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Abstrakt

HelenOS je mikrokernelový operačný systém, ktorý podporuje viac než poltucet
rôznych procesorových architektúr. Pri vývoji takto multiplatformného kódu sa stáva,
že kód na niektorých platformách prestane fungovat’. Rozhodli sme sa preskúmat’
možnosti automatického testovania rôznych subsystémov tohto operačného systému,
či už na reálnom hardvéri alebo v niektorom zo simulátorov, a navrhnút’ systém,
ktorý by umožňoval automaticky spúšt’at’ a vyhodnocovat’ takéto testy. Poṕısali sme
základné súčasti operačného systému HelenOS, ktoré je potrebné poznat’, aby bolo
možné takýto system navrhnút’. Taktiež sme v krátkosti zhrnuli vlastnosti niek-
torých systémových emulátorov, ktoré sa dajú použit’ na spúšt’anie tohto operačného
systému. Rozobrali sme vlastnosti, ktoré by mala naša implementácia frameworku na
spúšt’anie testov v HelenOS podporovat’. Na základe našich záverov sme navrhli zmeny
v tomto operačnom systéme a implementovali framework na automatické spúšt’anie
a vyhodnocovanie testov.

Kl’́učové slová: HelenOS, operačný systém, testovanie



Abstract

HelenOS is a microkernel-based operating system that supports more than half a
dozen of different processor architectures. In the course of developement of such mul-
tiplatform code, it may happen that the code stops working. We decided to explore
different possibilities of testing HelenOS subsystems, whether on real hardware or
one of supported simulators, and design a system that will allow these tests to be au-
tomatically run and evaluated. We described those basic components of the HelenOS
operating system, knowledge of which is required to design such system. We also
briefly summarized the properties of some of the system emulators that can be used
to run this operating system. We analyzed which properties should be supported by
our implementation of the framework. Based on our findings, we designed changes
to the operating system and implemented a framework for running and evaluating
tests.

Keywords: HelenOS, operating system, testing



Preface

During the course of developement of the HelenOS operating system, it happens that
regressions are inadvertently introduced to the codebase. Since HelenOS supports
a wide variety of different configurations and platforms, those regressions rest often
unnoticed for a long time. Sometimes, features of the operating system stop working
because of regressions in the system emulators that are used by the developers.

HelenOS contains simple support for running tests, but there is no support for
launching the tests automatically. This means the tests are not executed as often
as they could. We decided to create a framework for running tests of this operating
system so that the tests can be automatically executed inside a virtual machine.

We also wanted to be able to test individual components of the operating system
in various ways. Since the original code did not allow for some types of the tests
that could be used, we saw an opportunity to extend the possibilities of testing of
HelenOS.



Contents

Introduction 1

1 Testing software 3

2 HelenOS overview 6
2.1 HelenOS IPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Asynchronous framework . . . . . . . . . . . . . . . . . . . . . 9
2.2 Spawning and connecting to other tasks . . . . . . . . . . . . . . . . 9

2.2.1 Naming service . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Location service . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Virtual filesystem service . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Logging service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 User-space initialization . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.6 Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.7 Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Machine emulators and their interfaces 16
3.1 QEMU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.1 Controlling gdb . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 VirtualBox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 VMWare Workstation . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 MSIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Analysis 20
4.1 Intended use cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Services of a testing framework . . . . . . . . . . . . . . . . . . . . . 21
4.3 What to support? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Design and implementation 25
5.1 External environment . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2 Kernel space changes . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.2.1 Logging subsystem . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2.2 Test runner . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30



5.3 User space changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.3.1 Logging subsystem . . . . . . . . . . . . . . . . . . . . . . . . 32
5.3.2 Task output . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.3.3 Test runner . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3.4 Sandboxing the tests . . . . . . . . . . . . . . . . . . . . . . . 36
5.3.5 Remote control server . . . . . . . . . . . . . . . . . . . . . . 40

5.4 Remote control protocol . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.4.1 Hello message . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.4.2 Log event message . . . . . . . . . . . . . . . . . . . . . . . . 44
5.4.3 Test ID submessage . . . . . . . . . . . . . . . . . . . . . . . . 44
5.4.4 Test status change message . . . . . . . . . . . . . . . . . . . 45
5.4.5 Test run status change message . . . . . . . . . . . . . . . . . 45

6 Comparison with other solutions 46
6.1 Test life-cycle management . . . . . . . . . . . . . . . . . . . . . . . . 46
6.2 Test isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.3 Information gathered during tests . . . . . . . . . . . . . . . . . . . . 47

Conclusion 48

Bibliography 51

A Source code 54



List of Figures

2.1 Difference between monolithic and microkernel multi-server operating
systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Connecting to a service via IPC . . . . . . . . . . . . . . . . . . . . . 11

5.1 Example qualified name of a test . . . . . . . . . . . . . . . . . . . . 34
5.2 Example test metadata file . . . . . . . . . . . . . . . . . . . . . . . . 36
5.3 IPC connections in a simple sandbox setup . . . . . . . . . . . . . . . 37
5.4 Encoding a number to varint format . . . . . . . . . . . . . . . . . . 42



List of Tables

2.1 Architecures supported by HelenOS . . . . . . . . . . . . . . . . . . . 7

3.1 Some of the devices emulated by emulator by platform . . . . . . . . 19

5.1 Format of log messages stored in the kernel log buffer . . . . . . . . . 29
5.2 Subset of Protocol Buffers wire formats we implemented . . . . . . . 42
5.3 Remote control protocol top-level message types . . . . . . . . . . . . 43

A.1 Top level directories of HelenOS source code distribution . . . . . . . 54



Introduction

Quality assurance is an important aspect of developing a product — this applies also
to software as to any other category of products. Testing allows to produce more
stable and reliable software, which is why many software projects run a batch of tests
before release. But tests are useful not only when releasing a product, but can be
used also in an iterative way during multiple phases of a software develepement life
cycle.

Performing a set of tests is a tedious task and when performed manually, it may
also be prone to human errors, therefore commonly run tests are usually automated
so that these tests can be run more conveniently and more often. Automated testing
allows to run tests continuously, on every change of the source code, and is commonly
referred to as continuous integration.

Testing a software that is very dependent on its environment — such as an op-
erating system — is a complex task as one needs to ensure that the product works
correctly in all possible configurations of the environment. While usually an operat-
ing system tries to abstract of those differences, the developers must be very careful
to write code that works on multiple architectures. Despite various coding practices,
it happens that new code is not as platform-agnostic as expected, such as when the
developer uses incorrect-size integer types or expects certain assumptions to be true.

Operating systems usually contain a vast amount of generic code, which may be
tested just like other software. There are, however, various special cases such as boot
code, system specific routines, etc. that require more sophisticated approach to be
tested automatically. Several generic operating system testing frameworks exist, that
employ various methods to test the behaviour of an operating system from outside
(usually involving the use of a system emulator).

HelenOS, a microkernel-based multiserver operating system, does currently con-
tain very limited support for automated testing. HelenOS has some unit tests for
kernel and user-space data structures and functionality, but there is no support for
isolation of these tests or reporting the results outside of the virtual machine.

We would like to investigate various possibilities of extending testing of HelenOS
and its various subsystems so that tests can be easily executed from a developer’s
machine or repeateadly executed on a continuous integration server, which should
allow early notifications of possible regressions and/or errors in newly added code
that fails on an architecture not tested by the developers themselves.
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Text organization
The text of the thesis is organized in chapters as follows:

Chapter 1 introduces some key concepts of testing software.
Chapter 2 gives an overview of HelenOS and its subsystems relevant to the subject

of this document.
Chapter 3 briefly describes emulators that can be used to run HelenOS and their

features.
Chapter 4 focuses on what a testing framework for HelenOS should look like and

refines goals for implementation.
Chapter 5 outlines changes that were necessary to make to HelenOS and challenges

we faced. This chapter also provides implementation details of the framework.
Chapter 6 compares our implementation with other frameworks for automated

testing of operating systems.

2



Chapter 1

Testing software

Testing software before release is a standard practice that helps to ensure quality of
the software product. It is an important part during a developement cycle, which
may require significant amount of effort and resources.

When the product is a piece of a large software, the complexity of possible inputs
and outputs increases rapidly, because components may interact in different ways,
which creates an instance of a large combinatorial problem. To ensure no bugs are
present in a general software, the only option is to execute an exhaustive search over
all possibilities and check them, which is not very viable for large software projects.

There are several possibilities how to test software for presence of bugs[24]:

Unit tests check low-level logic consistency of the code in small unit modules, e.g.
an individual procedure. Those tests are usually written by the developer of the code
they are supposed to test. As the code is being modified, the unit tests are updated
to match in an iterative manner. It is important that the unit tests stay as isolated
as possible so that when a test fails, it is possible to relatively quickly pinpoint the
piece of code that contains an error.

Integration tests are done in a broader scope, targeted at a specific function of
the system larger than a module (a whole subsystem, for example). These tests try
to run all paths through code, for example by emulating an interface the subsystem
expects, including various error handling code.

System tests check the behaviour of the entire system, with all subsystems, func-
tions and interfaces as in the final product. These tests check if the system meets its
specifications.

Performance tests are executed in a controlled environment which tries to mini-
mize outside factors that could affect the results, to ensure the tests are repeateable.
Stress tests are executed to test the behaviour of the system at higher loads.

3



Static analysis may be performed on the code to find some common programming
errors without running the code in question, but these techniques also only provide
approximations of the results because the halting problem is undecidable.

When testing a code that depends on other parts of code, the dependencies are
commonly replaced with a piece of code allowing the tests to test effects of the tested
code, while obeying the interface of the replaced code. Such stub code may support
examination of state or behaviour of the tested code.

