-
bersome. Anyway, it is one of few ways how it can be implemented if we do not
want to bother with a specialized I/O device driver. On Niagara, the I/O device is
called QCN, but its documentation is not publicly available. Implementing QCN de-
vice driver would require additional reverse engineering, as in case of the Serengeti
console (see Section 7.5.2). Since the machines equipped with a Niagara processors are
server machines, implementing the I/O driver is not a focal point. Thus the provisional
I/O driver is pretty sufficient.

8.8 Multiprocessing

Niagara is a heavily parallel architecture, therefore support for multiprocessor config-
urations is a crucial issue of every operating system with Niagara support. It is impor-
tant to emphasize that by support for multiprocessors on Niagara we mean the ability of
an operating system to make use of all the logical processors (Niagara-based machines
can contain only one physical processor chip). Every time we use the term processor or
CPU in this chapter, we will always mean a logical processor.

Adding support for multiple processors to HelenOS was very tricky. The basic
problem was to make the application (i.e. non-bootstrap) processors execute our code.

8.8.1 Waking the Application Processors up

In the original UltraSPARC HelenOS port the application processors are woken up
by means of an OpenBoot client API call. Since the Niagara port tries to avoid using
the OpenBoot and prefers the hypervisor API calls, the first thing the author of this
thesis tried was issuing a CPU_START hypervisor API call. This call takes the following
arguments: cpuid of the processor being woken up, the value of the PC register to be
set on the processor being woken up, and the value to be written to the %o0 register of
the processor being woken up.

Unfortunately, the CPU_START call returned an EINVAL error code when issued.
This means that the CPU which was about to be woken up was not in the stopped state,
but in the running state. The CPU_START hypercall simply refused to wake a processor
which was already running. The reason why the application processors are already
running when the HelenOS bootloader is passed control remains a mystery. The official
documentation states that after switching the machine on all the application processors
must be stopped and only the bootstrap processor must be running. Maybe it is the
OBP who wakes the processors up. Maybe the Niagara documentation and the actual
implementation do not fully correspond. Anyway, in order to make the application
processors execute HelenOS code, they must be stopped first and then woken up again
(having their PC register set to some address in the instruction memory containing
HelenOS code). Stopping the processor is unfortunately tricky as well.
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8.8.2 Stopping the Application Processors

The hypervisor API provides developers with a CPU_STOP hypercall. The hypercall, as
apparent from its name, should stop a running logical processor. However, when the
hypercall is issued without special provisions, it always returns the ENOTSUPPORTED

error code. The error code indicates that the hypercall is not supported by the platform.
Experiments with trying to stop (or directly wake up) the processors via the OBP

failed.

8.8.3 Setting the API Version

In the hypervisor documentation [hypervisor] in chapter number 11 there is a mention
about so called API versioning. It states that in order to be able to use certain hypervisor
API calls (such as CPU_STOP), the hypervisor API must be explicitly set to a higher
version first using a special hypercall. The CPU_STOP hypercall is a part of the 1.1
version of the hypervisor API, whereas the default hypervisor API version is set to 1.0.
Neither setting the hypervisor API version to 1.1 helped, though.

8.8.4 Problem Setting the API Version on Simics

For setting the hypervisor API version a special trap with a dedicated trap number is
used (so called core trap). Before issuing the ta instruction the desired version of the
API must be encoded to the output registers.

On a real machine the core trap succeeds. On the Simics machine, however, it re-
turns an EBADTRAP error code. The error code indicates that the trap number or the
function number supplied is wrong. By inspecting the disassembled piece of memory
of the hypervisor the author found out that the hypervisor on the Simics machine will
always return the EBADTRAP error code, no matter which function number is supplied.

Due to this fact the author temporarily gave up porting HelenOS to the Simics-
simulated Niagara machine and concentrated purely on the real machine. Eventually
the way how to wake processors up on a Simics-simulated Niagara was discovered.
See Section 8.8.9 for more details.

8.8.5 Problem Stopping CPUs on a Real Machine

The hypervisor API version can be set to 1.1 on a real machine without any problems.
Nevertheless, even when the API was successfully set to 1.1, the CPU_STOP hypercall
still returned EINVAL every time it was issued.

