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Abstract

HelenOS is a multi-server microkernel-based operating system, which supports a wide
variety of processor architectures. The system has a filesystem layer supporting multiple
filesystems, with implementation distributed among several server processes. Services for
client user-space applications are provided by a central virtual filesystem server, while
individual endpoint filesystem servers provide implementations of concrete filesystems.
The virtual filesystem server passes requests to correct filesystem and implements some
high-level operations. HelenOS comes with support for several in-memory filesystems and
a single disk-based filesystem — FAT16. While FAT filesystem works well, it is relatively
simple and does not provide some advanced functions. As part of the thesis, we added
read-only support for the second extended filesystem, which provides additional functions
such as sparse files. The filesystem has a very good potential to be incrementally extended,
as later versions of the filesystem (ext3, ext4), are partially backward compatible. The
filesystem is described in chapter 2. The implementation of the ext2 filesystem in HelenOS
is divided among multiple layers. A description of the implementation is provided in
chapter 3.
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Introduction

Operating systems may be divided into several groups based on how much code is run
in privileged mode. An operating system using monolithic kernel runs all system code in
the kernel, including device drivers and system services such as filesystem or networking
support. On the other hand, microkernel-based operating system runs only a limited
portion of code in kernel mode, where only basic system services such as thread scheduler
or interprocess communication facilities are present. Device drivers and other system
services run completely in userspace. A mixed approach using a hybrid kernel exists, in
this case, more code is run the kernel than in a microkernel OS, but some system services
are provided by userspace.

Most ubiquitous operating systems used to date such as Windows or Linux are based
on a monolithic or hybrid kernel, but multiple microkernel operating systems exist, most
of which are limited to a single architecture. HelenOS is a multiplatform, microkernel
based, open-source operating system developed by international team of developers that
supports half a dozen of processor architectures. The project was started and is mainly
developed at the Faculty of Mathematics and Physics at Charles University in Prague,
with contributions from all over the world1. While the system has basic functions working
(and new features are actively being developed), at the time of starting this thesis, the only
disk-based filesystem implemented in HelenOS was FAT16. In the mean time, several new
people joined the project and started to implement different filesystems, such as cdfs, ntfs,
minixfs or ext4. Our choice was the second extended filesystem, because it is widely used
in Linux based operating systems and the filesystem implementation may be extended
incrementally (as the filesystem is very extensible), possibly supporting newer revisions
of the filesystem such as ext3 and ext4, which are backward compatible to large extent.
While work on ext4 filesystem was started by a student of Faculty of Mathematics and
Physics at Charles University in Prague at the same time this thesis started, we believe
some duplication is common in open source projects and it enables evaluation of different
approaches.

We aimed to implement read-only support for the second extended filesystem in
HelenOS, while leveraging the benefits that microkernel architecture provides. The im-
plementation should integrate seamlessly with HelenOS VFS layer, so that the filesystem
can be used in standard way by HelenOS user-space applications.

1the number of international contributions is expected to rise, as HelenOS was accepted as a mentoring
organization for Google Summer of Code 2011
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Chapter 1

Filesystem interface in HelenOS

HelenOS is a microkernel multiserver operating system and as such, large amount of
system services is provided by user-space servers. The filesystem support is no exception.
There are multiple components working together to enable client applications to work with
files. These are distributed among several processes that communicate using HelenOS
inter-process communication (IPC) subsystem. The IPC allows processes in HelenOS to
exchange short messages (few processor registers) or to negotiate sharing or copying a
portion of memory, if it is necessary to communicate larger chunks of data.

Figure 1.1: Processes participating in HelenOS filesystem layer
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The processes may be divided into three groups. A client is the application that
wants to use filesystem services to execute common tasks as reading and writing of files or
reading directories. The application usually uses standard C library, which abstracts the
low-level interface from the program itself. Central to the filesystem support in HelenOS
is virtual filesystem server (VFS), it handles all client application requests, forwarding
them to appropriate filesystem server if necessary. A third group, the endpoint filestem
servers, provide implementations of filesystems. The endpoint filesystem servers mostly
serve requests made by VFS, but may forward the request to another filesystem when it
is necessary1.

1when lookup requests cross filesystem boundaries at mount points
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When the distinct parties in the filesystem layer need to refer to filesystem node,
they use a node identifier, which is called a VFS triplet. The first part is a filesystem
type identifier, or a filesystem handle, which VFS uses to uniquely identify a filesystem
implementation (i.e. endpoint server). As there may be multiple instances of a sigle
filesystem type handled by a endpoint server, the middle part of the triples identifies device
handle the filesystem uses to get data from (a filesystem cannot be mounted multiple times
using the same device). Last part of the VFS triplet is entirely provided by the endpoint
filesystem server. This identifier is unique within a filesystem instance2 and must stay the
same while the filesystem is mounted[1].

1.1 C library support

The standard library implements convenient application programming interface that wraps
low-level operations that the virtual filesystem(VFS) server provides through IPC. The
C library API resembles that of POSIX, but it is not exactly the same. HelenOS uses
slightly different error codes. Moreover, while HelenOS’ filesystem API is currently quite
usable, it does not provide some advanced features commonly present in other operating
systems.

The standard library also implements high-level handling of path operations. This
includes managing task’s current working directory, exposed as getcwd and chdir func-
tions, which is a common feature of operating systems. Additonally, the library is solely
responsible for translating any relative paths used in a program to absolute paths before
forwarding any request to the virtual filesystem server. This is because VFS operates
on absolute paths, which allows its design, and that of endpoint filesystem servers, to be
simpler[1].

The handling of absolute paths in the standard library has several implications. First
of all, as a result of this design decision, filesystems in HelenOS do not report special
directories . (dot) and .. (dot-dot) in directory listings. This simplifies3 client application
code that traverses directory structure — it simply does not need to ignore such nodes.
Secondly, when symbolic links will be implemented in HelenOS, the path absolutization
process in standard library will probably affect which directory will be used if a .. (dot-
dot) component is present in a path after symbolic link. For example, if we take a
symbolic link named /a/link which points to directory /b/c and we try to access path
/a/link/.., we will get different results in HelenOS as opposed to POSIX compatible
operating systems. The used path will be /a in HelenOS, whereas it shall resolve to /b

according to POSIX standard.
Last but not least, the C library (in cooperation with HelenOS program loader) pro-

vides support for standard input and output streams. An application that wants to
execute a new program may pass a list of VFS triplets to loader, which then passes it
to libc in the new program. The standard library then opens the files the VFS triplets
represent. This has a disadvantage that it is not possible to redirect standard output of
a program in a way that the output is appended to the end of a file yet (As the intial
position in the file after it is opened by libc is always zero). Currently, it is not possible
to transfer full file descriptors between processes4 either.

2which is identified by the first two values of the triplet
3although the difference may be barely noticeable
4which would solve the problem above
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1.2 Virtual filesystem server

Virtual filesystem server (VFS) is a key component in HelenOS’ filesystem support layer.
It is a single service that a client application needs to be aware of to work with the
filesystem. It not only routes all client requests to endpoint filesystem server, but also
implements some operations that are common to all filesystems.

VFS provides a naming service that keeps track of all registered filesystem types. For
each filesystem type, it keeps a phone to the process that registered itself to handle it.
Typically, one endpoint filesystem server handles only a single type of a filesystem.

The server is also responsible for managing file handles, which clients use to refer
to open files. For each such open file, the VFS keeps an associated state, such as size
and current seek position. This enables VFS to execute certain operations, such as seek,
without the need to comunnicate with an endpoint filesystem server[1].

Like other operating systems, HelenOS supports the concept of mounting. There is
one hierarchical filesystem namespace, where filesystems may be mounted on existing
directory nodes. The virtual filesystem server itself handles a special mount point /. It
is the only mountpoint handled by VFS. Mounts over filesystem nodes are handled by
endpoint filesystem servers, so if the mount point is not /, the VFS delegates the action to
the respective filesystem for further processing. The virtual filesystem server accomplishes
this by looking-up5 the node corresponding to the mount point and forwards the request
to the filesystem this node belongs to. Lookups and processing of mounting in endpoint
filesystem servers is described in section 1.3.