In order to test various error code paths, a technique called fault injection exists.
This technique introduces faults at various points in the code to test code that is
rarely executed, such as error handling paths[25].

A code coverage analysis may be performed to determine the amount of code that
was excersized during a test. Code coverage tool may determine which branches of
code are executed and therefore know which source code lines were executed during
a test.

When testing operating systems, a system test may be executed in a virtual ma-
chine, observing its behaviour to different stimuli coming from the virtualizer. For
example, the test may drive a virtual mouse to a specific location on the screen, try to
press a button, and observe the changes that this action caused via the virtual com-
puter screen. Other functionality of the virtual machine can be also used, including
virtual network, serial ports and other devices.

Running tests inside a virtual machine is convenient, but the tests may be also
executed on the real hardware as system simulators do not precisely simulate all of the
aspects of the real hardware[26]. For example, a simulator may be more permissive
and allow certain combination of instructions that the real hardware may not be able
to handle. Developers of system simulators usually have to make a design decision
to tradeoff between level of detail of the simulation (and corectness) and speed of
execution. Compare for example a program simulating logical gates in the processor
and an instruction level simulator. The former may emulate timing characteristicts
of the system more precisely, while the latter may be executing faster at the expense
of ignoring those details. It is therefore beneficial to execute the tests on the real
hardware of the target platform, at least once in a while. However, running the tests
on real hardware may require some special peripherals for capturing screen, etc. that
can be more easily manipulated in a virtual environment.

As part of a continuous integration[12] practice, the tests of a codebase are exe-
cuted often to ensure the latest versions of the code are still behaving as expected.
Building and testing the software periodically, perhaps even every revision of the soft-
ware commited to the source code repository, brings benefits of early notifications of
build and test errors, which the developer may not have noticed prior to submitting
the changes. A continuous integration server may even execute tests that are not
available to the concrete developer, for example because the hardware necessary to
execute the tests is not in their posession.

4



Software for supporting continuous integration may usually be configured to trig-
ger a build/test run of the software depending on many conditions, from simple
time-based events, to watching source code repositories for changes. After such an
event occurs, the software proceeds to build the software, usually running its test
suite in the process. The resulting artifacts of the build, such as executable binaries,
installers, disk images, test results, etc. may be collected and made available to the
users via the software. Reports of the results may also be reported directly to devel-
opers using e-mail, instant messaging or SMS notifications, depending on what the
CI software supports.

5



Chapter 2

HelenOS overview

HelenOS is a microkernel-based multi-platform multi-server general purpose operat-
ing system[1].

Operating systems can be categorized by their composition, depending on which
parts of the code are executed in the privileged mode of a processor. Traditionally,
operating systems with monolithic kernels put much of the code directly to the ker-
nel. This means that programming errors in a single subsystem or even a single
device driver may cause a catastrophic failure and render the whole system inop-
erable. In microkernel-based family of operating systems, where HelenOS belongs,
the subsystems that are not required to run in privileged processor mode are ex-
ecuted as ordinary user-space tasks. Yet there is no strict line between monolithic
and microkernel-based operating systems and hybrid implementations exist that com-
bine the two approaches. Even systems that claim to be strictly monolithic started
to allow some drivers to be implemented in user-space (e.g. Linux and its FUSE
infrastructure for filesystem drivers).

Some microkernel-based operating systems put only as little code to the kernel it-
self as possible, going to the extremes such as even switching tasks is implemented in
user-space (these may be called nanokernels or picokernels by some people). HelenOS

(a) A monolithic system (b) A microkernel multiserver system

Figure 2.1: Difference between monolithic and microkernel multi-server operating
systems
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Table 2.1: Architecures supported by HelenOS

Platform Bits Endianness SMP support
amd64 64-bit little endian Yes
arm32 32-bit little endian No
ia32 32-bit little endian Yes
ia64 64-bit little endian Yes
mips32 32-bit little/big endian No
ppc32 32-bit big endian No
sparc64 64-bit big endian Yes

is on the opposite side of this spectrum, where the kernel is responsible for initializa-
tion of all the processors, task switching, memory management, interprocess commu-
nication, etc. HelenOS kernel may be even compiled with support for a debugging
console that allows for the kernel to be controlled by keyboard commands. The kernel
console features a set of commands useful to developers, which allow to inspect vari-
ous aspects of kernel state, ranging from version information, list of CPU and memory
resources to displaying state of a slab allocator. kconsole is only a debugging aid
for the developers and is not present in production releases.

Unlike many microkernel-based operating systems, HelenOS supports a variety of
processor architectures and platforms. The supported architectures differ in endian-
ness, native integer size, support for SMP1 and other factors. HelenOS can be run on
different hardware configurations, from modern desktop computers, servers, different
developement boards or a mobile phone to a computer resembilng old 486 processor
architecure. A short overview of processor architectures HelenOS can run on may be
found in Table 2.1.

HelenOS has a multi-server userspace. This means that different subsystems
and drivers are separated in their own task and communicate via kernel- provided
IPC2 mechanism. In case a device driver misbehaves in such system, only the task
belonging to the driver is killed by the operating system and the rest of the system
remains unaffected. Some operating systems, such as MINIX 3, allow to automatically
restart such tasks[16]. HelenOS does not implement this policy as its authors belive
that the drivers should work in the first place.

HelenOS tasks can be divided between servers, which are tasks that provide some
services and applications, which consume those services and are usually started by the
user. HelenOS has many servers that together provide various level of functionality,
ranging from essential IPC services to whole subsystems, such as virtual filesystem
or device driver framework, which also launches driver servers on demand[17].

Each task in HelenOS may be composed of one or more independently preem-
tively scheduled execution threads. HelenOS libc library also has a notion of fibrils,

1symmetric multi-processing
2inter-process communication
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which are lightweight execution entities cooperatively-scheduled by libc among the
task’s threads. The kernel is not aware of fibrils as they are entirely implemented in
userspace.

In this chapter we describe concepts of the HelenOS IPC and servers that are
essential in the HelenOS’ userspace environment and which every program expects
to be present. Additional information about the user-space environment relevant for
building our framework, such as initialization process of the system, is also included.
A description of original means to execute tests is included for completeness.

2.1 HelenOS IPC
In HelenOS, inter-task communication3 is based on an abstraction of a telephone
dialogue between a man and an answering machine[18].

Each task has several phones and a single answerbox used for communication4.
A phone may be connected to an answerbox of a different task5. When the phone is
connected, the task may make a call that is stored into the (remote) answerbox.

Every call has to be picked up and forwarded or answered at some time after it is
stored in the answerbox. Eventually, the call will get answered. The answer is stored
in the answer box of the original caller task which completes the call. Answers are
not answered and the task has to make a new call if it wants to respond to an answer.

At the most basic level, a call is composed of a few integers of size native to
the architecture HelenOS is running, which is either 32-bits or 64-bits wide on the
currently supported architecures. One of the integers is special because it contains
an identifier of an IPC method that this call represents.

Most methods are defined by the receiving task, but the first 512 method identfiers
are defined by the kernel and expose special functionality of the IPC mechanism. If
the kernel observes that a task sent a call with such method, it reacts according to
the semantics of the method.

For example, if a task wants to copy a memory buffer to another task, the kernel
notes the position and size of the buffer specified in the call and when the call is
answered with acknowledgment, it copies the buffer to the location specified by the
receiving task in the answer. If the task answers with an error, nothing happens.

This way, the kernel exposes IPC functionality to:

• send/receive large data

• offer/ask to share memory between tasks
3HelenOS uses the term task to refer to what is known in other systems as a process. IPC is

used in other contexts and the abbreviation is used in HelenOS, hence a slight inconsistency in
terminology

4a separate kernel answerbox may be used for debugging
5it is also possible for the phone to be connected to an answerbox of the task owning the phone,

but this setup is not used in HelenOS

8



• share phone connections

• notify a third task of an agreement to change state

Apart from calls and answers, the HelenOS IPC also supports kernel notifications,
which are one-way messages from kernel that are not answered. They are used for
example to notify device drivers about interrupts.

2.1.1 Asynchronous framework

Since calls are delivered to single answerbox of a task, it is necessary to route calls and
answers to correct fibrils. Since implementing a state automaton to do the routing
using callbacks is not convenient, HelenOS provides a framework doing all the state
automata and route the messages to the correct fibril. If the fibril waits e.g. for IPC
answer, the async framework may schedule other fibrils in the meantime. When an
answer arrives and is processed, the framework eventually switches back to the fibril
this answer is destined to.

2.2 Spawning and connecting to other tasks
We have described how the tasks can use their phones, but how do they obtain
connections to services they depend on?

This section aims to explain how the two services that are used for this purpose
work and how the naming service is involved in spawning new tasks.

2.2.1 Naming service

The most low-level of servers is the naming service ns, which allows other processes
to estabilish connections to singleton6 servers and a loader service. These servers
correspond to different subsystems such as the filesystem layer, logging service, device
driver framework, network, etc. The naming service also plays an important role in
the process of spawning new processes and waiting for their completion.

Let us first describe how a process estabilishes a connection to another service
by its identifier. Every process has an initial IPC phone connected to the naming
service, which allows it to make a call asking for the connection. The naming ser-
vice then looks up its internal dictionary of services that have registered and, if it
finds a matching entry, forwards the connection request to the target service. The
connection request may then be accepted or denied by the target service, as it sees
fit. Actual work of estabilishing a new phone is done in the kernel, which observes
the communication between the parties and figures out whether they have agreed to
estabilish a new connection. In case the service that was requested has not registered

6there is only a single instance of the server running in the system
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with the naming service yet, the connection request is postponed until the service
registers itself. This process is shown in the figure 2.2.