8.8.6 The Problem Solved

The author asked Tomáš Hrubý, the author of the Niagara port of the OK-L4 system, to
try to run HelenOS on a different Niagara-based machine than the one which HelenOS
was originally tested on. This time not only that the hypervisor API version could
be successfully set to 1.1, but even stopping the CPU using the CPU_STOP hypercall
succeeded. Consequently, the version of the hypervisor was to be suspicious of.

On the Niagara machine HelenOS was originally developed on, the 1.3.4 version
of the hypervisor was installed. On the machine which belonged to Tomáš Hrubý, the
1.5.2 version of the hypervisor was installed.
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Upgrading the firmware solved the problem. With the newest version of the firmware
the CPUs can be stopped without any problems. Once stopped, they can be woken up
by the CPU_START hypercall and made execute the HelenOS code.

8.8.7 Start of the Application Processors

The total number of CPUs is detected in the smp_init function by iterating through
all the ‘cpu’ nodes of the machine description and adding 1 to the counter for each
‘cpu’ node encountered.

Waking the application processors up is done in the kmp function. First, all the
application processors are stopped. The CPU does not stop immediately after issuing
the CPU_STOP hypercall, but a short time later. After issuing the CPU_STOP hypercall,
the kernel actively waits for the CPU to be brought into the stopped state. The state of
the CPU can be tested via a CPU_STATE hypercall:

__hypercall_fast1(CPU_STOP, i); // stop CPU with cpuid = i

// actively wait for the CPU to stop running
uint64_t state;
__hypercall_fast_ret1(i, 0, 0, 0, 0, CPU_STATE, &state);
while (state == CPU_STATE_RUNNING) {
__hypercall_fast_ret1(i, 0, 0, 0, 0, CPU_STATE, &state);

}

Once the processors have stopped, they may be woken up. The program counter is
set to the very first instruction of the code in the start.S file (i.e. the same instruction
which is executed right after the control is passed to the kernel from the bootloader
on the bootstrap CPU). In the CPU_START hypercall the start of the physical memory is
passed. The application processor will find the value in its %o0 register.

The steps made by the application processor are very similar to those made by the
bootstrap processor. Let us summarize them.

1. The starting address of the physical memory is extracted, the basic runtime envi-
ronment (the PSTATE register, the window configuration registers, etc.) is set up.
The kernel trap table is set.

2. The initial mapping is set up in the MMU. This process is identical to taking over
the MMU on the bootstrap CPU (even though a slightly simpler process would
be sufficient, since the APs start with MMU disabled, so there is no danger that
they would overwrite the mapping of the code they are executing).

3. The fault status area is set. The cpuid is written to the first scratchpad register,
the address of the fault status area is written to the second scratchpad register.

4. The MMU is explicitly enabled. This is a difference from the bootstrap processor,
where the MMU was already enabled by the OBP.

5. A temporary stack is configured. The temporary stack which was initially used
by the bootstrap processor is reused by all the application processors during their
startup phase (the application processors start up sequentially, so their startup
phases never interleave).
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6. Kernel jumps to the generic function called main_ap, which performs AP-specific
initialization steps.

8.8.8 Waking CPUs up: Comparison with the Original Port

In the original UltraSPARC port the application processors are woken up by means of
an OBP API call. There are no such issues as on Niagara – the processors are already
stopped when HelenOS boots, so they can be easily woken up.

In the original port another issue arises, though. Since the OPB API may not be
used once the kernel has booted (HelenOS kernel takes the full control over the ma-
chine, shooting down the OBP), it is the HelenOS bootloader who actually wakes the
processors up. When the application processors start, they make a basic initialization
and then continue spinning in a loop. A CPU stops spinning when a waking_up_mid
variable becomes equal to the CPU’s MID. The waking_up_mid variable is set by the
kernel in the kmp function.

8.8.9 Waking Processors up on Simics

The application processors can be made execute HelenOS code even on Simics. The
way how it is achieved is not very straightforward, it is a kind of trick.

As mentioned in Section 8.2.1, the initial virtual-to-real mapping established by the
OBP does not map the virtual address zero onto the start of the real memory, but onto
the address which is 4 M further. It has also been mentioned that the OBP stores some
of its data structures to this 4MB piece of memory. Besides other things, the OBP puts
its trap table into that area.