Yet other feature delivered by VFS is support for locking of nodes. For each open node,
the server keeps an internal read-write lock to prevent concurrent access to a given node6.
This feature moves common functionality of locking nodes from endpoint filesystem servers
to the VFS, which is useful mainly in simpler filesystem implementations. In fact, there
are cases when this behaviour is not wanted, such as when the filesystem needs to block
a client until another client performs an action with the node. The author discovered one
example when he initially wanted to familiarize himself with the HelenOS filesystem layer
by writing a filesystem that provides pipes7. Another difference of a pipe vs. regular file
is that for pipes, the size and seek position has no useful meaning and therefore the server
should not increment the file size on writes. The limitations has since been fixed by core
HelenOS developers by allowing a filesystem to specify such behaviour in its filesystem
registration structure (vfs_info_t).

The VFS also manages a pathname lookup buffer (PLB). This is a cyclic buffer used
to store path information to be used by the endpoint filesystem servers. It is shared as
read-only memory to the filesystem drivers, therefore the VFS has ultimate control of its
contents. Whenever a lookup request is to be made, the VFS reserves space in the buffer
and stores a canonical path8 in the newly claimed space. This buffer is used to avoid
copying the path among VFS and multiple endpoint servers as the lookup operation may
cross multiple mount points[1].

5the lookup request is forwarded to the filesystem mounted at the root mount point
6concurrent access to different filesystem nodes is still allowed
7which he did not finish as that wasn’t the goal of the thesis
8canonical path does not contain dot and dot-dot components or two consecutive slashes
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1.3 Filesystem drivers

Filesystem drivers for a concrete filesystem are implemented as separate server processes.
Each filesystem driver waits for, and serves, requests from VFS, which uses IPC protocol
specially designed for this purpose (VFS out protocol)[1]. Client applications do not
connect directly to the endpoint filesystem servers.

Usually upon startup, the endpoint filesystem server register itself in VFS by providing
an instance of vfs_info_t structure. At that point, the filesystem should start listening
for requests from VFS. A client may then request VFS to mount the filesystem using a
filesystem identifier, optional device handle and mount options.

When a filesystem is being mounted on a node in another filesystem (or directly to
the filesystem root), it receives the VFS_OUT_MOUNTED IPC message. After sending the
VFS_OUT_MOUNTED message, the mounter initiates a data transfer of mount options string.
The filesystem server should then attempt to initialize the filesystem using the given mount
options. In case of disk-based filesystems, this involves reading the filesystem superblock,
or its equivalent, from block device identified by device mapper handle provided as the
first IPC argument. The server then either responds with an IPC answer containing an
error code, or a three-argument EOK9 IPC answer that contains, in order, index, size and
link count of the root directory of the filesystem.

While the VFS_OUT_MOUNTED is sent when the filesystem is being mounted, a pair
message, VFS_OUT_UNMOUNTED, is sent when the filesystem should unmount. This message,
just like all others in VFS out protocol, contains a device handle to identify the filesystem
instance to be unmounted. The filesystem driver should finalize all filesystem state and
unmount the filesystem, with result of the operation indicated by a no-argument IPC
reply. Although VFS keeps track of open nodes, and responds with EBUSY right away
if there are any, the filesystem server may encounter a different error, that needs to be
reported back to the client.

As already mentioned above, endpoint filesystem servers are also responsible for
mounting other filesystems on existing filesystem nodes. Whenever a filesystem server
receives the VFS_OUT_MOUNT message, it should mount another filesystem on a node indi-
cated by the message arguments. The first and second arguments of the message define
a mount point10, using device handle and index. The second pair of arguments define
the filesystem to be mounted. This is the mountee filesystem handle, as allocated dur-
ing filesystem registration, and device handle of the device to be mounted. After the
VFS_OUT_MOUNT message, a connection to the mountee filesystem is sent to the mounter
filesystem using a IPC_M_CONNECTION_CLONE message, which is a special system message
and causes a connection to be cloned for use in the receiver task. After the mounter ac-
knowledges the connection, the VFS initiates a data transfer of string containing mount
options. When all this communication is done, the mounter filesystem has enough infor-
mation to prepare for the target node and send VFS_OUT_MOUNTED message to the mountee
filesystem server. Upon receiving answer from the mountee filesystem, the filesystem takes
any necessary steps to update its state and itself responds to VFS by forwarding the an-
swer.

Just like VFS_OUT_MOUNTED, the VFS_OUT_MOUNT message has its counterpart used
while unmounting. The messsage is called VFS_OUT_UNMOUNT and instructs the endpoint
filesystem server to unmount a filesystem from the mount point specified in the message.
The mount point is specified as a node usually is, i.e. device handle in argument 1 and

9EOK represents no error
10the node in the mounter filesystem
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Figure 1.2: Example path name lookup of /mnt/data/path/to/file.txt
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node index in argument 2 of the message. All other information the filesystem needs to
unmount the mount point, such as mountee phone, was communicated when the mount
point was estabilished (and the filesystem needs to store the information also for lookup
operations to work). The filesystem just needs to request the mountee to unmount using
VFS_OUT_UNMOUNTED message and update its state to free the mount point.

Another operation that the endpoint filesystem server needs to implement is transla-
tion from file names to node indices. As the file name, when delivered to VFS, may contain
multiple mountpoints along the path, it may be necessary to bubble the request through
multiple endpoint filesystem servers. When the endpoint filesystem server receives the
VFS_OUT_LOOKUP IPC message, it should lookup a node corresponding to a path in por-
tion of the pathname lookup buffer11 (PLB) indicated by message arguments[1]. This is
the message with most arguments in the VFS out protocol:

1. index of the first unresolved character in the PLB

2. index of the last unresolved character in the PLB (inclusive)

3. device handle that identifies the filesystem instance

4. lookup flags

5. index of the old node when linking

The behaviour of this operation might be controlled by lookup flags. Caller may
specify that the lookup only targets regular files (L_FILE), directories (L_DIRECTORY),
root directory (L_ROOT), or mount points (L_MP). When the server finds a mount point, it
usually crosses it by forwarding the lookup request (with adjusted path start position) to
the mountee filesystem server. When the L_MP flag is set, it the mount point is not crossed
if it is the last component of the PLB path. This is useful mainly during unmounting, when
the VFS needs to identify the node the mount point is created over. Additionally, if the
flags contain L_CREATE flag, the filesystem should create the target node. If, in addition
to L_CREATE, the L_EXCLUSIVE flag is used, the operation will fail if the file already exists
(creation of directories always fails if the target exists). L_LINK should cause the filesystem
to link the node identified by the fifth argument to a node. Additonally, while performing

11described in the section about VFS
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operations itself, the VFS may set additional flags unavailable to clients, such as L_UNLINK
to remove a leaf node or L_OPEN to indicate opening operation.

A message called VFS_OUT_READ is used to read data from the endpoint filesystem
server. The arguments contain a device handle, node index, and low and high part of
position. The position is split between third and fourth argument as it is 64-bit number
and indicates the position a file/directory to read from. Just after sending VFS_OUT_READ

message, the client initiates a data transfer which is used to return the nodes contents. In
case of files, this is the raw data of the file, starting at the file offset given by position. In
case of directories, the meaning of the position value is not that precisely defined, although
it starts at 0 for the first directory entry and the operation returns a name of directory
entry. The VFS then advances the file handle’s position according to the number returned
in the first argument of the reply to the original VFS_OUT_READ.

Writing is done similarily, using the VFS_OUT_WRITE IPC message. This differs from
reading in that the node must be a file and the data transfer has the opposite direction.
The answer has, in addition to bytes to advance, a second argument that stores the new
size of the file. Otherwise, semantics of the message are similar to the VFS_OUT_READ

message.
A file may be truncated by sending the VFS_OUT_TRUNCATE message. This also has

the same arguments as the VFS_OUT_READ message. The same message may also enlarge
the file if the position is beyond the end of file. The answer to this message does not have
any arguments.