Spawning a new program is a two step process. If someone wants to spawn a
new process, they must first obtain a connection to the loader service. This is not
a singleton service, but instead an identical clone of the service is spawned in a new
process for each of the clients separately. When a new connection to the service is
requested, the naming service instructs the kernel to spawn a new copy of the loader
task, which then registers at the naming service. At this point, the naming service
learns about the task id of the loader. The naming service then proceeds to forward
the waiting connection.

When a connection to the loader service is estabilished, a client then proceeds to
customize the new task. The loader allows to set the name of the task, arguments,
path to the executable, file descriptors and finally to load the program.

The client may then want to wait until the new task finishes and check its return
value. This facility is also provided by the naming service. It allows every task to set
its return value before it exits. In case a task fails to set its return value, the naming
service learns about this fact, too, because it is the receiving end of the initial phone.
A phone automatically sends a hangup message whenever its connection is about
to be terminated, which happens at the latest when the task exits. As soon as the
naming service knows either the return value or the fact that the task unexpectedly
terminated, it replies to tasks waiting for the return value. This allows server tasks to
set their return value just after initialization, essentially starting to run in background
when run from a shell.

2.2.2 Location service

A higher-level counterpart to the naming service exists in HelenOS. Just like the
naming service, location service enables clients to connect to other services. Instead
of using a flat namespace of numeric service IDs, the location service allows services
to be identified by string names.

Each fully qualified service name (FQSN) consists of an optional namespace, sep-
arated from the rest of the string by a slash, followed by the name of the service.
Namespaces are not hierarchichal, therefore locsrv does not allow multiple slashes
to be present in the FQSN. If no slash is present in the FQSN, the namespace is an
empty string. The FQSN uniquely identifies the service, so an attempt to register an
already registered name fails.

Naming the services by string names is not the main purpose of the location
service though. Apart from the list of services, the location service maintains a list
of categories. Categories are identified by simple string names and their purpose is
to group services with compatible interfaces. For example, a category named serial
contains a list of services representing different serial ports of the computer. The
location service maintains a M:N relationship between categories and services so not
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(a) Only initial phones are connected.

(b) APP makes a call to NS requesting
connection to SRV, but it may not be
available yet.

(c) SRV registers at NS.
(d) This created a connection in the other
direction.

(e) The original call from APP is for-
warded to SRV via the new connection. (f) A new phone is connected.

Figure 2.2: Connecting to a service via IPC. The dashed lines represent connected
phones. Solid lines represent unanswered calls.
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only a category may contain multiple services, but a single service may be enlisted in
several categories. This is useful if a single service provides different interfaces to a
single resource, for example a multi-function printer with an integrated scanner may
be present in both printer and scanner categories.

The location service allows clients to browse its directory of connected services,
namespaces and categories. This allows a generic tool loc to be present so that users
may easily discover the services that are present in the system.

When a service is added or removed from a category, the location service notifies
any clients that have registered to observe those changes. This allows different classes
of services to be discovered by relevant parties. For example when a human interface
device is plugged into the system, it registers in the relevant category and the server
processing input events may start using the device automatically.

2.3 Virtual filesystem service
A central component of the filesystem support framework in HelenOS is the virtual
filesystem server (VFS). Every application that wants to access the filesystem must
first connect to vfs and then use the connection to send filesystem commands.

Files are organized in a hierarchical namespace with single root directory, not
unlike UNIX-like operating systems behave. A filesystem may be mounted over a
directory to expose its contents. The filesystem operations are implemented to an
extent that applications can work with the filesystem (reading/writing files/directo-
ries). However, it currently lacks support for features such as symbolic links, access
rights or storing file modification times.

The virtual filesystem server keeps separate file descriptors for each process. If a
client wants to hand a file descriptor off to another task, it has to use a special IPC
protocol so that the virtual filesystem server is notified of the change (and both the
receiver and the vfs authorized such an operation).

Support for each filesystem type is provided by separate servers. These servers
are called filesystem drivers and conform to an interface which the virtual filesystem
server uses to handle requests from user applications. Each driver registers with the
virtual filesystem server upon startup and announces information about the filesystem
type it supports.

Usually7, the filesystem is backed by some block device, either a ramdisk or a
partition on a hard-drive. Block devices are also provided as a service by separate
servers.

7The tmpfs filesystem is an exception
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2.4 Logging service
Another one of the essential services that are present in the HelenOS userspace is a
possibility to log different events in the system. The logger server provides exactly
that.

Each message that is sent to the logger is tagged with a log level. This is a number
indicating the severity of the message. Currently, 6 levels are supported ranging from
severity of a fine debugging message to catastrophic failure.

The service maintains a hierarchy of log channels, each having a string name, op-
tional parent log channel, and severity level. When a message is sent for processing, it
is targeted to a specific channel and the effective log level of the channel is computed.
This value is then compared to the severity level of the message and if the message
is not severe enough, it is discarded.

Channel’s effective log level is computed as follows:

1. If the channel’s log level has been set explicitly, use it as its effective log level.

2. If the log level has not been set and the channel has a parent, compute the
effective log level of the parent and use it.

3. If the channel has no parent, use the global default log level.

If the system determines that the message needs to be logged, it writes it to the
kernel output character buffer and to a file, if available. Each of the top-level log
channels has a corresponding file under the /log directory. Messages destined to
channels deeper in the hierarchy go to the file of the corresponding top-level channel
and are labeled with a fully qualified name of the channel8.

2.5 User-space initialization
A set of initial user-space tasks is spawned by the kernel upon startup. These tasks
are passed to the kernel by the boot loader. There are three special cases:

• all spawned tasks are connected to the first one

• loader task is not spawned

• if the image is not executable, it is used as the initial ramdisk image

There are a few differences between tasks that are spawned during initialization
and tasks spawned later:

• The initial phone connection of the first task is not created as there is no task
to connect it to.

8a slash-separated list of log names
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• Boot-loaders may pass task command line to the kernel. However, the kernel
passes tasks’ arguments via kernel sysinfo mechanism instead of setting them
to be available to a task via arguments of its main method. This is a known
issue.

• No file handles are passed to the tasks.

• Task’s name is prefixed with init: for user’s convenience

The tasks that are built into the boot image and used during initialization are
the naming service (ns), the location service (locsrv), the virtual filesystem server
(vfs), logger, ramdisk block device (rd), a filesystem server implementing support
for the filesystem format used in the initial ram disk image (ext4fs, fat or tmpfs)
and init

The init task initializes parts of the userspace environment that are not required
during the bootstrap process. This task is responsible for spawning other userspace
services such as clipboard server, input and output servers, mounting other filesys-
tems, etc. depending on the configuration.

2.6 Tests
The original code for running tests is divided into two independent components.

The kernel console contains a command called test, which is a very simple test
runner for kernel tests. Another kernel console command, bench, can execute a single
test multiple times and report kernel accounting information. The tests may be run
either individually or all safe tests at once and report results as text output into the
kernel console, which is useful when running the tests manually. On the other hand,
an automated program may not be able to easily extract test results and progress
information from the kernel. This program supports marking tests as unsafe. This
is for tests such as fault1, which cause fatal harm to kernel and therefore would
disrupt execution of the batch.

The amount of kernel tests is currenly small, 18 tests are present in HelenOS
mainline, revision 1396. Parts of kernel covered by tests include printing using printf,
semaphores, SLAB tests, memory mapping, frame allocator and kernel data struc-
tures test including AVL and B-tree implementations.

For testing user-space, HelenOS contains a simple application that runs tests. As
with kernel test command, the userspace tester can execute either a single test or
all tests marked as safe. Each test is a function that either returns success or an error
message. The tests output status information to the standard output of the tester
process, which is also the only place the results of the tests are reported.

Because the tests are executed in the same process as the logic that is reponsible
for launching the tests, any crash in the test causes the whole tester to terminate.
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2.7 Communication
HelenOS has support for framebuffer and keyboard/mouse. This is a primary user-
interface that is used by most HelenOS users. Despite being a microkernel OS,
HelenOS has some framebuffer drivers in the kernel. However, efforts are underway
to move all those drivers to userspace.

In userspace, experimental support for GUI has been added by Petr Koupý (pre-
viously, HelenOS only had a text console). On some platforms where a framebuffer
is not available, text-only console is still available.

HelenOS contains user-space and debugging-purpose kernel serial port drivers.
Only driver for NS16550-compatible serial ports is available via HelenOS’ user-space
device driver framework so far.

A network stack is also available in userspace, although it still lacks many features
available in other operating systems. Drivers for three different network interface
cards are already available. Some simple network utilities such as ping are available
as well as a demo web server. remcons server allows to connect to HelenOS using
telnet protocol.

Information may be also written to storage devices such as ATA or SATA based
hard drives. HelenOS has support for several filesystems, including ext4, mfs and fat.
Filesystem driver for reading ISO 9660 filesystem is also present.

Last but not least, HelenOS contains a USB stack that allows to use USB devices
from HelenOS. Currently, human interface device class (keyboards, mouse devices)
and mass storage class are supported. No driver for USB serial port adapter or
network adapter is present in HelenOS.
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Chapter 3

Machine emulators and their
interfaces

In this chapter, we briefly look at emulators that could be used to run HelenOS and
describe interfaces to control them and observe the system state.

3.1 QEMU
QEMU[2] is the emulator of choice of most HelenOS developers. It supports most of
the architectures that HelenOS can run on and some others as well. HelenOS can be
run in QEMU using system emulation for ia32, amd64, arm32, ppc32 and sparc641.
While both QEMU and HelenOS support mips32, the exact machine types supported
are different. There are plans[23] for HelenOS to support a machine emulated by
QEMU, though.

Apart from emulating processors, the virtual machines emulated by QEMU have
also peripheral devices including a video card, keyboard and mouse devices, storage
devices such as hard drives and optical drives, serial ports, network interface cards
and more.

Those devices can be configured via QEMU’s command-line arguments when
launching the virtual machine. Some of the devices may be added, removed, re-
configured or manipulated even when the virtual machine is running.