When the kernel boots, the application processors are already running (see Section
8.8.1), most probably looping in some piece of OBP code. In order to make the appli-
cation processor execute HelenOS code, the bootstrap processor can:

• replace the code of the OBP inter-processor interrupt handler with a piece of He-
lenOS code (the OBP IPI handler is located somewhere in the first 4 M of the real
memory), and

• send an inter-processor interrupt to the CPU being made execute HelenOS code.

The piece of code which is copied to the first 4MB area of the real memory is located
in the start.S file. Its main job is to jump to the first instruction of the kernel.

As for now, the address of the OBP inter-processor interrupt handler is hardwired
in the code. It was obtained by reverse-engineering using Simics. The only purpose of
the SMP on Simics was to debug some issues which would be too hard to debug on a
real machine. Only one AP can now be running on Simics. Should there ever be a need
to implement a thorough support for SMP on the Simics-simulated Niagara machine,
the mechanism would have to be adapted a little bit. Most probably the bootstrap
processor would have to read the value of the TBA (trap base address) register and save
it to a global variable, where the code for replacing the OBP inter-processor interrupt
handler would pick it up from.
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8.8.10 Inter-processor Interrupts

The registers which are used to send and analyze the inter-processor interrupts (IPIs)
on sun4u have been made hyperprivileged on sun4v. The Interrupt Vector Trap, which
is invoked upon the receipt of an IPI on sun4u, has also been made hyperprivileged on
sun4v. On sun4v the inter-processor interrupts are sent and analyzed via hypervisor
API calls and they are reported via a new trap called CPU Mondo Trap. CPU mondo is a
term used to refer to a CPU-to-CPU interrupt message, as opposed to so called Device
mondo, which is used to refer to an interrupt sent by an I/O device.

Initialization of the CPU Mondo Queues

In order to be able to receive the IPIs, each processor must configure so called CPU
mondo queue, which is a buffer where the hypervisor stores IPI messages upon their
receipt. The queues are declared in the kernel/arch/sparc64/src/trap/sun4-
v/interrupt.c file: the global variable cpu_mondo_queues is a two-dimensional
array, whose first dimension index is the ID of the CPU and whose second dimension
index is the index of the particular 64-bit word inside the CPU’s CPU mondo queue.
The CPU mondo queues are then set up using a CPU_QCONF hypercall. HelenOS con-
figures the CPU mondo queues to contain 8 entries. Since each entry (according to the
hypervisor documentation) takes up 8 64-bit words, the size of a particular queue is 8
× 8 × 64 bits = 512 bytes.

Sending CPU Mondos

The CPU mondos (IPIs) are sent via a CPU_MONDO_SEND hypercall. The hypercall takes
the CPU mondo message and a list of CPU IDs as its parameters (notice that on sun4u
the IPI must be sent separately for each CPU, it is not possible to send as single IPI to
a group of CPUs).

The code invoking the hypercall can be found in the kernel/arch/sparc64/s-
rc/smp/sun4v/ipi.c file. The implementation is split into three functions. One of
them sends the IPI to a given set of CPUs, another one sends the IPI to one particular
CPU (this one is used to make an AP execute the HelenOS code on Simics, see Section
8.8.9) and the last one broadcasts the IPI to all the CPUs (this one is used to make a
cross-call).

Receiving CPU Mondos

When a CPU receives a CPU mondo, the hypervisor stores the mondo message into
the queue the processor has defined, and notifies the privileged code by jumping to
the CPU Mondo Trap handler in the privileged trap table. The position at which the
most up-to-date mondo message is located is indicated by the value of the CPU_MO-

NDO_QUEUE_TAIL register. The CPU_MONDO_QUEUE_TAIL register is an ASI-accessible
register which contains an offset to the first byte of the last mondo message received.

In HelenOS the trap is handled by the cpu_mondo function defined in the ker-
nel/arch/sparc64/src/trap/sun4v/interrupt.c file. The function picks the
mondo message up from the mondo queue. The position to which the next mondo
message will be stored is represented by the value of the CPU_MONDO_QUEUE_HEAD reg-
ister. The CPU_MONDO_QUEUE_HEAD register is an ASI-accessible register which contains
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an offset to the first byte of the next mondo message to be stored to the buffer. It is a
responsibility of the cpu_mondo function to modify the CPU_MONDO_QUEUE_HEAD reg-
ister after reading the mondo message. The CPU_MONDO_QUEUE_HEAD value is incre-
mented by the size of the mondo message (8 bytes), modulo the size of the buffer (8 ×
8 bytes).