Additional information about a node may be obtained using a message called
VFS_OUT_STAT. It has only two arguments — the device handle and node index. The VFS
uses this message to retrieve a stat structure, containing metadata such as link count,
type of node (file/directory) or size.

The VFS sends a VFS_OUT_OPEN_NODE and VFS_OUT_CLOSE messages when nodes are
opened and closed, respectively, to allow the filesystem to maintain state for open nodes.
Both messages take device handle and node index as arguments. The open message
returns low and high parts of size, the link count and node type.

The filesystem receives a VFS_OUT_DESTROY when a node should be removed from the
filesystem. As is common, the arguments are device handle and node index. At this point,
there should not be any references to the node, so the filesystem is expected to free the
node’s on-disk structures.

Last but not least, the filesystem driver may be requested to synchronize changes
of a node to disk using a VFS_OUT_STAT IPC message. This message too contains an
identification of the node passed as the device handle and node index.

1.4 libfs

As the filesystem servers are responsible for operations that don’t differ much among
filesystems, a library that abstracts this common code exists. This enables code of the
filesystem driver to focus on actual implementation of the filesystem specific behaviour
instead of reinventing the wheel[1].

The library provides a skeleton implementation of several common operations. It
provides simple interface to register a filesystem with VFS. The filesystem server needs
to provide a VFS phone, vfs_info_t structure and connection handler function and the
libfs will do the rest, returning a filesystem handle.

A higher level abstraction is provided by the library. When a filesystem provides
implementation of libfs operations, stored in a libfs_ops_t structure, it is possible to

7



call libfs to entirely respond to some of the messages of the VFS out protocol. This
includes complex operations such as VFS_OUT_LOOKUP[1].

The library represents each filesystem node by a fs_node_t structure. The implemen-
tation needs to provide libfs operations such as retrieving a root node, retrieving nodes by
index, releasing a reference to a node, or searching for a node in a directory by name[1].

It is worth noting that if the operations to get node references are called multiple
times for a single node, the returned pointers to the node must be the same so long as
the reference count of the node is still non-zero. This is necessary to allow libfs to keep
state for referenced nodes, such as information about mount points.

8



Chapter 2

Ext2 filesystem

The second extended filesystem was designed for Linux, an operating system that aimed
to implement unix-like interface. In this spirit, it is possible to store special objects such
as devices, FIFOs, sockets among files. Directories in the second extended filesystem may
be viewed as special types of files too[4].

One goal that creators of ext2 had in mind when designing the filesystem was that
it should be extensible[2]. This means that multiple revisions of the filesystem are to
some extent compatible. The filesystem itself contains information about revision used to
format the filesystem, expressed as a major and minor revision number.

Starting with revision 1 of the filesystem, additional compatibility features were added
to the filesystem. The superblock contains three 32-bit flag fields to signal the features
used in the filesystem. Each field corresponds to a different set of features[4]:

• Features that are backward compatible even for writing. The implementations are
free to modify the filesystem even when such a feature is not supported and it is
guaranteed that they do not break the metadata

• Features that are read-only backward compatible. The implementations are free
mount the filesystem read-only, but writing to the filesystem would damage the
metadata. Examples of features in this category are the sparse superblock feature.

• Features that are incompatible. If the implementation does not support the features,
it should refuse mounting the filesystem. Examples of incompatible features include
file compression.

First revision1 of the second extended filesystem had fixed inode size and index of
the first ordinary inode. This changed in revision 1, where those values are stored in a
superblock. The presence of this information in superblock allows to extend the filesystem
structures even further.

Another feature introduced in revision 1 of the ext2 filesystem is a possibility to reduce
number of backup superblocks stored in the filesystem. With revision 0, a copy of the
superblock was stored in every block group and led to unnecessarily high redundancy for
the superblock. The issue was more apparent on larger filesystems, where the number
of block groups was higher. The revision 1 thus optionally allows the superblock backup
copies to be stored only in block groups 0, 1 and powers of 3, 5 and 7. This is the sparse
superblock feature[3].

1revision with major number 0
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The superblock contains a field indicating the operating system that created the filesys-
tem. There are minor variations of the filesystem across different operating systems that
use ext2. For instance, in Linux and GNU Hurd variants, certain fields in inode structure
use more space than was initially used in earlier versions of the filesystem. Such fields
include for example uid number or gid number. GNU Hurd uses extended mode field as
well as additional field used to indicate inode number of a program that is to interpret
the contents of the inode[3].

2.1 Physical layout

The physical disk space occupied by the ext2 filesystem is divided into blocks. All blocks
in a filesystem are of equal size, which is determined when formatting the filesystem and
must be 1024 bytes multiplied by a specified power of two. The block size2 is stored in
a superblock structure described below. Most common block sizes are 1KiB, 2KiB, 4Kib
and 8KiB, which is caused by Linux supporting block sizes up to memory page size[3].

The filesystem uses fixed byte order for on-disk storage of all its fields. The byte order
is always little endian (or least significant byte first) — this probably originated from
Linux being initally developed on x86 architecture, which uses the same byte-order.

Basic filesystem metadata is stored in a superblock structure, located at offset 1024
bytes from the beginning of the underlying block device3 and spans 1024 subsequent bytes.
The superblock is replicated several times as it holds important data. The structure always
fits inside single filesystem block as minimum block size for ext2 filesystem is 1024 bytes.

The superblock contains various filesystem information in a large amount of fields.
There is a 16-bit magic field at offset of 56 bytes from the beginning of the superblock4,
that identifies the filesystem. This field always contains a value of 0xEF53 in a valid ext2
filesystem. The superblock also holds information about various filesystem structures,
mainly counts and sizes of blocks, block groups, inodes and fragments5. Information about
state of the filesystem is also stored in the superblock. This includes information whether
the filesystem was cleanly unmounted, how many times the filesystem was mounted, when
was it last mounted or when was it last written.

Blocks are further grouped into block groups, so that various filesystem metadata is
spread accross whole disk. Metainformation about block groups is stored in a block group
descriptor table, which resides in blocks following the superblock 6. It is an array of block
group descriptor structures. A block group descriptor is 32 bytes long structure, with
fields as described in table 2.1, with the rest reserved for future use.

A block group itself consists of optional backup of superblock and block group de-
scriptor table7, followed by always present block bitmap, inode bitmap, inode table and
data blocks. The size of each component depends on count of inodes per block group and
blocks per block group, that may be determined by reading the superblock[4].

Block and inode bitmaps represent which blocks or inodes (referred to collectively as
item in the following sentences), respectively, of the block group are used. Used item
is represented by a bit of value 1 and unused as 0. The least significant bit of byte

2or, more exacly, only the number of bits to shift the number 1024 to the left
3thus residing in the first or second block
4thus 1080 bytes from the start of the block device
5fragments are portions of blocks and are currently the same size as blocks in Linux
6exact amount of blocks dedicated to block group descriptor table depends on block size and number

of block group
7if the filesystem is marked as using sparse superblock feature, the backup is present only in few selected

block groups, otherwise it is present in every block group
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Table 2.1: Structure of the block group descriptor

32 bit Block number where block bitmap of this block group starts
32 bit Block number where inode bitmap of this block group starts
32 bit Block number where inode table of this block group starts
16 bit Count of free blocks in this block group
16 bit Count of free inodes in this block group
16 bit Count of inodes allocated to directories

Figure 2.1: Example physical layout of the second extended filesystem

BI SB GDT IB1 BB1 IT1 DATA1

SB GDT IB2 BB2

Block Group 1

Block Group 2

IB7 BB7Block Group 7

IT2 DATA2

IT7 DATA7

BI - boot information (arbitrary data not used by the filesystem)
SB - superblock/superblock backup
GDT - group descriptor table
IB - Inode bitmap
BB - Block bitmap
IT - Inode table part
DATA - Blocks usually used for storing data

1 corresponds to item 1, while the most significat bit of byte 1 corresponds to item 8.
Other bytes in the bitmap work the same, with byte 2 covering items 9-17 and so on.