QEMU supports several different interfaces that allow other programs to com-
municate with the system in the virtual machine. Video, keyboard and mouse can
be accessed using VNC or SPICE remote desktop protocols. Additionally, QEMU
monitor allows users to execute commands to control the emulator. These commands
also allow to set mouse position, send key presses via the virtual keyboard, or save
an image of the current screen video output to a file.

Since QEMU monitor interface was originally designed for humans to use, it is not
well-suited to use by computer programs. Fortunately, a monitor interface designed to
be controlled by programs was added. QEMU monitor protocol[4] is an asynchronous

1sparc64 support in QEMU is rather experimental[3]
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protocol to execute QEMU monitor commands and receive asynchronous event no-
tifications. Every message in this protocol is a JSON formatted line, which allows
programs to parse the contents using libraries available for a lot of programming
languages.

Virtual serial ports may be connected to various host devices, including pipes and
sockets that could be conveniently opened by a program. QEMU supports exposing
multiple serial ports if the simulated machine supports it.

Network may be configured either to use QEMU user-mode network stack that
creates a virtual network with access to outside networks using network address
translation or create a virtual network device in the host. Network traffic can be
logged to a file in a libpcap format that can be read by common network analyzing
tools.

It is possible to directly manipulate memory of the virtual machine either by
monitor commands to dump memory, or by connecting an instance of GNU debugger
(gdb) to QEMU, which also allows writing to the memory of the virtual machine (if
the virtual machine is currently stopped). QEMU also supports setting code and
memory access breakpoints using the debugger.

3.1.1 Controlling gdb

The GNU Debugger connected to QEMU can be controlled using GDB machine
interface[5] (GDB M/I). This is a line-based text interface designed for usage by
programs where the debugger is only a part of the entire solution. Is is used for
example by various integrated developement environments.

This interface allows to use GDB features to find location of symbols in memory,
read and set values of variables, set breakpoints, etc. and receive events to observe
state of the debugger and the debugger program.

3.2 VirtualBox
VirtualBox[6] is a system virtualizer for ia32 and amd64 architectures. It also sup-
ports emulation of common hardware for video, keyboard/mouse, serial ports, net-
work, etc. It uses parts of QEMU code to emulate devices and the network stack is
very similar.

VirtualBox provides its own API to manipulate its state to an extent similar to
QEMU, except that it only contains an unsupported internal debugger[7].

3.3 VMWare Workstation
VMWare Workstation is a commercial virtualization product for amd64 architecture.
It supports similar user-facing functionality as previous tools. Notable feature of this
software is a mechanism to instrument the virtualizer or the virtual machine using
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small scripts called VProbes[8]. This functionality could be used to inspect and
modify the state of the operating system running inside the virtual machine without
needing to pause it (as is the case when a debugger is used to add a breakpoint).

3.4 MSIM
MSIM[9] is an instruction simulator for the mips32 architecture. It has support
for simulating several simple hardware devices including a keyboard and character
printer. The emulator does not currently support a serial port, but it is listed as a
planned feature in the project’s TODO file. MSIM has integrated debugging facilities
as well as a connector allowing to connect GNU Debuger (see also 3.1.1). This
emulator also can be executed from within HelenOS.
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Chapter 4

Analysis

In this chapter we look at what is the intended usage of a testing framework in
HelenOS, from the point of view of target users – contributors to the HelenOS code-
base – as well as what are the problems we need to tackle and their high-level solu-
tions.

4.1 Intended use cases
There are several use cases when a testing framework may be used during develope-
ment of an operating system such as HelenOS. As HelenOS is a microkernel-based
operating system, a great portion of developement is focused on user-space com-
ponents. Efforts are underway to allow HelenOS to be self-hosting in a sense that
HelenOS can be compiled from within HelenOS. As of now, HelenOS contains a port
of a portable C compiler project (PCC) that allows to compile simple user-space
applications directly inside HelenOS. A port of the GNU Compiler Collection may
be expected in the near future. Support for other programming languages than C is
also planned for HelenOS – several projects to support programming languages such
as Python, Go or Sysel are in various stages of developement. As code is developed
within HelenOS, developing and using accompanying tests should be possible to aid
the developer.

HelenOS already supports a few processor architectures and the developers strive
to cover most of the platforms that are common or pose interesting challenges to
solve. When porting the operating system to a new platform, the developers need to
port the platform-specific code early. After the kernel is ported and seems to work,
it is good to check if all the subsystems work as expected. In debug build, the kernel
contains a debugging console that allows the developer to interact with the kernel
even when the userspace is not available yet. However, having such a debugging tool
in the kernel requires drivers to be present in the kernel, which goes a little bit against
the microkernel design. A developer may want to still run tests before proceeding to
work on the userspace part of the porting effort, though.

Since most developers only use a single platform most of the time, they may
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not test their code as thoughroughly on architectures or configurations other than
those they prefer. A useful use-case is to execute all the available tests as part of a
continuous integration process on as many architecures as possible. Running tests
automatically in this way is not supported and is one of the main motivations for
this thesis. The practice to execute tests on various architectures could help the
developers spot errors in code as they are introduced.

4.2 Services of a testing framework
A typical testing framework usually provides:

Test enumeration Because tests may be added and removed as necessary, a test
framework must be able to discover tests that are available and convey this informa-
tion to the user.

Managing a life-cycle of tests The testing framework manages the entire process
of running the tests. Meaningful subsets of all available tests can be selected to
execute. When a test is about to be executed, the necessary environment is prepared
first, then the test is executed, evaluated and the environment is prepared to run the
next test.

Isolation of tests Tests are usually isolated from the framework so that adverse
effects of bugs the tests are supposed to check for, or simply an error in the test itself
affect only the test itself and not the entire framework. Tests are also isolated from
each other so that execution of one test does not affect the results of other tests. The
latter is necessary to be able to execute only a subset of the tests, in any order.

Providing a test interface A framework usually also provides application pro-
gramming interface to the developers of the tests that allows to conveniently write
the tests. This API defines how the the tests look, how they return their results and
provides procedures to help doing common tasks when writing tests.

Reporting the results When the tests are finished, a testing framework informs
the user of the results of the tests and reasons why some tests possibly failed. The
testing framework may also generate log in formats understandable by other software
or produce reports intended for human consumption.

Since our test framework will run tests in a virtual machine, we need to look at:

Controlling the virtual machine The framework needs to execute a virtual ma-
chine, observe its state, control its execution and shut it down when tests are finished.
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Communication Since the tests are run inside HelenOS, it is necessary to be able
to communicate with the system and observe its state from outside (a computer
running the virtual machine or possibly another computer connected to the real-one
running the tests)

4.3 What to support?
We need to decide which types of tests the framework will support, and how the
support will be achieved.

Unit tests test small pieces of code such as procedures. As such, a unit test
may be simple procedure that calls a function and checks its return values. In some
cases, it may be necessary to replace implmentations of some lower-level functions,
in this case it is possible to build a special version of the tested function to the test,
either by using preprocessor macros or replacing symbols during linking. In kernel,
modifying the code to be tested by replacing symbols may not be feasible, however, as
this may disrupt the kernel environment (some functions require execution of special
priviledged instructions or modify global kernel state).

Since kernel tests need access to the code they test, it is not possible to isolate the
tests in a separate adress space. On the other hand, in user space, the test runner
may spawn a new task that runs a test and reports the results to the framework.

There are several ways how to approach integration tests in HelenOS. One of them
is to create stub libraries that will replace parts of API for different subsystems to
test them separately. Since HelenOS is a microkernel multiserver operating system,
the subsystems are already separated in the userspace. Each subystem resides in a
separate server or a group of servers. We can exploit this fact and test the behaviour
of the subsystems by replacing some of them with stub servers. This allows to check
both whether a server behaves as it should and whether a client library code that
wraps the low-level IPC into a higher-level API adheres to the IPC protocol.

If we want to be able replace servers which a program connects to, we could replace
a function that creates the connection to the server. This will require modification
of the code we aim to test, e.g. link a different library. It should be possible to
redirect the very first IPC connection every task uses to obtain other connections.
This approach should allow a single component to redirect all connections to servers
the tested code requests and return versions used for testing. Having such a facility
would even help to isolate the tests from the framework (and the rest of the system)
even more.

To run system tests, it is necessary to test the system end-to-end. Things that
could be tested include for example that after plugging a device to the system, the
device is correctly recognized and is working. Such tests require some action to be
taken from outside of the virtual machine to add the device or an action by the
user if the tests run on a real hardware. Because of this, we will need each of the
tests to be able to request such an external action and wait for it to be completed
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before proceeding further in the test. While one may think that such functionality
is not necessary in the kernel, there might be some devices that could be tested this
way. Consider for example that adding a hot-pluggable processor might require some
actions from the kernel that could be tested.

When the tests can pause at some point, upon resuming, they shall receive infor-
mation whether the waiting was successful. This can be used by the external tester to
indicate that the requested operation failed or is entirely not supported (e.g. because
some virtual machines do not support some operation). This notion can be extended
and we can use such points to allow the tests to be aborted (a test has to be able to
exit at this point anyway, if the waiting failed).

Computing code coverage requires to determine which branches of code got exe-
cuted during tests. This may be achieved in several different ways[27].

• The code may be dynamically augmented before execution to store the outcome
of branching instructions. This approach requires a program that is able to
modify the machine code. Such an operation is architecture dependent so it
will require a separate implementation for each platform. It also requires careful
attention to details because it may cause the original program to misbehave. For
example, certain instructions on some architectures require another instruction
to be present in the immediate surroundings and if such an instruction is not
there, the system may behave in an uninteded way.