8.8.11 Optimal Scheduling

The last issue having something to do with multiprocessing is preventing the threads
from being unevenly distributed over the physical processor cores.

Motivation

As outlined in Section 5.1, the T1 processor chip consists of several physical processor
cores, each core containing several logical processors. Whereas threads distributed
over different physical cores are really running in parallel, threads distributed over
different logical processors of the same physical core alternate with each other each
processor cycle.

Imagine a processor chip has four physical cores, each core having four logical pro-
cessors. Imagine there are exactly four threads running on the system. When those
four threads are evenly distributed over all the physical cores, the total throughput is
four times higher than when all the threads are distributed over different logical pro-
cessors of the same physical core, thus having to share the performance of the single
core.

Our goal will be to prevent the scheduler from distributing the threads unevenly
among the processor cores.

Suboptimal Scheduling without Modifications

In HelenOS on each CPU there is a load balancing thread. The thread is sleeping most
of the time, being periodically activated (in the current implementation it is activated
once a second). Load balancing thread ensures that the number of ready threads on a
particular CPU will be roughly the same as the average number of ready threads per
CPU.

At first sight it may seem that thanks to the load balancing thread the threads will
be evenly distributed over the physical cores – if there is a roughly equal number of
threads on every logical CPU and there is the same number of logical processors per
one physical core, there will be roughly the same number of threads per a physical
core. It is, however, not so simple.

The problem is that if the average number of ready threads per CPU is not a whole
number, there will always be (small) differences in the number of ready threads on
particular CPUs. And if the CPUs which have the smaller number of ready threads
belong the same core and/or the CPUs which have the greater number of ready threads
belong the same core, the load of the physical cores will be imbalanced. In the example
from the last section we had four threads in the system which where distributed over
four logical processors, which seemed a perfectly even distribution. However, all the
CPUs with one ready thread belonged to the same physical core and all the CPUs with
no ready threads belonged to the rest of the physical cores. Thus a great load imbalance
arose.

92



CHAPTER 8. PORTING HELENOS . . . 8.8. MULTIPROCESSING

Solution

The solution is that the load balancing thread checks not only how many threads to
steal from other CPUs in order to make the CPUs evenly loaded, but also how many
threads to steal from other CPUs in order to make the cores evenly loaded. In the load
balancing thread of a CPU c which belongs to core core1 a calculation described by
this pseudocode is performed:

average := readyThreadsTotal / physicalCoresCount
toSteal := average - core1.readyThreads
if toSteal <= 0

return
for i := 1 to toSteal

let CPU c be the most idle CPU of core1
(when including the threads to steal)

c.proposedThreadsToSteal++

When deciding how many threads to steal, a maximum of these two values is taken:

• average CPU’s thread count - c.readyThreads, and

• c.proposedThreadsToSteel.

Thanks to taking the second value into account a thread will be migrated even
though in the previous implementation it would not be migrated at all.

The implementation does not steal any threads for a processor if the processor be-
longs to a physical core which is overloaded. Stealing threads from other processor
cores by an overloaded processor core makes no sense. Stealing threads from the same
core is intensionally avoided in the overloaded cores, since a thread can not be mi-
grated multiple times in HelenOS and we would like the threads of the overloaded
core be stolen by other cores. So, the load balancing thread first ensures that all the
cores are equally loaded and only then it ensures that the processors within a particu-
lar core are equally loaded.

Detecting the Physical Cores

The last topic concerning the threads distribution the reader might be interested in is
the way how to detect which physical core a given logical processor belongs to. On
Niagara each physical core has just one integer execution unit (which is not shared
with other physical cores)3. Each integer execution unit is represented by its own node
in the machine description. The execution unit nodes are children of the CPU nodes4.
In the HelenOS kernel a data type called exec_unit_t has been defined, which en-
capsulates, apart from other things, list of all CPUs belonging to the same processor
core (i.e. sharing the same integer execution unit). The execution units are detected
in the detect_execution_units function in the kernel/arch/sparc64/src/-
smp/sun4v/smp.c file. Apart from detecting the execution units the function also
determines the total number of CPUs.

3There is, however, just one floating point unit per one Niagara processor chip, shared by all the
physical cores, thus by all the logical processors.