The block bitmap covers all blocks of the block group. Special blocks reserved for
superblock and block group descriptor table backup (if present), inode and block bitmaps
and inode table itself, are marked as used when the filesystem is formatted. This ensures
that additional data structures may be added to block groups in future, as new data
blocks are allocated after checking the block bitmap for free blocks.

Inode table is split accross all block groups evenly. There is a fixed amount of inodes
per block group specified in the superblock and this determines the size of the inode table
portion stored in each block group. With inode having a fixed size, it is not hard to locate
a given inode.

1. Determine in which block group the inode is stored. As inode indexes are stored
with base 1, the corresponding block group number may be computed as

block group :=

⌊
inode number − 1

inodes per group

⌋
2. Lookup the corresponding block group’s descriptor and determine start of this por-

tion of inode table (local start)

3. Determine the index within this portion of inode table as

local index := ((inode number − 1) mod inodes per group)

11



4. Determine the block number and offset within block

block number := local start +

⌊
local index ∗ inode size

block size

⌋
offset := (local index ∗ inode size) mod block size

Last, but not least, the block group contains the most significant part, the one that is
the reason to actually have a filesystem - data blocks. Remaining blocks after inode table
are usually used for data, but the filesystem structures theoretically allow for data block to
be any block from a block group. The only assumption that a filesystem implementation
needs is that every block of the block group that is marked as free may be used to store
new data. As special blocks are marked as used, and are never deallocated, the filesystem
is very extensible.

2.2 Logical layout

The filesystem is a tree hierarchy of filesystem objects such as files and directories. Every
filesystem object is represented by a data structure called inode8. An inode contains
metadata about the object, but does not itself contain information about its location
(path). File names in ext2 filesystem are stored only in directory entries. Metadata of an
inode include information such as its type and access rights, owner and group number,
different access times stored as a UNIX timestamp9 and location of data blocks[2].

The second extended filesystem uses a special preallocated inode number for root
directory, as well as other special inodes. For example, there is an inode to which bad
blocks found during filesystem check are assigned. This prevents their use by the filesystem
for storing data. Another special directory present in the ext2 filesystem is the undelete
directory, referenced by root directory entry as lost+found. It is also used by filesystem
check programs to store references to inodes that are not accessible from the filesystem
(e.g. when a power failure occurs when a file is still in use, but deleted from the directory
tree). These special inodes have fixed inode numbers[2]. List of some of these special
inodes may be found in table 2.2.

Table 2.2: Special inode numbers

1 Inode for bad blocks
2 Root directory
5 Boot loader inode
6 Undelete directory (/lost+found)

For each inode containing data10, the filesystem maintains a list of data blocks allo-
cated for its contents. The layout chosen in ext2 was designed to minimize the number of
block reads when reading the file, however, for very large files a large amount of metadata
is written11. The inode contains references to the first 12 data blocks, if present, embed-
ded directly in the inode structure[3]. Additional data blocks are referenced from blocks
containing lists of block references. There are three levels of these references:

8the reason of why these are called inodes is historical, probably originated from the term ”index node”
9number of seconds since January 1st 1970 00:00

10there are some inode types that don’t require data blocks
11this is solved in ext4 by its extents feature
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Figure 2.2: Direct and indirect data block references
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• Singly-indirect block references. The inode structure itself references a block that
contains a list of references to data blocks.

• Doubly-indirect block references. The inode references a block that lists singly-
indirect block references

• Thirdly-indirect block references. Last data block reference in inode is a reference
to a block containing doubly-indirect block references.s

All those references together form an array of data block references for the object’s
contents.

2.3 Files

The primary purpose of regular files is to hold user data, therefore data stored in this
object’s data blocks corresponds to data used by client applications. A file inode data may
be longer as any other inode type. This is because file inodes do have 64-bit length with
high 32-bits stored in a place of directory extended attribute block pointer. Moreover,
a file can contain ”holes”, or regions with unallocated data blocks. Such a file is said
to be sparse. While implementations do not need to do it explicitly, a sparse file may
be detected by consulting properties of the associated inode — its number of currently
allocated data blocks is lower than the number of blocks required to hold fully populated
file of a specified size.

Unallocated block in a sparse file is marked at corresponding index in the block array
as a reference to block with number 0 (zero)12. The unallocated block reference may be
present in direct blocks as well as any indirection level, therefore it is possible to have large
holes in files quite efficiently. When an implementation encounters unallocated block, it
should treat it as if it was wholly filled with zeros[5].

12the actual block 0 on the block device contains bootloader data and/or superblock, depending on the
size of block, so it cannot be directly used as a source of data
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2.4 Directories

Directory objects contain a list of references to other filesystem objects and are the only
type of objects which define filesystem object (file) names. Each object reference in a
directory is labelled with a name that is unique within that directory. Directories may
be nested to form a hierarchical namespace that uniquely identifies filesystem objects by
name. However, this does not work the other way around as single object may either be
referenced from more distinct directories13 or may not be referenced at all. An example
of the latter are orphan files (i.e. files already deleted from a directory but still open by
an application).

Unlike file, a directory cannot usually be hard-linked, so that the structure of the
directory namespace forms a tree[2]. The directed graph where vertices are directories
and edges connect a parent directory with all its children directories, however, is not a
tree as there are implicit directory hard links present in every directory. These are the .

(dot) and .. (dot-dot) directory entries that point to the current and parent directory,
respectively.

The filesystem uses directory entries to map a name to an object reference. The
filesystem supports long file names so it is not practical to use constant-length directory
entries. Instead, the name may be of variable length and every directory entry has fields
that contain its size in bytes as well as size of the name field of the entry[3]. This way,
the filesystem can hold long file names while the space in directory contents can be used
more efficiently when using short file names.

The structure is slightly different for revision 1 of the filesystem and later versions,
where the 16-bit length of the name is replaced by two 8 bit fields - 8 bit length of the
name and 8-bit referenced inode type14.

Table 2.3: Structure of linked list directory entry

32 bit Referenced inode number
16 bit Size of the entry (including padding to the next entry)
8 bit Length of name in bytes (16 bits in rev. 0)
8 bit Referenced inode type (only in rev. 1)
variable Name of the object

Directory entries are stored in chunks within the data blocks. Every data block holds
at least one linked list directory entry structure and may contain multiple directory entries
if the space in the block permits. The first directory entry structure starts at the beginning
of the data block. Additional directory entries, if present, are located after the first entry
and must be aligned at the 4 byte boundary. As the filesystem implementation may easily
skip over individual directory entries by reading the size of the current directory entry
and advancing the data pointer by a value it just discovered, the structure forms a singly
linked list.

While reading a directory, the implementation must know when a given entry is last
in the block, so it does not read bogus data. This is achieved by defining that the last
directory entry in a block ends at the block’s boundary (the size of the entry is enlarged

13e.g. in case of hard-linked files
14Most implementations limit filename to 255 bytes anyway, so the field was reused to store file type

for better performace
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Figure 2.3: Example linked list directory

DATA BLOCK 1 DATA BLOCK 2 DATA BLOCK 3

.

..

if necessary). The definition above also ensures that a single directory entry cannot span
multiple data blocks. This enables simpler implementations as the implementation only
needs to work with a single data block at once.

In a linked list, items are usually deleted by adjusting the pointer to the next entry
of the item that precedes the one being deleted to point to node after the one being
deleted. The linked list of directory entries is no exception. Since the entries are aligned
specially at the boundaries of data blocks, there is a corner case if the first entry needs to
be removed. While it is possible to relocate a second entry in the block to the beginning,
it does not work if there is only one directory entry in a block. Instead of relocating a
node, the filesystem allows the referenced inode number in a directory entry in a block to
be set to zero, indicating an unused entry.