• The code may be augmented during compilation. This requires a separate
version of the code to be built when it is tested. Augmenting the code may still
cause problems in the kernel, as it can disrupt its operation. Therefore, code
coverage for only parts of the kernel could be computed this way.

• Modifying the virtual machine to determine branch information transparently
to the executed programs[28]. One of the advantages of this approach is that
it does not require modifications of the tested code, as the determination of
branch outcome is done by the virtual machine. This approach has its draw-
backs though. While this approach can easily determine branches in the kernel,
determining outcome of branches in the user-space code will most likely require
the code to be aware when kernel switches task contexts. Moreover, adding this
functionality to the machine simulator will probably require adding support for
every architecture separately.

Adding support for computing code coverage seems to be a significant amount of
effort to do properly for different architectures and we will not pursuit this path in
this thesis.

Considering possibilities to communicate with the system running inside a virtual
machine and the test runner, we should be able to use serial port and network stack
for our communication needs, at least on ia32 and amd64 platforms. When a serial
port driver is added for an architecture where it is currently missing, we should be
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able to use it for communication. Fortunately, there is an interface that serial ports
implement, so while we can focus on ia32 architecture, it is reasonable to expect that
drivers for serial ports supporting this interface will be added in the future for other
architectures as well.

But we shouldn’t limit the possibilities of the communication only to serial ports.
As computer networks are everywhere in this age, allowing the communication to
happen over this channel seems natural. There is yet another possibility how to
extract test results and other information from a virtual machine.

Since drivers for serial ports and the network stack resides in the user-space it
is not possible to use it directly from the kernel to report test results. Instead, the
user-space test runner should be able to enumerate kernel tests that are available and
execute them just like the tests from the userspace.

Both QEMU and MSIM claim to support debugging via GDB, it should be pos-
sible to use the debugger to read tests results from the virtual machine and even to
change several kernel variables – the most interesting is changing init task parameters
even on architectures where the boot loader does not allow this.

During testing the framework should record information about the events hap-
pening in the system and store them in case test failures need to be analyzed. Those
events should be also reported outside the virtual machine along with test results.

It is possible to drive the tests either from outside of the virtual machine or
by a component running inside HelenOS. If the main component is a test runner
outside of the virtual machine, it can send commands that are executed in the system.
In the latter case, the program that runs outside of the virtual machine acts as a
auxiliary component that provides services to the main runner. Advantage of the
second approach is that tests can be run directly from within the tested operating
system even if no virtual machine is used.

4.4 Summary
To sum up, using our framework, it should be possible to:

• Execute tests from outside the virtual machine as well as using a command
directly in HelenOS, main test runner will be the user-space one.

• Allow running kernel and user-space tests and report results.

• Extract log messages and test results using serial ports and/or a debugger.

• Store log messages and possibly other events alongside test results for further
examination.

• Allow tests to wait for external action to happen.

• Isolate the user-space tests inside an IPC sandbox.
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Chapter 5

Design and implementation

In this chapter we present design decisions and implementation details that led to the
creation of our testing framework for HelenOS. Since the framework should execute
kernel and user-space tests, and optionally report results ouside of a virtual machine,
it spans these three environments. The chapter contains three sections describing
the changes we made in them. Last section contains a description of the protocol we
used for communication between user-space test runner and its counterpart running
at the developer’s machine.

In order to execute tests in a virtual machine and record their results, it is neces-
sary to have a program that figures out correct parameters for the virtual machine,
configures it and executes the operating system. Log events and information from
running the test needs to be obtained. The first section contains details about this
component.

Changes in the kernel were required to suport all the features of the framework.
It was necessary to prepare a logging subsystem that would allow to work with log
messages in a unified way across kernel and userspace. Since test run in kernel cannot
be isolated very well, the basic principle of the original testing code is preserved.
However, we have rewritten the kernel test runner from scratch so that it is decoupled
from the kernel console, supports features for system tests and can be controlled from
user- space. The changes are described in section 5.2.

We made also changes to various user-space components, where the main test
runner resides. Section 5.3 explains how runtime information is collected, how the
tests are executed and describes changes necessary to report the test results. This
section also contains information about how we approached isolation of the tests and
what kind of new tests it makes possible to use in HelenOS.

5.1 External environment
In order to run tests inside HelenOS, it is necessary to first setup the emulated
environment in which the operating systems executes. This is one of the tasks that
tools/run.py program is responsible for.
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The first thing the program does is to determine the actual configuration of the
system. Since the configuration script itself is also written in python, it was not a
problem to re-use the functions for loading the configuration, although it required
some tweaks.

The program then executes the system in a virtual machine, monitoring and
processing all incoming events such as log messages, status of running tests, etc. All
such events are also logged to a file in case they need to be analyzed by a human.

The runner is structured into several modules. The most basic module is an
asynchronous core, which runs the program’s main loop and waits for events such as
I/O or timeouts. These events are then dispatched to appropriate handlers that were
registered during program initialization. The core provides facilities to manipulate
input/output channels in a unified way and plug them into other modules to use.

The core.py module provides two implementations of the core interface, one
using the traditional UNIX select call. However, select has a limitation in its
API because it uses a bitmask to specify file descriptors to be monitored. This
causes it to be linear with respect to the highest file descriptor number monitored.
The other implementation uses a call to poll, which has slightly different interface
which is linear with respect to the number of file descriptors monitored. If the latter
implementation is available, it is used by default, otherwise the program falls back to
the former one. There are other cases when another type of core may be used. For
example, a graphical application written using the GTK toolkit may use main loop
implementation from the library. The current design allows to write such a module
and use it instead of one of the current core implementations.

A channel is a unidirectional or bidirectional stream of bytes. Each channel holds
a list of clients to be notified when new data arrives from the channel and a buffer
holding bytes to be written to the channel. The bytes from the buffer are flushed
by the core as soon as the operating system indicates that the channel is able to
accept data. There are implementations for socket client, socket server and file-based
channels. The only restriction when implementing another channel type is whether
the channel is backed by a file descriptor usable by operating system’s select or
poll calls.

As the program processes various events asynchronously, we added a separate
module where events and supporting code resides. The events.py module contains
definitions of classes for all event types and a simple event dispatcher. The dispatcher
allows other modules to selectively subscribe to receive messages and receive them
as calls to their methods, which is convenient and allows for nicely formatted python
code.

A separate module is responsible for launching a QEMU virtual machine with
command-line parameters determined according to the current HelenOS configura-
tion. The user of the class representing the QEMU instance may hook various chan-
nels to virtual devices such as serial ports or I/O channels provided by QEMU itself.
This module also contains a class for controlling the virtual machine using the QEMU
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monitor protocol, which is briefly introduced in section 3.1.
Communication with the agent running inside HelenOS running in the virtual ma-

chine is handled by a module for encoding and decoding protocol buffer messages used
in the communication protocol between the two parties. The remote control protocol
(RCP) used to remotely control the agent is described in the section 5.4. We decided
to write our own decoder and encoder because the official python implementation
[21] didn’t suit our needs.

First of all, that implementation didn’t support storing unknown message at-
tributes, which is a feature that is desirable for our runner program because it allows
it to embed all messages into its log file even if it does not understand the contents of
the messages. This enables those messages to be later analyzed by human and helps
to achieve forward-compatibility of the test runner.

Secondly, using a custom implementation allows us to tailor the implementation
to the asynchronous core we use. Moreover, it is then straightforward to reuse parts
of the code to encode and decode the envelopes of RCP messages.

Last but not least, adding an external dependency to the project adds maintenance
burden to the developers, who then need to ensure compatibility with a range of
versions available in the wild. Embedding the dependency into the project does not
help either, as it enlarges the effort necessary to setup a developement environment
and the developers have to still track the upstream code.

We also implemented a proof-of-concept module that gathers log messages from
the kernel log buffer using GNU Debugger, which is connected to the virtual machine
interface for remote debugging. This module uses the GDB/MI protocol (see also
section 3.1.1) to communicate with the debugger. Unfortunately, setting breakpoints
in the virtual machine works correctly only in recent versions1 of QEMU and we were
succesful only with the i386 architecture.

Again, we used a custom implementation of the encoder/decoder of the GDB/MI
protocol, because python implementations available at the time this code was de-
veloped did not fit our needs. Some new python GDB/MI implementations have
emerged since then, however.

In order to extract new log messages, the gdb.py module sets a breakpoint inside
the function that logs the messages. The location of the breakpoint is currently
hardcoded inside the module, but this can be changed in the following ways:

• add a special comment that the runner would search for

• split the function in question into two and set a breakpoint to the entry point
of the function representing the second part

The program reads the log buffer, which is an array of bytes and parses the log
messages itself. This means it has to know the size of native integers stored in the
buffer. Currently only 32-bit integers are supported, because setting breakpoints

1version 1.2.0 or later should be sufficient
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only worked on 32-bit architecture, but as soon as the problem with breakpoints is
resolved, it should not be a problem to modify the code to use integer width based
on the build configuration.

The gdb module also sets a breakpoint to the location where a kernel panic func-
tion resides, so that it knows when such event occurs.

We also investigated the possibility to set arguments of the initial user-space tasks
via debugger. These arguments may be set by the boot loader on some architectures,
such as ia32 or amd64 where GRUB2 is used. Some architectures do not use a boot
loader that allows this, however. Even if such support existed it would be necessary
to setup the bootloader to communicate with the launcher program (or leave this
responsibility to the kernel).

As it turns out, we are able to set arguments for an initial task in this way by
modifying the respective variables in the kernel upon startup. This functionality
could be used to change the mode of operation of various system components during
testing without rebuilding the boot image.

Using the debugger for obtaining information about the system has several advan-
tages and disadvantages. One of the advantages is that it does not require a special
kernel device driver to communicate this information. On the other hand, the setup
requires line debugging information to be computed during the build process in or-
der to work2 and pauses the virtual machine for a short amount of time whenever a
breakpoint is hit.