4Note that since the execution units are shared by multiple logical processors, the machine descrip-
tion is rather a DAG than a tree.
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8.9 UltraSPARC Architecture 2007

UltraSPARC Architecture 2007 is a descendant of the UltraSPARC Architecture 2005
specification. It is obeyed by the UltraSPARC T2 processor model.

There are certain changes between the T1 and T2 processor models, some of the
changes affect the hyperprivileged mode, some of them affect the privileged mode.
Changes affecting the hyperprivileged mode are not interesting for us, because op-
erating system kernels never run in the hyperprivileged mode. What is interesting
for HelenOS developers are the differences between the T1 and T2 processor models
which affect the privileged mode. There are only two such differences:

• The first one concerns the Floating-Point Status register’s Floating-Point Trap Type
field, which is not used in HelenOS, so it is not important.

• The second one is slightly more interesting. The Instruction Access Exception and
Data Access Exception traps have been replaced with more specific traps. For the
Data Access Exception these are:

– DAE_invalid_asi,

– DAE_nc_page,

– DAE_nfo_page,

– DAE_privilege_violation, and

– DAE_side_effect_page.

For the Instruction Access Exception these are:

– IAE_nfo_page,

– IAE_privilege_violation, and

– IAE_unauth_access.

All these traps are described in the UltraSPARC Architecture 2007 specification.

All the new traps have been added to the HelenOS trap table. Body of all the entries
of the DAE_* traps is the same as for the original Data Access Exception trap. Similarly,
body of all the entries of the IAE_* traps is the same as for the original Instruction Access
Exception trap. This implies that even though HelenOS is informed about the specific
cause of the trap, the information is not used and HelenOS acts as if it received the old
Data Access Exception or Instruction Access Exception traps.

HelenOS has not been tested on any machine equipped with an UltraSPARC T2
processor (simulated nor real). Nevertheless, the changes between the T1 and T2 mod-
els are so subtle that it is possible to claim that HelenOS (at least theoretically) supports
the UltraSPARC T2 processor.
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Related Work

9.1 Original HelenOS SPARC Port

This thesis has been meant as a continuation of Jakub Jermář’s master thesis [jj_thesis],
which concerned porting HelenOS to the older 64-bit SPARC models (the implemen-
tation of the original port is briefly described in Chapter 6). It is therefore natural that
the original port is the most influential work for this thesis. The source code of the
port to the JPS-compliant processors is (except for the Serengeti console driver, see
Section 7.5.2) in fact a modification of the source code of the original SPARC port. The
source code of the port to the Niagara-based processors often required writing brand
new pieces of code, but they were massively inspired by the original port as well,
mainly the bootloader, taking over the TLBs, kernel MMU misses handling and the
preemptible trap handler.

9.2 Other HelenOS Ports

9.2.1 Overview of HelenOS Ports

Table 9.1 summarizes and compares the existing HelenOS ports to different processor
architectures.

architecture real HW SMP
amd64 yes yes
arm32 no no
ia32 yes yes
ia64 yes yes
mips32 no no
ppc32 yes no
sparc64 yes yes

Table 9.1: Comparison of the Current HelenOS Ports

9.2.2 Inspiration by the Other Ports

Since the original SPARC port allows all the HelenOS features to be used on older
UltraSPARC processors, there was little need of looking for inspiration in HelenOS
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ports to completely different architectures. Some of them, however, served as a source
of inspiration for solution of particular problems.

In the source code of the mips32 port of HelenOS (specifically the MSIM input and
output driver) the author found how the serial input and output is controlled. Portions
of the code have been borrowed and used by the input and output drivers of both the
Serengeti machine and the Niagara-based machines.

Some pieces of inspiration also come from the ppc32 port, specifically from the
sources which are shared between the ppc32 and the sparc64 ports which concern
mainly the OBP. A deep understanding of the way how the OBP client interface is
accessed by the bootloader and the kernel was useful when the bootloader was being
modified to work on the newer UltraSPARC machines and on the Niagara-based ma-
chines and also when the function for setting the color palette was being written (see
Section 7.6.1).

9.3 Solaris

Solaris is the most mature operating system supporting the SPARC processors. It sup-
ports the widest range of SPARC processors and exploits the biggest set of features the
processors provide. The majority of information about its kernel may be obtained from
[sol_internals].