With large number of directories, performance of linked list directories decreases
significantly[3]. Linux developers therefore added a mechanism known as indexed di-
rectory entries to overcome this problem. In this case, a hash tree index is added into
directory files in a backward compatible way. The first two linked list directory entries
(for . (dot) and .. (dot-dot) entries) are replaced with an index root structure, or rather,
those are embedded in the index root structure, as is starts with those entries. The length
of the second entry, however, is adjusted so that the next linked list directory entry starts
at the next block boundary. Therefore, there is a space in the first block for indexed di-
rectory data (figure 2.4). This area will be skipped by ext2 implementations that do not
support this feature15, therefore enabling backward compatibility of this feature. Follow-
ing the two ”fake” linked list directory entries are other members of the indexed directory
root structure[3].

In the remaining space of the first block, that is still within the second ”fake” linked
list directory entry from the point of view of an implementation that does not support
this feature and just after indexed directory root structure an array of indexed directory
entries is located. At the beginning of the array, in place of the first indexed directory
entry is a stucture with information about the array, that is its maximum and current
size. The other elements in the array contain a pair of a hash and block number — the
indexed directory entry structure. Those elements are sorted within the array by hash
value, to allow faster searching by the value using a binary search algorithm. In case there

15due to the length of the second linked list directory entry

15



Table 2.4: Structure of rest of the indexed directory root

32 bit Reserved field with value of 0 (zero)
8 bit Hash type identifier
8 bit Length of a single indexed directory entry
8 bit Indirection level
8 bit Padding

Figure 2.4: Example indexed directory
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are more entries that would fit in a single such array16, indirection levels can be added.
In this case, the block number in indexed directory entry points to a block containing
another indexed directory entry array[3].

2.5 Symbolic links and other special objects

The second extended filesystem supports the concept of symbolic links. Just as hard links,
symbolic links allow to refer to another filesystem object from multiple places, but work
in a little different way. A symlink17 does not contain a reference to an inode directly,
it rather stores a path name where the link points to. This allows linking to arbitrary
points in filesystem namespace, even in different filesystems[3]. Symbolic links may also
point to invalid filesystem objects, such as when the file being referred to does not exist.
The downside of this approach is that the link itself requires disk space for the inode.
Additionally, symlinks cause a overhead in node lookup, as the node resolution process
must be restarted with new path[2].

As most filesystem paths in symbolic links are relatively short, the filesystem employs
optimization for storing the links. If the length of the path is less than 60 bytes long,
the pathname is stored directly in the inode in place of data block pointers. This avoids
allocating a full block for an entity such small as is a symlink. When the path is 60 bytes
or longer, ordinary data block allocation scheme is used[4].

16as it does not span multiple blocks
17symlink is a common abbreviation of symbolic link
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The filesystem supports other types of special objects used in Linux such as block or
character special devices. These special objects do not use data blocks and similarily to
symlinks, use the fields for data blocks to store additional metadata required for those
objects to work correctly[4]. These special objects are identified by major and minor
numbers which Linux kernel uses to identify device type and unit respectively[2].

2.6 Extended attributes

Sometimes it is useful to store extended file attributes with the file or directory. These
are name-value pairs stored in a separate filesystem data block linked from the inode by
a field containing the block number. This data block is allocated outside of contents of
any file or directory. If multiple files contain the same set of extended attributes, all may
reference the same filesystem block. An extended attribute with the same name may not
be present in the block multiple times[3].

Extended attribute block starts with a 32 byte header that contains a magic value
of 0xEA020000, reference count of this extended attribute block (this is the number of
inodes that point to this extended attribute block). Additionally, the header contains the
number of blocks used to store extended attributes. Currently, Linux works with only a
single extended attribute block for an inode, therefore this value always contains 1. The
fourth 32-bit field in the header contains a hash of all attribute entry header hashes[3].

The attributes are stored after the block header, where a list of variable-length at-
tribute entries starts. These entries contain lengths of name and value, block number18,
offset in a block to the attribute value and a hash of name and value. Values of attributes
are usually stored starting from the end of the block, growing towards the start[3].

18currently always 0 inidicating the current block
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Chapter 3

Our implementation

The implementation of support for the second extended filesystem is divided among mul-
tiple software components. We decided to split part of the ext2 filesystem support into a
software library, so that multiple different programs directly manipulating the filesystem
may be easily created. The library, called libext2, is responsible for working with basic
filesystem structures and exposing internals of the filesystem in more convenient way.
This library is used by several programs that expose the filesystem to the user.

The main product of the thesis, the ext2 filesystem server, is the component that
registers itself with the VFS and enables ext2 to be mounted and used from applications
in a standard way. Unlike other implementations of the second extended filesystem in
other multiserver microkernel operating systems such as MINIX 3 or GNU Hurd, where
filesystem implementations are a single unit, our ext2fs server shares code with other
programs by using libext2 library. The filesystem driver supports reading sparse files and
should work with both revisions of the second extended filesystem as well as variations
defined by other operating systems1.

During developement of the support for the second extended filesystem, we needed
to perform some additional tasks. Therefore we wrote additional programs or extended
existing ones. A program we developed, called ext2info, displays various filesystem in-
ternal structures and data. This program utilizes the libext2 library and reads the data
directly from the block device. It was used during development and is useful for debug-
ging. The program is described in section 3.3. Other programs we developed or modified
are described in section 3.5.

3.1 Library for ext2 filesystem

The libext2 library forms the lower layer of support of the second extended filesystem in
HelenOS. It allows programs to work with internals of the filesystem stored on a block
device.

As the second extended filesystem may be viewed as multiple levels of abstraction, we
decided to create a library that consists of several layers. This helps to separate concerns
of individual pieces of the code.

At the lowest layer, functions to process the superblock structure2, which is the first
structure to be read in order to found basic properties of the filesystem, reside. Because
the information contained in the superblock structure contains vital information about

1although we did not perform extensive testing
2the superblock is described in section 2.1
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Figure 3.1: Dependencies of layers within libext2 library
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layout of the filesystem, it needs to be handled in a special way — it is the only structure
that the implementation reads directly from the device without involving libblock’s block
cache3. This does not impact performance as the superblock is usually read once, at the
beginning of the program, and needs to be available whole time the application needs to
manipulate the filesystem. It may, however, be wise to consider reloading the superblock
using block cache for implementation that supports writing to the filesystem.

In addition to functions for reading the superblock from disk, there are facilities to
manipulate in-memory state of the structure. A C language structure is used to read the
individual fields of the superblock by name, instead of using precomputed byte offsets.
Moreover, contents of this structure are not manipulated directly and are instead accessed
using getter functions. We chose this approach as we aim to support multiple revisions
of the filesystem and processor architectures the implementation will run on. The getter
functions allow us to transparently return values for fields in correct endianness and even
compute them on-the-fly if those were unavailable4 in earlier revisions of the filesystem.

Last but not least, this layer contains function to verify some fields of the superblock,
such as magic value or number of fragments vs. number of blocks.

All levels of the library higher than superblock handling functions use a block cache
provided by HelenOS’ block library. Libblock has support for handling blocks larger
than size of blocks of the underlying block device (currently multiples of the block device
size), that was added to libblock by HelenOS core team5. This allowed us to focus on
implementing the functionality of the filesystem instead of writing this support, as the
block size may vary among different instances of the second exteded filesystem.

Another group of functions handles block group descriptor table, which is needed to
detemine layout of the higher level structures, the most important of which is inode table.
These functions are not useful alone, but are used by filesystem functions which provide
API abstractions of the filesystem to the users of the library.

These functions provide an abstraction of the filesystem object, as the library needs
to handle multiple instances of the second extended filesystem on different devices at the
same time. It is a requirement of the endpoint file system server drivers and the support
for multiple open filesystems may be useful for example for faster synchronization of two
filesystems on different devices6 when write support will be available. The filesystem
instance is represented by a structure called ext2_filesystem_t, which keeps track of
the state of the library for a filesystem instance.

The filesystem object is usually the first object that the client application obtains

3which we cannot initialize at this point because it needs to know filesystem’s block size
4or rather, were fixed by the specification
5in fact added due to cdfs demands shortly before base libext2 code was written
6e.g. for backup purposes
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from the library by calling ext2_filesystem_init, this call also initializes the libblock
block cache which is required to read blocks from the device. A corresponding function
ext2_filesystem_fini closes the filesystem. Several common operations of the ext2
filesystem belong to the filesystem object.