A similar approach would be to embed the code monitoring the state of the virtual
machine directly to the virtualizer so the delays are eliminated. While modifying
QEMU code should provide better performance, it will require maintenance of patches
against upstream QEMU that would have to be tracked and rebased whenever a new
version of QEMU is released. An ideal solution would be if QEMU allowed to inject
a probe pseudocode that would be interpreted and stable across QEMU versions.
Similar functionality is provided by VMWare’s vprobe technology[8].

5.2 Kernel space changes

5.2.1 Logging subsystem

HelenOS traditionally used simple character output buffer for its logging needs. This
approach makes it hard to copy information from the kernel log to structured user-
space logger service. Therefore, we decided to implement a structured log in the kernel
as well. However, the old character buffer remained and is used by the debugging
output drivers if they are enabled. The log messages are transparently copied to the
kernel output buffer.

Kernel log messages are stored sequentially in a cyclic buffer. Once the buffer
is full, the oldest messages are discarded as necessary. Since messages are stored

2otherwise the debugger would not know the address where to set a breakpoint
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Table 5.1: Format of log messages stored in the kernel log buffer

Data type Width Field
size t native Length of the message, in bytes
uint32 t 32-bits Message ID
uint32 t 32-bits Facility ID
uint32 t 32-bits Log level
uint8 t[] variable Contents of the message

with metadata about their size, originating facility and severity level, it is possible to
manipulate them as a whole. A message is either retained in its entirety or dicarded
completely. This fact, combined with atomic access to the log structure, guarantees
consistency for an agent retrieving the messages.

The kernel log API can be divided into a lower-level interface and a higher-level
one. The first allows flexibility while the other provides convenience for basic usage.

While it would be possible to just have a single function that takes a character
array to write to the log, this approach is very limiting. Consider a situation where
the log message must contain a variable number of parts which are best generated in
a loop. Such a message would have to be prepared in an external buffer, which may
require allocation of the memory. This allocation may not be possible early in the
initialization process or after memory has been exhausted3. Therefore, it is necessary
to atomically append directly to the cyclic buffer, while allowing the appending part
to be done using multiple calls. As one of our design goals was atomic access to
the log, it is necessary to surround the block of code accesing the log with a pair
of commands locking/unlocking the corresponding mutex. However, as the messages
are preceded with a header, it would be necessary to always add a call to write the
header just after the call locking the mutex when appending to the log, so we decided
to embed the locking calls inside log begin/log end calls, respectively. This also
allows the length of the message to be automatically computed after the message has
been appended to the buffer. While the structure of the log message allows to store
any binary data, it is convenient to store textual content to make debugging easier,
so we added printf-like function to append formatted text to the log.

So, the low-level API looks as follows:

log_begin (facility , level );
log_append (data , len );
log_append (another_data , another_data_len );
log_printf (fmt , ...)
...
log_end ();

3This is the reason why the log buffer is allocated statically
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While this API is flexible, it is necessary to make at least three calls to log a mes-
sage, which is inconvenient when one wants to just log a simple message. Therefore
a high-level wrapper named simply log combines the three calls into one. It is a
printf-like function with the following signature:

int log(facility , level , fmt , ...)

When a user-space client wants to retrieve kernel log messages, it specifies the
last message ID it saw and the kernel returns only messages with a greater ID. This
concept does not reveal any internal information about how the kernel stores the
messages, therefore it is possible to change the implementation in a backwards com-
patible way between releases. Not only this allows only new messages to be returned,
it allows the client to determine whether some messages were missed, because they
were discarded by the kernel4, in this case the ID of the first returned message will
be greater than the last ID the client saw. While the counter for message IDs may
overflow, it should not cause many problems in practice. Although the current imple-
mentation does not check this case, the kernel can easily determine that the counter
has overflown, as it may remember the IDs of latest and newest messages stored in
the cyclic buffer and return appropriate messages to the client.

This design turned to be beneficial also when reading the kernel log buffer directly
via a debugger, as the external test runner can do the same handling of log message
IDs and determine which messages are new since it last checked the buffer.

5.2.2 Test runner

While most generic kernel code could be taken out of the kernel and tested entirely
in user space (in fact, several library functions, such as handling of strings, generic
algorithms and data structures are exactly the same or very similar in kernel as in
user space runtime library), we opted not to do so. The main reason for this is
that the kernel has a different runtime environment than user space processes. The
environments differ in several ways, most notable being implementation of memory
management and a variety of different synchronization primitives. Although these
share a similar interface, there are subtle semantical differences which are caused by
slightly different needs of the implementations. Reproducing the kernel environment
accurately in user space therefore seems to be work with diminishing returns.

The kernel tests are statically included into the kernel binary during the build
process if debug build with tests is enabled in the project configuration. While
simple to implement and convenient for use if the size of the tests is relatively small,
this may not work that well when the tests (and all required data) reach a certain
size limit depending on the limitations of boot loading implementations on some
HelenOS supported platforms. Fortunately, this scenario is currently unlikely5 and

4The current implementation does not check this though
5The user space initrd image is currently significantly more likely to cause problems like this as

more and more user space code is ported from different projects
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this situation may be avoided either by only embedding a subset of tests at once,
or loading the kernel tests dynamically. The latter is not much viable, however, as
HelenOS kernel is not able to load kernel modules dynamically and this functionality
may even never be implemented because it goes against the microkernel principle.

As there may be some platform specific tests that require interaction from the
outside world (such as pressing a button on the device, inserting a hotplug capable
processor, etc.) for testing certain functionality of the kernel (although this currenly
applies only to debug-only kernel drivers), the kernel tester allows each test to be
suspended and wait to be resumed by an external stimulus. This is triggered by any
of the tester subsystems for controlling test execution, described later in this section.
A test may be suspended only at a predesigned named point. Moreover, we defined
semantics of the wait such that the test itself must be able to handle a failure of the
waiting and terminate prematurely if requested. A test may therefore be resumed in
one of the following states:

• the waiting was successful, continue the test

• the external action failed or is not available, fail/skip the test

• a request to abort the test suite occured, abort the test

This behaviour is implemented by running the tester itself in a separate kernel
thread, which allows the tests to be expressed naturally using C functions and the
wait points to look like a function call. In addition to allowing the test suite to be
paused, running the test suite in a separate thread allows us to leverage support
for kernel accounting mechanism and determine how many CPU cycles each test
consumed.

As the information about CPU usage is recorded, the user may use a test suite
for benchmarking purposes. The tester allows to specify how many times each test
will be executed. If the test passes all repetitions of the test, it is marked as passed.
Otherwise, as soon as an error or another test result condition (such as the test is
skipped) is encountered, the test is immediately terminated and no further invocations
are made.

One of the subsystems to control the test suite may be the kernel debugging con-
sole (if compiled into the kernel). It allows the user to execute various commands
to examine and control the state of the kernel for debugging purposes. The subsys-
tem is not supposed to be present in production builds. In the meantime, it allows
convenient interaction with the kernel and the tester registers several commands to
control its behaviour – execute the test suite, query status, pause/resume and abort
the test suite.

While the kernel console is suited to be operated by the kernel developer, there
are better ways how to control the test suite from the user space. The tester exports
system calls to setup and control the test suite and also hooks itself into several user-
space-facing subsystems. Information about all the tests available in the kernel is
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exported through the sysinfo subsystem, which allows user space processes to query
various system properties through a convenient user-space API.

The manipulation of the tester state from user space is done using dedicated
system calls, one for preparing the test suite (i.e. selecting which tests are to be run)
and another one for querying, pausing, resuming and aborting the test suite. The
kernel notifies the user-space test runner when the state changes (such as when the
tests are suspended) via asynchronous event mechanism. In the early developement
phase, the system call for controling the tester was blocking, which was suited for
testing, but using asynchronous notifications not only obviates the need for multiple
threads in the user-space tester application, but also allows us to leverage the benefits
of the user-space async framework.

Our design specifically includes a global symbol pointing to the most recent test
run, so that test results can be located and read from the kernel memory by using a
debugger. Combined with setting breakpoints to function in the kernel test runner,
it should be possible to observe the state of a test run.

For running just the kernel tests before the user-space is initialized, the kernel
checks for a variable specifying the tests that should be executed during startup.
The variable is currently not set in the kernel itself, but is left to be changed by a
debugger. It can be set in kernel if such need arises, e.g. by setting a multiboot
kernel parameter.

5.3 User space changes

5.3.1 Logging subsystem

While HelenOS’ orignal user-space logging subsystem was mature, our work still
required some adjustments. First of all, the original logger server stores all logs into
files under /log directory. This is suitable if the only consumer of the log messages
are the users themselves. On the other hand, if the consumer is a machine, this
behaviour is not very optimal, as there are many log files that will require parsing.
Therefore, we extended the logging server to allow an external consumer to register
a callback connection where all logged messages are reproduced.

Apart from allowing log messages to be consumed, it is necessary to synchronize
user-space and kernel-space log messages to achieve full observability. For example,
if something fails during user-space initialization, a user (and possibly a machine
monitoring the system) may not be able to interact with the user-space components.
On the other hand, synchronizing kernel log messages to the user-space log allows to
use richer capabilities provided by the user-space, such as getting the log messages
via a network interface.

Kernel log messages are synchronized to user-space logger by the klog server,
which gets notifications from kernel whenever a message is appended to the kernel
log. Since all messages in the kernel log are tagged with facility code, the klog
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server can easily determine which messages from the kernel log originated in the
user space. Such messages are discarded to prevent infinite loops with a message
bouncing between kernel and user-space logs. Messages originating from the kernel
are classified according to facility and logged to the appropriate log channel.