Solaris has also been a good source of inspiration during porting HelenOS to the
newer SPARC processors. The most useful piece of code investigated was the driver of
the Serengeti machine console (SGCN). Since the Serengeti machine console (SGCN)
has no publicly accessible documentation, the author reverse-engineered the Solaris
SGCN driver and used the information obtained to implement an analogous driver for
HelenOS (see Section 7.5.2 for further details).

9.3.1 Comparison with HelenOS

Even though Solaris is a much more advanced operating system than HelenOS, there
are a lot of problems both of the systems must cope with. Let us have a look at those
which have some connection to the JPS-compliant and Niagara-based processors. For
a comparison of HelenOS and Solaris which focuses the SPARC processors in general,
see [jj_thesis].

Serengeti Console

Since the Solaris implementation acted as a source for reverse-engineering, the He-
lenOS implementation is naturally much simpler. The address where the shared buffers
are present in the physical memory address space is hard-wired. The HelenOS imple-
mentation re-uses the shared buffers which have already been configured by the OBP
and does not configure them on its own. It is not notified of the keystrokes via inter-
rupts, but it uses polling instead. For more details, see Section 7.5.2.

Separation of the sun4u and sun4v Sources

There is a subtle difference between HelenOS and Solaris in a way how the source files
for the sun4u and sun4v architectures are separated. Both systems put the architecture-
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specific source files to different subdirectories called sun4u and sun4v, but both make
the branch on different level of the directory structure. In Solaris the sun4u and sun4v
subdirectories are almost at the top of the directory structure, in HelenOS they are the
leaf directories. Fore further details, see Section 8.1.3.

Usage of Scratchpad Registers

The sun4v processors offer a handful of read-write registers (called scratchpad registers,
see Section 5.5.1), typically four of them can be used by the privileged software for an
arbitrary purpose. In both Solaris and HelenOS to the first scratchpad register the ID
of the CPU is written at the boot stage, which is read from the time-critical sections of
the kernel code, such as the MMU miss handlers. In both systems the second scratch-
pad register holds the address of the MMU fault status area (memory area where the
hypervisor stores a description of an MMU exception, see Section 5.3.3), which is also
used from the time-critical sections of the kernel code. On the other hand, the third and
fourth scratchpad registers are used for a different purpose. In HelenOS, they are used
to hold the addresses of the kernel stack and the userspace window buffer respectively,
in Solaris they hold the base address and the size of the first and the second TSB of the
active userspace process respectively. For details see Section 8.2.2.

Hypercalls

HelenOS defines a set of functions in the forms of __hypercall_fastn, __hyperc-
all_hyperfast or __hypercall_fast_ret, where n is the number of arguments
the hypercall takes. These functions take the function number of the hypercall and the
input arguments of the hypercall, they return the error code and (some of them) the
output of the hypercall.

Solaris defines no such generic functions, but for each hypercall type it defines a
separate wrapper function. For details, see Section 8.3.

Preemptible Trap Handler

In Solaris there is a routine analogous to the preemptible trap handler which is called
sys_trap. Let us now concentrate purely on the differences connected to the sun4v
architecture. For general comparison of the HelenOS and Solaris SPARC preemptible
trap handler, see [jj_thesis].

The main difference is in the way how the kernel stack and the userspace window
buffer of a thread are snapshotted when a trap occurs in userspace. Whereas Solaris
stores the addresses of the stack and the buffer to an in-memory structure, HelenOS
uses the third and the fourth scratchpad registers respectively for that purpose. See
Section 8.6.2 for more details.

9.4 Linux

Linux is the second most mature operating system with the SPARC processors sup-
port, right after Solaris, with the second widest range of supported SPARC processor
models. It has also been a good source of inspiration during porting HelenOS to the
newer SPARC processor models, yet not that useful as Solaris, since Linux is poorly

97



CHAPTER 9. RELATED WORK 9.4. LINUX

commented and documented. There is no crucial piece of Linux code which helped
the author during the work on the port (unlike in Solaris, whose SGCN driver imple-
mentation helped in a considerable way). The majority of information about the Linux
kernel may be found in its source files. For further information, it is recommended to
visit the blog [davem] of David Miller (a person who ported the Linux kernel to the
SPARC processors).

9.4.1 Comparison with HelenOS

Linux is much more advanced than HelenOS and it exploits a much wider set of SPARC
processors features than HelenOS. Both systems, however, cope with a big set of sim-
ilar problems. Let us now focus on the differences which concern the JPS-compliant
and Niagara-based processors.