There are functions to check sanity of the filesystem, which verify whether the opened
filesystem is not totally bogus and can be read using the library. We chose to split
the function that verifies the filesystem from the function that opens the filesystem to
accomodate possible use for a program that verifies the filesystem (which could execute
more exhaustive checks).

References to block groups and inodes may also be obtained by calling functions of
the filesystem object. These references are structures that contain a pointer to a block,
obtained from libblock, which holds the referenced structure of interest. Moreover, the
reference contains pointer to the referenced structure itself within block’s data and in case
of inode references, it contains inode number as well. Currently, the references are created
as needed and if two references to the same object are requested, two different references
are returned. This is not an issue in read-only implementation, but in future, we plan to
store reference count in the reference structure itself and make sure the same structure is
returned if requested multiple times, so that it may be used to store a lock to protect the
referenced object.

Yet other functions in the library handle contents of directories. We decided to provide
a directory iterator structure that allows the client application to traverse the underlying
linked list structure of the directory data to simplify usage in client programs. As the
directory structure stored in the filesystem is a singly linked list, it is only possible to
iterate the iterator forward.

3.2 ext2 filesystem server

The filesystem server is the component responsible for integrating ext2 support into
HelenOS’ filesystem layer. The server is based on libfs library that implements com-
mon operations required by VFS. In addition, ext2fs server utlilizes libext2 library to
work with the second extended filesystem.

Upon startup, the server registers itself with VFS and starts to listen for requests.
Requests are handled in a main loop and appropriate functions are called. This boilerplate
code is similar in most filesystem servers in HelenOS and is written by hand. In the future,
HelenOS developers plan to add an option to autogenerate this kind of functionality.

Some of the functions handling IPC requests are directly forwarding the request to
the libfs library. Those are higher level operations common in most file system drivers7

that are implemented using lower level functions provided by the filesystem server. The
ext2fs driver is not different.

First request the server is likely to encounter is a request to mount the filesystem.
Mount operation in ext2fs is quite simple, the server uses libext2 functions to initialize
the filesystem. It then just needs to keep information about mounted instances. Informa-
tion about every single instance of mounted filesystem is kept in a ext2fs_instance_t

structure. Every instance is identified by a device handle as it is unique in the system -
there cannot be two instances of the filesystem mounted from the same device. Moreover,
the device handle is used in a VFS triplets and therefore available to all other requests
sent to the filesystem server. Along the device handle, the structure keeps a pointer to

7and described in chapter 1
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libext2’s ext2_filesystem_t structure for the instance. Additionally, we later added a
counter of open nodes for the instance so we can easily check that there are no open nodes
when unmounting.

We chose to use simple linked list to hold multiple instances as we do not expect a large
number of filesystem instances to be mounted at the same time. The list is protected by a
mutex to prevent its corruption. As it is necessary to retrieve the instance by device handle
in multiple places, we introduced ext2fs_instance_get function, which searches the list
by a device handle, while correctly locking the mutex. This enables future expansion if a
need arises to change underlying mechanism of storing instances.

As the ext2fs server uses libfs to implement most of its operations, it needs to manage
libfs’ nodes. Those are created in ext2fs_node_get_core function, which returns a
node by filesystem instance and inode number. As inode number is unique within the
second extended filesystem, it was an obvious choice to select as unique node number
to use in VFS triplet. Therefore, any implemented ext2fs operation has easily accessible
information to instantiate a node structure.

As open nodes may be referenced from multiple places at the same time, we chose
to use hash table from HelenOS’ standard library to store references to open nodes.
The open_nodes hash table is global for the entire ext2fs server and is keyed by device
handle and inode number — with the former uniquely identifiying the instance and the
latter being unique node identifier. The ext2fs_node_get_core function tries to look-up
the node in this hash table before instantiating a new node from disk. This satisfies libfs
requirement to keep state for nodes and also allows the server to keep runtime information
in the node structure.

Searching for a node by name in a directory is implemented in ext2fs_match function,
which is used by libfs during lookup operations. The function simply walks the directory
contents using an iterator provided by libext2, as support for indexed directory entries is
not implemented. The file names are currently compared as a binary strings as the driver
cannot assume anything about the file name in second extended filesystem8. While this
should not usually cause any problems, in case the on-disk filename is not a valid UTF-8
string, the user may not be able to access it, because they will be unable to type the
name on the keyboard. Moreover, the user-supplied string is zero terminated, therefore
any on-disk string containing a null byte shall not match even if the user was able to
include null byte in the supplied string9.

Other operations implemented by ext2fs and used by libfs are getters of various prop-
erties the nodes have. The server retrieves such information from inode data accessible
directly from ext2_inode_t stucture associated with the node. Remaining libfs opera-
tions required for write support, such as ext2fs_create_node, ext2fs_destroy_node,
ext2fs_link and ext2fs_unlink are merely stubs returning ENOTSUP error, as out im-
plementations does not support writing.

Operations not covered by libfs include reading (and writing) contents of files and
directories. Read operation is among the more complex functions implemented by the
filesystem server. As the complexity of ext2fs_read function grew over time, we decided
to split its core part to two separate functions — ext2fs_read_file and
ext2fs_read_directory. In the end, ext2fs_read only carries out actions common to
reading files and directories, such as preparing the corresponding filesystem node.

When reading a file, the ext2fs_read_file function handles only a single data
block at a time to simplify the code. However, this does not impact functionality of

8file names may contain any byte except forward slash
9the lengths do not match in this case
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the filesystem driver as read (and write) function may process less data than was re-
quested. The resulting amount of data read is returned as part of IPC answer. It is
then only a matter of calculating the correct file data block number from file position
(which is then resolved to actual filesystem block number by calling libext2 utility func-
tion ext2_filesystem_get_data_block_index) and copying the data to the buffer which
is sent to client. There is a minor complication, however, as there may not be a block
allocated for the position we are reading, which means we are dealing with a sparse file.
This special case is handled by preparing and returning long-enough buffer of zeros in-
stead of reading any disk block. Initially, our implementation did not support reading
sparse files, because we did not possess accurate documentation of the feature. Later, we
found a correct description in [5] and used it to add the feature to the implementation.

Reading directories is implemented in ext2fs_read_directory using libext2’s direc-
tory iterator. As the interface to VFS uses index-based access to directory entries, the
server needs to emulate this by iterating the linked list from the start. Performance im-
plications of this behaviour and possible solutions are described later in section 3.4. In
addition to emulating index-based interface, the server filters-out . (dot) and .. (dot-dot)
directory entries from listing of directory contents. While those nodes could be theoreti-
cally included in the output of directory listing, we believe there is no advantage in doing
that, as VFS already works with canonical paths which do not contain those components.

3.3 Utilities for working with ext2 filesystem

During developement of libext2 a need to test the code arose. While it was possible
to directly start implementing ext2fs server, it was less feasible. Creating a separate
command-line tool to test the functionality implemented in the library proved to be
useful. The tool, named ext2info can be used to display various internals of the second
extended filesystem. Initially, we wanted to call the tool ext2debug, but it didn’t work
out well — the name is too long to store in the FAT filesystem that is used to boot the
system10.

The tool was built incrementally, as new functionality was added to the libext2 library.
Current feature set covers all levels of libext2 library and includes:

• listing most superblock fields and values

• dumping contents of block group descriptor table

• showing information about given inode structure (by i-node number)

• displaying associated block numbers for given inode

• dumping data of inode’s data block given by its position in file

• listing contents of directory inodes

Typically, the output is longer than the height of the screen for larger filesystems, as
with growing size of the filesystem, the size of some of its internal structures grows too.
For instance, there are 79 block groups for a 10GB filesystem with 4 KiB block size. As
ext2info outputs the data to standard output, it may be redirected to a file using redir

program provided by HelenOS and later viewed using a program that supports paging
and/or scrolling such as cat shell builtin or HelenOS text editor.