The other direction of the synchronization process in not that straightforward,
however. While the klog server may easily register for notifications of log messages
from the user-space logger, some messages may be lost. This is caused by the race
between first messages arriving to the logger server and the klog server registering for
notifications. Since such a loss of log messages is not desirable (they provide valuable
information for diagnosing failures), our initial implementation worked around this
problem by passing the responsibility of synchronization to the logger server itself.
This setup has its own disadvantages, though. One of them is that the logger must
be able to know which are the channels that klog uses. Another one is that turning
the synchronization on or off requires special handling in the logger.

The proper solution is to ensure that a client may obtain the log messages despite
connecting at a later time. Just like the kernel maintains a buffer of recent messages,
the logger now maintains a backlog of messages as well. This allows the logger clients
registering for receiving messages to specify whether they are interested in getting the
recently logged log entries. While some messages may still be lost in case of excessive
logging early in the user-space initialization process, this should not happen in the
usual case. For the case of logging messages to the kernel logger, this is not a problem
at all since the kernel discards old messages anyway if its buffer reaches full capacity.

In order to better correlate kernel and user-space messages6 in the future, both
may be annotated by a timestamp obtained from the kernel uptime (the kernel itself
does not have a notion of a wall-time, which is not necessarily monotonic anyway).

5.3.2 Task output

Traditionally, if a task’s output and error streams were not written to a file or console,
they were automatically redirected to the kernel character output buffer by HelenOS
C library. A disadvantage of this approach is that the messages printed by various
tasks may in principle interleave in the kernel character output buffer, although it
rarely happened 7. This functionality was used for logging purposes and was already
superseded by the user-space logging service that existed prior to our work. However,
the option to use the character output remained and so there was not enough incentive
to migrate the tasks to use the logger service.

We removed support for user-space tasks to directly write to the kernel output
6note that the notifications about log messages are asynchronous in both kernel and user-space,

therefore the system maintains causal relationship only within either the kernel or user-space log,
but not between them

7This issue could be seen when we used a debugger for reading information from this buffer,
as stopping (pausing) the virual machine apparently caused slight differences in timing that could
trigger this behaviour
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buffer (log messages are still copied automatically to output) and any output that
was not redirected to a file (or console) is discarded.

5.3.3 Test runner

The user-space test application is composed of several components, each providing
a separate functionality. A test runner component manages the lifecycle of a test
run and uses components providing backends to run the tests. Currently, providers
are available to run tests from kernel or user-space. A component for creating and
maintaining user-space sandboxes is described separately in 5.3.4. Last but not least,
the application needs to communicate its status and test results, so components
for user interaction via console and remote control server (see 5.3.5) integration are
provided.

One of the first things the test application does is that it initializes all test
providers and enumerates all tests that are available. If the user did not supply any
command-line arguments, the list of tests is simply printed to the program’s standard
output. Otherwise a test run is initialized using a test specification provided via
command-line. Either console or remote control support is initialized next to control
and observe the test run. At this point, the test run is started and the program’s
components begin to execute asynchronously.

As far as the generic test runner component is concerned, a test is described by
its name, description, a flag indicating whether it is safe to execute this test in a
batch, and the provider that it is associated with. This information can be used to
initialize a test run structure, which keeps information about tests that are scheduled
to be run, their results and information pertaining to the current state of test run
execution.

The list of tests to be executed is created based on a pattern that is specified by
the user (or program) that launched the test application. The pattern is matched
against qualified name of every test that was discovered during the enumeration
process and if it matches, the test is added to the list of tests to be executed. The
qualified name of the test is composed of the name of the provider and the name of
the test separated by colon.

Figure 5.1: Example qualified name of a test

directory:tester-spawn-logger

For the pattern it is possible to either specify a single qualified test name or
match multiple tests. When a single name is specified, only the single test matches,
regardless of the setting of its safe flag. In case a pattern that could match multiple
tests is specified, only tests that are marked as safe can match.

The exact matching algorithm works as follows:
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1. The pattern is a provider name, optionally followed by colon and a test name.

2. Match the provider name as follows:

• If the provider name ends with an asterisk, strip the asterisk and test
whether the result is a prefix of the provider name.

• Otherwise, match the entire provider name.

3. If the optional test name was not provided, return the match result, but don’t
allow unsafe tests to match.

4. Otherwise, the pattern is in the form provider:test and the same matching
strategy is used for test names.

5. Return the result, allow unsafe tests only if neither pattern contained an asterisk
at the end.

This matching algoritm allows for cases when a user wants to to execute all
available tests, restrict tests only to specific provider, tests of a specific subsystem (if
all tests testing the subsystem start with the same prefix) either in a single provider
or across all providers (pattern like *:tester*). Of course the algorithm could be
extended to support a list of patterns so that user can enumerate a list of tests to
execute. In fact, it would be probably best to use a library for matching regular
expressions, but there is no such library available in HelenOS at the moment.

The test providers supply implementations of operations to enumerate tests, ini-
tialize and control execution of the provider’s tests. The provider for kernel tests uses
system calls to control the kernel test runner described in section 5.2.2.

Userspace tests are stored inside /tests directory of the filesystem as executable
programs with associated metadata in a separate file. When the tests are enumerated,
all files with .test file extension in this directory are parsed for test definitions. This
allows tests to be added simply by copying the appropriate files into this directory,
which can be helpful when developing or installing new programs in the system.
Moreover, the tests are not limited to a single programming language.

Each test metadata file may contain test definitions for multiple tests in a simple,
yet extensible file format. A definition begins with a line containing the name of
a test. This is the name that is visible in the user interface and is also passed as
the first command-line argument to the test’s binary. The name is followed by a
description, again on a single line. A variable number of options may follow, one per
line. Multiple test definitions are separated by a single empty line.

The tester uses a special-purpose IPC protocol to communicate with the tests,
which allows it to control the test. The protocol is bidirectional and tests report
their results and possible waiting points. A test may also indicate that it expects to
crash. This inverts the tester logic in case the test crashes. Any logging in the tests
is done using the user-space logging framework (which is redirected in the sandbox,
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Figure 5.2: Example test metadata file

tester -simple
Simple test that always passes

tester -simple -unsafe
Simple test that always passes , but is marked unsafe
unsafe

tester -spawn - logger2
Tester should not spawn logger
logger disable

tester -sandbox - forward
Test checking sandbox forwarding of clipboard

but this is transparent to the test, see the next section). Standard I/O streams of
the tests are not connected, so their output is discarded. There are several reasons
for this. First of all, there is no support for pipes is HelenOS. Secondly, when run in
a sandbox, the virtual filesystem instance is different, so this approach will require
an additional agent in the sandbox to forward the traffic. Last but not least, using
the logger service is advantageous because the log messages are labeled with severity
and source information.

When starting the test application, the user can specify one of two modes of
operation. When run with --remote switch, the tester will connect to the remote
control server described in section 5.3.5 and report test results and status information
there. If, on the other hand, this flag was not specified, the tester runs using a
simple console user interface that presents test results and shows when a test requires
external interaction. A human operator can resume the test either with success or
failure. Another option is to abort the test run completely.

When tests are configured to be run automatically, the init binary launches both
the tester and the remote control server it connects to.

5.3.4 Sandboxing the tests

In order to be able to test various servers providing services, we implemented a model
that allows to use a sandbox for the tests. The tester spawns a new instance of naming
service and other necessary user-space components such as location service, virtual
filesystem server, logger, etc. To allow the userspace tester to spawn a new instance
of the naming service and connect new user-space tasks to it, it was necessary to alter
the mechanism that is used for spawning new tasks. Before the change, the kernel
directed initial phone connections of new task to the naming service, which was the
very first task initialized by the kernel. Instead of connecting all tasks to this task,
we altered the kernel to connect the inital phone to the task that requested to spawn
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Figure 5.3: IPC connections in a simple sandbox setup. The boundary of the sandbox
is represented using the dashed line.

a new instance of the loader task. Since the only task that was using this syscall was
the naming service, the process of launching new user-space tasks was not dirupted
by this change8.

Currently, the tasks are not isolated in any other way than by IPC connections (or
lack thereof). This means that a task may have effect on processes running outside of
the sandbox, such as when using special syscalls. Strictly limiting the environment
of the tasks requires isolation support in kernel and is out of scope of this thesis. In
fact, such a strict isolation would add obstacles, although solvable, even for legitimate
cases, for example when a task dump of a crashed task has to be obtained.

Spawning the naming service itself is not sufficient for the sandbox to work cor-
rectly, though, as the task that spawned the ns does not have an IPC connection to
the naming service available. One possible solution would be that the new naming
service would connect to the original naming service9, but this precludes the use of
multiple sandbox instances running in parallel. Fortunately, the process of spawning
a new task involves a loader program that loads the binary from the filesystem and
then jumps to its entry point. A task that wants to spawn another task has a con-
nection to a unique loader instance that was retrieved from the naming service. This
connection is used for all the setup necessary to instruct the loader how to initialize

8It even fixes a small design flaw as the kernel is no longer required to hold a special reference
for this initial task until the system is shut down

9the new naming service has its inital phone connected to the original naming service, just like
any other task
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the task. By reusing the loader connection, it is possible to communicate with the
newly spawned naming service for the sandbox.

The naming service does not use the asynchronous framework for communni-
cation, but relies on low-level IPC calls. However, most other programs use the
asynchronous framework, which keeps state for different connections. This means
that a loader connection cannot be simply reused when launching such tasks in the
sandbox. We solved this by sending a connection request via the loader phone. This
creates a new connection that the async framework can handle, because it expects
messages of this type.