Separation of the sun4u and sun4v Sources

The way how the sun4u and sun4v source files are separated differs significantly be-
tween Linux and HelenOS. Whereas HelenOS separates the sun4u-specific and sun4v-
specific source files by putting them into separate directories (keeping the generic
sources in common directories), Linux does not separate the source files at all. The
sun4u-specific and sun4v-specific pieces of code are intermixed and it is decided at
runtime which ones will be executed. Sometimes the sun4v-specific subroutines are
integrated into the existing code in a way which is not very clean. See Section 8.1.3.

Usage of Scratchpad Registers

The usage of the scratchpad registers is exactly the same as in Solaris. See Section
9.3 for an overview of differences between HelenOS and Solaris, see Section 8.2.2 for
details on the scratchpad register usage in HelenOS and Linux.

Hypercalls

The way how functions performing the hypercalls are defined is exactly the same as in
Solaris. See Section 9.3 for an overview of differences between HelenOS and Solaris,
see Section 8.3 for a detailed description of the functions performing the hypercalls in
HelenOS and Linux.

Handling Kernel MMU Misses

Operating systems must cope with the fact that the SPARC MMU miss handler must
fit into 32 instructions, otherwise branching would be inevitable. Neither the HelenOS
nor the Linux kernel MMU miss handlers fit into 32 instructions. Whereas in the He-
lenOS handler the branching is apparent and straightforward, in Linux it is not appar-
ent at the first sight. In Linux the branch is done at the very first instruction of the
handler code, but the branch instruction is added to the instruction memory at run-
time, when the code is being patched (patching the source code at runtime is an ugly
trick Linux uses to incorporate sun4v-specific pieces of code into the existing sources).
For further details, see Section 8.5.2.
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Translation Storage Buffers

Whilst HelenOS uses only one TSB for every memory context, there may be two TSBs in
Linux, one for small and one for big pages. Moreover, Linux TSBs may have dynamic
size. See Section 8.5.3 for further details.
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Chapter 10

Conclusion

10.1 Enhancements

Support for the 64-bit SPARC processors was originally added to the HelenOS system
by Jakub Jermář as a part of his master thesis [jj_thesis].

Table 10.1 summarizes which processor models were supported in the original port
and which models have been added as a part of this thesis.

in original port added thanks to this thesis
UltraSPARC I UltraSPARC III
UltraSPARC II UltraSPARC III+
UltraSPARC IIi UltraSPARC IIIi

UltraSPARC IV
UltraSPARC IV+
UltraSPARC T1
UltraSPARC T21

Table 10.1: Supported CPU models

Support for particular machines equipped with the SPARC processor has been ex-
tended as well. Table 10.2 summarizes which machines were supported in the original
port and which ones have been added as a part of this thesis.

in original port added thanks to this thesis
Sun Enterprise E6500 Sun Fire 6800 (Serengeti)
Ultra 5 SunBlade 1500
Ultra 60 Sun Fire T1000 Enterprise

Sun Fire T2000

Table 10.2: Supported Environments

1Even though the UltraSPARC T2 processor is theoretically supported, the author had no chance to
test it either on a simulator or on a real hardware. There are not many differences between the T1 and T2
processors in the non-privileged and privileged mode. The T2-specific properties have been reflected in
the code; they are not tested, though. For more details on the UltraSPARC T2 support see Section 8.9.
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10.2 Achievements

The author has achieved all the goals which have been outlined in Chapter 1. The
number of new platforms supported is very wide, as outlined in Section 10.1, as well
as the number of new processor models. SPARC architectures are known to be very
diverse, which puts extra demands on the implementor. Despite this fact, HelenOS is
now able to run on two different simulated and two different real machines. On the
simulated Serengeti machine HelenOS works even with several configurations.

Despite its breadth, the implementation is deep in a sense that almost all the fea-
tures of HelenOS are accessible on the newly supported machines (with a small num-
ber of exceptions as described in Section 7.1.3). A reasonably big portion of SPARC
processors’ features is exploited. The reason for not exploiting some features is that
sometimes it would go behind the scope of this thesis, it would make the HelenOS
code less generic (portable) or that the value added would be simply small in our case.