10the command name was clipped to ”ext2debu” as the filesystem only supports 8.3 filenames
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Additionally, ext2info shortens the list of associated block numbers for an inode.
This list grows linearly with the file size in case of non-sparse files11. Hopefully, it may be
easily compressed by folding successive block indices in groups and showing only beginning
and ending index of those groups. As the file may be sparse, the command shows the
list as a mapping: for each of the filesystem block number, file-based block numbers are
output as well. A range of unallocated filesystem blocks folded as a range may thus be
unambiguously presented to the user.

3.4 Performance

While implementing the filesystem server and libext2 library, our goal was primarily
to implement filesystem features and support for various versions of the filesystem and
processor architectures, and performance was of a lower priority. Therefore we decided to
measure the performance of the ext2fs filesystem server.

Results of benchmark of sequential reading of files show that performance of the
ext2fs server is acceptable. The amount of time taken to read the file grows linearly
with the file size (figure 3.2)12. It may be possible to enhance performance for this use-
case, for example by reducing the necessary block reads while searching for a given data
block by its position in a file. This will require changing the code that handles indirect
blocks to store its state in a structure and continue with that state on next invocation.
This change depends on ability of the endpoint file system server to associate an iterator
with a given client, therefore requiring the VFS to communicate unique file descriptor id
to the ext2fs server. While this change may enhance performance by not performing
block lookups on every read, it may not yield much performace gain as the blocks used
to resolve indirect block pointers are already cached in a block cache. Another possible
enhancements include instruct the block cache to read a next block in background while
the current block is being processed by client or return multiple data blocks at a time.

This set of tests yield another interesting fact. The time taken to read a file of a
constant size (using ext2fs) increases with the number of attempts to read the file. This
is shown in figure 3.3. The reason for this behaviour is currently unknown, but seems to
be specific to our implementation as fat does not show similar behaviour. This unwanted
behaviour is a bug and will need to be resolved.

Reading of directories shows another performance issue13. Time of directory read
grows quadratically with number of directory entries (figure 3.4). This is caused by ext2fs
using libext2’s directory iterator that can currently only be initialized at the beginning of
the directory. There are several solutions to this problem. One possible solution is to cache
the iterator between requests in ext2fs, this will reduce the performance hit for sequential
reading of one client, however, as soon as another client starts reading the directory, the
performance will drop again. To store the iterator for every client separately, the VFS
will need to be extended to expose file descriptor numbers to endpoint filesystem servers.
Another possible solution is to use position value as byte offset into directory data and
initialize directory iterator with that information 14. This last solution has an advantage
that it does not require changing the interface between endpoint filesystem servers and
VFS, while it will work with multiple clients simultaneously reading the directory contents.

11for a definition of sparse file, see chapter 2
12the graph is distorted a little due to phenomenon described in the next paragraph
13already mentioned in section 3.2
14fat uses similar approach with storing dentry index in position value
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Figure 3.2: Average sequential file read times; 5 test runs per point, logarithmic scale
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Figure 3.3: Repeated sequential file read times
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Figure 3.4: Average sequential directory read times; 5 test runs per point, logarithmic
scale
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3.5 Other enhancements

As we worked on the thesis, several other programs were written or enhanced. First
of all, a program, blkread, to read and display block contents from block devices was
written. Although similar functionality was already present in the system, implemened
as a shell builtin command bdd, we proceeded to write a standalone program. This has
the advantage that output of such program may be easily redirected to a file (output of
shell builtins currently cannot be redirected). Moreover, the author learned how to work
with libblock library.

While reading the superblock of the second extended filesystem, we needed to read
a continuous array of bytes from disk directly, without the block cache being initialized.
While the libblock library provides a function to read blocks directly, the physical block
size of a device may vary. Therefore, we added block_read_bytes_direct function that
allows reading portion of the block device using byte address instead.

During developement of the filesystem support, it was necessary to verify that reading
works correctly even for large files. As this will take too much time to do manually for
even relatively small files, we created a pair of programs to check reading of files. The
first program (gentestfile.py) is written in Python and should be used from Linux. It
creates a file containing a known pattern, as this allows to detect the errors better than
computing a checksum. As the pattern the file should contain is known in advance, it is
possible to detect precise position where the file differs from the expected pattern. We
chose a monotonically increasing sequence of 64-bit numbers. A corresponding HelenOS
program, testread, verifies that contents of the file match the pattern and displays the
results. We initially used this program to also benchmark the speed of reading, but
eventually, separate tools for benchmarking were written.

The bnchmark program runs various filesystem test runs and measures how long it
takes to execute them. The command allows to specify the type of test to run, number
of tries, note and a test path and outputs results to stdout in CSV format for further
processing. Currently, only two tests are supported, but the program is extensible and
allows tests to be added easily. The first test reads a file sequentially from start to
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end using 8 KiB buffer. The other test reads a directory sequentially, using standard
C directory functions. For creating a directory with large amount of children, we also
created a simple python script, available in tools\filldir.py.

While currently not much used, we also added some utility macros to the tester pro-
gram. These look similar to assert functions used in *Unit type frameworks, but have
some limitations. The macros are used in a test of superblock decoding, where their usage
significantly shortens required code.

Last but not least, we enhanced cat shell builtin. The program was enhanced in
two ways. The first enhancement added support for converting the input to hexadecimal
output15. This is useful for working with binary files, such as sparse files, as cat normally
uses strings to display the file. Support for paging the output on screen16 was also added
to cat, as we implemented the -m option.

15although the feature should probably reside in a separate program after support for pipes is added to
HelenOS

16again a feature that should probably be a concern of a separate program
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Conclusion

The thesis aimed to implement read-only support for the second extended filesystem in
HelenOS. We implemented several programs to achieve this goal and currently, it is possi-
ble to work with the filesystem using standard HelenOS applications. The implementation
supports reading files and directories. Moreover, it possible to create additional applica-
tions working with the second extended filesystem, as we developed a library for working
with internals of the filesystem.

While the implementation has some shortcomings in the performance area, these can
be mitigated relatively easily as we proposed possible fixes. Additionally, implementing
features such as support for indexed directories may as well enhance performance of the
filesystem implementation.

The libext2 supports reading some of the fields of the second extended filesystem
that are currently not supported in filesystem layer of HelenOS mainline, such as getting
information about currently mounted filesystem (e.g. UUID and volume name, amount
of free space). Reading of inode fields such as user and group id or additional information
in directory entries (target inode type) is also supported, although it is not exposed via
filesystem layer. The filesystem support in HelenOS may therefore be extended to allow
these additional capabilities of the second extended filesystem to be used in the future.

While ext2fs supports reading files and directories, the second extended filesystem has
additional features that are not supported yet. A feature that will also require changes
in the HelenOS VFS is support for symbolic links as these may point to any path in the
filesystem namespace. Current ext2fs implementation ignores symbolic links and other
special files and does not report them in the directory listings. Currently, libext2 does
not support reading symbolic links shorter than 60 characters, as those are stored directly
in the inode in place of block references. Although adding a function to read such inodes
should be trivial, it will need to be done before symbolic links could be supported.

Another feature of the second extended filesystem which is not implemented yet is
support for extended attributes. While this feature is not as useful in read-only imple-
mentation, it may be used to store various metadata for files. The support could be useful
for security support in HelenOS, developed by Štěpán Henek.

As the implementation currently supports only reading of the filesystem, the next
possible step is to implement write support. Currently, the libfs library does not provide
any support for locking, which is required for correct write support as various race con-
ditions could lead to data corruption. The current support for structure references such
as ext2_inode_ref_t and ext2_block_ref_t should therefore be extended to return the
same instance when it is requested multiple times, in the same way ext2fs currently does
for open nodes. This will allow adding locks to these ref structures, which could be used
to ensure data consistency. Additionally, some existing facilities of the library will need
to be expanded. For example, the code that iterates through data block references in the
inode does not currently support changing the value of the referring block. This will be
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required if blocks are to be appended to, or removed from the file. Similar change will
be required for directory support, where the directory iterator should allow inserting or
removing directory entries into/from the linked list (and indexed directory structure when
it is supported).