The text of this thesis provides a good overview of the features which the SPARC
processors (especially the newer ones) provide the kernel programmer with. In three
chapters the properties of the newly supported processor models are explained deeply
enough so that the reader is able to understand the ongoing text. Apart from aspects
important for the system programmer the text mentions aspects notable for a curious
reader who is interested in low-level system architecture. The implementation chapters
thoroughly explain the changes which had to be made to the original HelenOS code
to support the new platforms, providing comparison with Linux and Solaris where
useful and applicable.

10.3 Contributions

By porting HelenOS to the newer UltraSPARC processors, HelenOS has become one of
the systems with the best support for the 64-bit SPARC processors, along with Linux,
Solaris or the *BSD systems. It has been confirmed again (as many times before) that
HelenOS is extremely generic and portable.

By investigating the newer processor models the author has contributed to the
general ‘know-how’ of the HelenOS project team. The thesis has been a big oppor-
tunity to solve challenging problems, such as making HelenOS boot on machines with
non-standard versions of firmware, reverse-engineering the Solaris driver of a non-
standard I/O device, debugging the kernel on a real machine before any output was
initialized or adding SMP support to the Niagara port.

Moreover, this thesis helps the academia by both the source code and this text. It
will help students and researchers in understanding the low-level aspects of operating
systems and in understanding the Sun machines’ and processors’ architecture.

10.4 Perspectives

Porting to the UltraSPARC T1 processor paved the way for support of other sun4v
processors. The UltraSPARC T2 processor is theoretically supported even now, but
testing on some machine equipped with a T2 processor (simulated or real) is needed.

By the time this thesis was written, Sun released Niagara descendant called Victoria
Falls. It is possible that in the future Sun Microsystems will release another Niagara’s
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descendant called Rock. Porting HelenOS to these processors should not be a big deal,
given the hypervisor shadows the kernel programmer from the very low-level details
of the processor by providing a relatively stable interface.

Also, the port to the JPS-compliant processors and the sun4v processors is not per-
fect and it would be very interesting to solve some issues connected with it, such as

• improving SILO so that it is able to boot on the non-standard firmware machine
without patching SILO binaries,

• rewriting the bootloader so that it is not limited by the constrained amount of
memory to be claimed on Serengeti,

• making the Serengeti console driver use interrupts instead of polling,

• improving HelenOS to be able to exploit all the physical memory even though
the physical memory address space is non-contiguous,

• adding support for the keyboard on the SunBlade 1500 machine,

• improving the bootloader so that it is able to cope with the fact that the virtual-
to-real mapping is biased by 0x400000,

• writing a driver of the Niagara console (QCN).

HelenOS is now undergoing a heavy development. Let us mention for instance that
the implementation of the TCP stack is in progress or the filesystem is being improved.
This opens interesting horizons.
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Glossary

architecture

When not speaking about the 64-bit SPARC processors, the term architecture de-
notes a group of processor models which have so many properties in common
that a common compiler backend is used to generate code runnable on these
models. IA32, AMD64, IA64, PPC32, ARM32, MIPS32 and SPARC64 are all ex-
amples of an architecture.

When speaking about the 64-bit SPARC processors, the term architecture is used
to distinguish between the older UltraSPARC I, II, III and IV-series processors
(referred to as sun4u) and the newer UltraSPARC T1 and T2 processors (referred
to as sun4v).

identity mapping

A virtual-to-physical (or virtual-to-real) memory mapping in which the virtual
address VA is mapped onto the physical (or real) address PA according to the
following formula:

PA = VA + C,

where C is the starting address of the physical (or real) address space. C is often
zero.

pre-JPS

Used to refer to the older sun4u CPU models that do not conform to the Joint
Programming Specification: UltraSPARC I, II, IIe and IIi.

SMC

SMC stands for self-modifying code. A piece of code is self-modifying, if it modifies
an instructions stream.

subarchitecture

This term is used to distinguish between the older sun4u processor models (Ul-
traSPARC I and II series) and the newer sun4u processor models (UltraSPARC III
and IV series).
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sun4u

Generally this term denotes the architecture of the Sun machines equipped with
an UltraSPARC I–IV-series processor. In this thesis, the term is used to denote the
UltraSPARC I–IV-series processors themselves.

sun4v

Generally this term denotes the architecture of the Sun machines equipped with
an UltraSPARC T1 or T2 processor. In this thesis, the term is used to denote the
T1 and T2 processors themselves.
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