Additionally, while not strictly required for the write support, block library may be
enhanced to support marking blocks as unused and communicating this information to
the block device. The block device may then use a command such as TRIM to inform the
actual hardware. If supported by the block layer and libext2/ext2fs, the feature could
enhance disk lifetime in case of solid-state drives. Additionally, as HelenOS is still mostly
developed in a virtualized environment, the support could lower disk usage for virtual
hard drives.

In the more distant future, the code for ext2 filesystem could be used as a basis to
build support for newer versions of the filesystem, such as ext3 or ext4, which provide
more features.
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Resumé

Operačné systémy môžeme rozdelit’ na niekol’ko kategóríı podl’a toho, kol’ko kódu vy-
konávajú v kernel-móde. Najviac privilegovaného kódu bež́ı v monolitických kerneloch,
ktoré takto spúšt’ajú ovládače zariadeńı a rôzne systémové služby ako napŕıklad podporu
súborových systémov. V mikrokernelových operačných systémoch je to práve naopak, ker-
nel obsahuje len kód potrebný na základnú podporu user-space programov, ako správu
vlákien alebo komunikáciu medzi procesmi. Hybridné kernely sa nachádzaju niekde medzi
monolitickými a mikrokernelmi.

HelenOS je mikrokernelový multiserverový operačný systém podporúci viac ako pol-
tucet procesorových architektúr. Teda podpora súborových systémov, tak ako iné služby,
sú implementované v už́ıvatel’skom priestore. Klientské aplikácie v HelenOSe komuni-
kujú prostredńıctvom IPC so serverom VFS (virtual filesystem server), ktorý poskytuje
podporu pre súborové systémy. Jednak poskytuje klientským aplikáciám podporu pre
rôzne vysokoúrovňové objekty ako sú file deskriptory. Dvak slúži ako centrálny správca
súborových systémov. Tento server odovzdáva požiadavky na operácie so súbormi pŕısluš-
ným serverom implementujúcim konkrétne súborové systémy. Pred začat́ım tejto práce ob-
sahoval HelenOS len niekol’ko virtuálnych súborových systémov a jeden súborový systém
s diskovým formátom — FAT16. Pretože viaceré súborové systémy zdiel’ajú rovnakú,
alebo vel’mi podobnú funkcionalitu, HelenOS poskytuje knižnicu implementujúcu spoločné
časti[1].

Second extended filesystem (ext2) je súborový systém pôvodne vyvinutý pre potreby
operačného systému Linux, podporuje teda unixovú sémantiku a okrem súborov a ad-
resárov umožňuje ukladat’ aj d’al’̌sie typy objektov, ako sú symbolické odkazy, rúry (pi-
pes), sokety, či znakové a blokové zariadenia. Tento súborový systém je vel’mi rozš́ıritel’ný,
umožňuje ukladat’ pŕıznaky použitých vlastnost́ı priamo v superbloku súborového systému.
To znamená, že implementácie môžu byt’ ṕısané postupne, vlastnost’ za vlastnost’ou, bez
toho, aby sa ohrozila integrita súborového systému, ktorý použ́ıva nejakú nepodporovanú
vlastnost’.

Naša implementácia tohto súborového systému sa deĺı na niekol’ko čast́ı. Základnú pod-
poru pre manipuláciu so súborovým systémom poskytuje knižnica libext2, ktorá umožňuje
ostatným programom nač́ıtavat’ diskové štruktúry do pamäte a pracovat’ s nimi. Hlavným
produktom práce je však samostatný server ext2fs, ktorý sa zaregistruje u VFS a po-
skytuje služby tohto súborového systému tak, aby ich mohli použ́ıvat’ aplikácie bežným
spôsobom. Tento server využ́ıva spomı́nanú knižnicu a sám implementuje funkcie vyššej
úrovne. Okrem týchto programov sme vyvinuli aj nejaké d’al’̌sie programy užitočné pri
hl’adańı chýb alebo merańı výkonnosti súborového systému.

Výsledný produkt funguje pomerne dobre. Niektoré drobné chyby, ktoré sme objavili,
sa dajú opravit’ pomerne jednoducho a v práci sme poṕısali, ako by sa dali odstránit’.
Do budúcna sa dá implementácia rozš́ırit’ napŕıklad o podporu zápisu, pŕıpadne dal’̌sie
vlastnosti súborového systému ext2, ktoré zatial’ nie sú implementované.
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Appendix A

Compiling and running

HelenOS uses Bazaar version control system for source code management. Source code
accompanying this thesis was developed and is stored in bazaar branch helenos-ext2,
which is based on HelenOS mainline. The source code for helenos-ext2 may be obtained
in several ways.

First of all, if you are reading the printed version of the thesis, you should have
received a bootable CD, which also contains the source code of the helenos-ext2 branch
and PDF version of this thesis. The CD may be inserted into a real or virtual IA-32 (x86)
compatible computer and used to boot HelenOS with ext2 support.

Secondly, the tar-gzipped source code and iso image have been submitted as attach-
ments along the thesis.

Thirdly, the same files should be available from the project’s web site, where the source
code may also be browsed. Please direct your web browser at

http://ne.st.dcs.fmph.uniba.sk/projects/helenos-ext2

Last but not least, you may download the source code directly from the bazaar repos-
itory:

bzr branch http://ho.st.dcs.fmph.uniba.sk/~mato/bzr/helenos-ext2

Structure of the source code

The source code provided is based on HelenOS mainline and as such follows the structure
of the repository. Our work is placed inside respective directories and mostly took place
in the uspace subtree, where user-space code resides. Additionally, scripts filldir.py

and gentestfile.py useful for preparing test filesystem images are stored under tools

directory.
Structure of the relevant portions of the uspace directory is as follows:

• app: userspace client applications

– blkdump: blkdump program for dumping block devices

– bnchmark: program for benchmarking filesystem performance

– ext2info: program for displaying various ext2 internals

– testread: program for checking whether a file was read correctly

• lib: userspace libraries
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– ext2: libext2 library

• srv: userspace servers

– ext2fs: ext2fs filesystem server

Building from source

To build HelenOS from source, you need to install a supported compiler toolchain.
HelenOS contains a script to do that for you, it is located at tools/toolchain.sh.
Please follow the instructions printed by the script.

After the toolchain is set-up, you may either run just make (which will display configu-
ration menu when run for the first time), or make PROFILE=<profile> (where <profile>
is a supported profile, e.g. ia32 for 32 bit PC and amd64 for 64-bit PC) to instruct the
build system to create a bootable CD image image.iso in the branch directory. You may
then boot the system from the image.

Running

To boot the system from image, either use a system emulator like QEMU or burn it to a
real CD and instruct your computer to boot it. Example command for QEMU:

qemu -cdrom image.iso -hda /path/to/your/disk/image

After booting the system, a shell is presented to the user. Depending on build config-
uration and the disk you want to use for reading, the ATA driver may or may not have
been started automatically. You may find the block devices already available by running
ls /dev/bd command. If the block device of interest is not present in the output of the
above command, please run ata_bd to discover primary and/or ata_bd 2 to discover sec-
ondary ATA disks. Block devices created by ata bd are named like bd/ata1disk0 (this
example is ATA primary master).

If the disk you use does not have partition table and contains the filesystem directly
(as may be the case e.g. when running with a filesystem image directly in VM), you may
skip this step. Otherwise, run a partition server to discover partitions on the device. If the
block device of interest is ATA primary master, run mbr_part bd/ata1disk0 for MBR
partition tables (g_part may be used for GUID partition tables). A block device should
be created for each partition (in our example, bd/ata1disk0p0 for the first partition).

When you have the block device set-up, you may proceed to mount the filesystem.
In order to mount it, the ext2 filesystem server must be running, so type ext2fs in the
shell. To mount the filesystem, use the mount command (/data should be present in the
system, you may also mkdir another directory and use that instead):

mount ext2fs /data bd/ata1disk0p0

From now on, you should be able to browse the filesystem using ls and cat commands.
To unmount the filesystem after use, type unmount /data
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