When a sandbox is created, it does not contain any tasks other than the naming
service. This means that when spawning new processes inside the sandbox, a loader
program cannot use any of the services it normally expects to exist. This poses
a problem as the loader cannot read the binary it is supposed to load from the
filesystem. As the program that wants to spawn a new task has a connection to
the loader available, we solved this issue by providing a connection to the virtual
filesystem server via this connection. The connection to the virtual filesystem server
is closed by loader just before it loads the new program, so the connection does
not leak into the sandbox. Another possible solution to this problem is to shift the
responsibility of obtaining the binary from the loader program to the user, so instead
of providing a connection to VFS, the user would load the binary itself and copy its
contents to the loader. As the current limit for copying data between tasks is about
64kb, the parties would have to use a protocol similar to VFS read. On the other
hand, if the user program could provide the binary data itself, spawning a new task
would not be limited to programs residing in the filesystem (a test binary may be
embedded directly into a tester program for example).

The loader also uses services of the logger subsystem. Instead of providing a
connection to logger, we chose to simply log messages using kernel syscall if the
user-space logging system is not available. This means that if the logger service is
spawned as the first task in the sandbox, only the first instance of loader will log to
the kernel 10.

After the logger service is spawned in the sandbox, it does not have a place to log
messages coming to it, since it no longer logs messages to kernel log by itself11 and
no filesystem is available inside the sandbox yet. Even if vfs was running inside the
sandbox, the log messages stored in any file accessible by the logger would get lost as
soon as the the sandbox gets discarded. So, after a logger is spawned, the test runner
registers itself via an interface we added to the logger server and subscribes to receive
all log messages. The messages are then forwarded to the actual system logger, but
are namespaced under a log channel beloning to the tester so that messages from the
sandbox can be recognized as such.

10the one loading the logger itself
11which is desired behaviour, as this would cause the messages appearing twice or more times

depending on the count of logger instances a single message reaches
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Another service that is usually spawned in the sandbox is the location server
locsrv. This server does not currently depend on any other service except the
naming server so launching it the same way as other sandbox processes is not a
problem. It is still launched after the logger, since a dependency to the logger is
likely to be introduced12.

The tester may be easily extended to spawn additional services to support tests.
For example, spawning a virtual filesystem with custom test data is not currently
implemented, but requires only a block device server that would accept its data via
IPC channel (this is very similar and could be based on the ramdisk server). This
would allow the tester to copy a disk image that could be mounted in the virtual
filesystem of the sandbox. Spawning services that don’t require any data external to
the sandbox is a matter of a simple function call.

Sometimes the tests require interaction with services outside of the sandbox. This
includes integration tests that could test for example sending network packets or in-
teraction using some other device. While we could opt to run such tests outside of a
sandbox, such practice does not allow to enjoy benefits of the sandbox environment.
Features such as log redirection or killing all test-spawned processes would not be
available. Instead, all tests are run inside a sandbox and the sandbox is more per-
missive. A test may request that the sandbox naming service forwards requests to
a specific service to the system-wide naming service. This functionality can also be
disabled by the creator of the sandbox.

In order to destroy a sandbox and kill any of its tasks that may not have exited
yet, it was necessary to modify the naming service. First of all, when a request to
kill all tasks (NS KILLALL) arrives at the naming service, ns disables spawning of new
processes. This is necessary to ensure that it enumerates a finite number of tasks to
kill. Once the spawning of new tasks is disabled, the naming service proceeds to kill
all tasks that have announced their task ids13.

While this process worked for ordinary applications, we had to modify how the
naming server keeps track of tasks to also work for servers. As the kind reader may
remember from section 2.2.1, the naming service keeps track of tasks in two ways: a
task is connected via IPC so if it finishes, the IPC connection is automatically hanged
up and the task is expected to set its return value.

Original ns discarded information about a task as soon as it has been successfully
waited for. For servers, this happens early after spawning the task, since the servers
set return values during initialization. This means that when a request to kill all
tasks arrives, the naming server does not have information about the ”child” task
id anymore. We solved this problem by modifying the naming server to release
information about a task only after both its IPC connection has been terminated
and the task has been waited for. This ensures that the naming server has the

12The task logged its messages to the kernel character output buffer and this method does no
longer work, see 5.3.2 for details

13Note that although the task that spawned the sandbox is connected to this naming server
instance, it has not announced its task id
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appropriate list of tasks to kill when requested, assuming no program hangs up its
initial connection by itself14. The naming server only kills tasks that it spawned
so if sandboxes are created recursively, the tasks created by child sandbox cannot
be killed by the parent sandbox as it does not have information about the newly-
spawned tasks. This limitation should not cause problems, however, as it should not
be necessary to spawn sandboxes recursively during testing.

After the request to kill all tasks spawned by the sandbox, the sandbox creator
asks the naming service to stop and it terminates. At this point, no task directly
spawned by the sandbox should exist.

5.3.5 Remote control server

Monitoring of the state of the system and communication of this information is han-
dled in a separate server, the remote control server (remotectl). The functionality
of the server is deliberately separated from the test runner, as its usefulness is not
limited to running tests. For example, a user may want to display various information
while running a virtual machine or interact with the system in another way, using a
GUI tool.

The server communicates with the runner outside of the virtual machine using a
binary protocol described in 5.4. There are multiple options how to setup a connection
to the remote control server. As the connection setup is abstracted away, it should
be easy to add support for more connection options as necessary.

At the beginning, we learnt that the ns8250 serial port driver is not fast enough
when reading from serial port at high data rates and hadrware buffer overruns occur
(the receive buffer in NS16550 serial port is only 16 bytes long). We modified the
driver to use a kernel feature that allows to executed limited program to clear inter-
rupts to read the contents of the buffer and pass it to user-space. This made buffer
overruns less common.

While implementing communication via a serial port, we stumbled upon a limita-
tion of the same serial port driver. Unfortunately, the driver does not allow simulta-
neous reading and writing to the serial port. Once a call to char_dev_read is made,
any call to char_dev_write is blocked and waiting until reading finishes. As the read
is blocking, it returns only if new data is fed to the serial port. This greatly limits
the usefulness of this communication channel. Moreover, this limitation applies also
if multiple serial ports are used because device driver framework uses a single driver
to handle multiple instances of a device of the same type. Our code is prepared in
a way that when this issue is fixed in the driver, the effort required to make the
communication work both ways will be minimal.

Another connection method supported by the server is using a tcp connection.
This method supports simultaneous reading and writing, but its availability is limited
only to platforms, where HelenOS networking stack is supported (some virtualizers

14No program in HelenOS currently does so
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lack emulation for network devices). Moreover, the networking stack is a larger
codebase than simple serial port, so there is more code that might fail and cause
a communication error. On the other hand a network stack is more likely to be
used by HelenOS developers and new users alike than serial port, so it may be more
thoroughly tested.

Upon startup, the remote control server registers itself at the logger server for
notifications about all new log messages. Once a log message is received by a callback
fibril handling IPC messages from the logger, the log message is encoded according
to the wire protocol and the binary message is enqueued for transmission.

The server cannot do the same callback registration for controlling tester, though.
This is because the test runner may not be necessarily running when the remote
control server starts-up15. There are several options how to handle this case. One of
the options is that the test runner registers itself in a category at the location service.
While this would allow the user to display a list of all services that can be controlled
and monitored by the remote control server, there is no common interface that could
be used for this purpose currently. At present, there are only a few services it is worth
monitoring so we chose a simpler approach for the initial implementation. The remote
control server acts as a singleton service registered via ns and the tester estabilishes
a direct connection there if it was run with special command-line arguments. The
test runner itself may be launched by the user themselves or directly by the remote
control server, the latter will require only minor modifications to the code.

Monitoring capabilities of the remote control server may be extended in the fu-
ture. Good candidates for reporting additional information include task dumps in
structured form so that a user may be directed to the source of the crash. Task dumps
are automatically executed when a task crashes, so the application that gather infor-
mation about task state, taskdump, may be modified to send this information also
via the remote control server.

Another possibly interesting information to the remote party may be gathered
by periodically snapshotting monitoring information about tasks and other system
components that could be obtained by HelenOS monitoring interface[19]. This may
include current processor load, memory statistics, etc.

5.4 Remote control protocol
The protocol between user-space remote control server and external runner program is
based upon Protocol Buffers format[20]. We chose this format because it is relatively
simple, allows for further protocol extensions, supports binary data and there is a lot
of libraries available for various programming languages that allow to work with this
format[21].

15remeber that the logger is one of the init binaries, so it is running as soon as basic user-space
environment is initialized
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Figure 5.4: Encoding a number to varint format

Protocol Buffers encode a message as a list of key-value pairs (or fields). The
keys are unsigned positive integers and must remain immutable for the entire lifetime
of the concrete protocol implementation to maintain backwards compatibilty. Each
message is tagged with the wire format its payload is stored in. This allows parsers
to identify the length of the payload. However, the specific format of the payload is
not embedded into the message and the parser must have prior knowledge of data
type for any fields it parses. This definition allows unknown messages to be safely
ignored.

Our implementation supports only a subset of the wire formats of the protocol,
as described in table 5.2

Table 5.2: Subset of Protocol Buffers wire formats we implemented

Wire format number Description
0 Variable-length integer
1 64-bit fixed-length integer
2 Length-delimited payload
5 32-bit fixed-length integer

Of these four wire formats, we actually only use the types 0 and 2 in the remote
control protocol.

A variable length integer is encoded as a series of bytes, where each byte has the
most significant bit set if there are more bytes following which need to be consumed.
Each byte has therefore 7 bits available for the payload. The integer is divided into
7-bit groups and those groups are stored least-significant group first. A small integer
therefore uses a small number of bytes of storage, with the sizes ranging from a single
byte for numbers less than 128 to a maximum of 10 bytes when a full range of 64-bit
integers has to be stored. The encoding process is illustrated in figure 5.4.

A length-delimited payload is a concatenation of payload length, encoded as a
variable-length integer and the payload itself. This allows the payload to be composed
of arbitrary binary data.
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Table 5.3: Remote control protocol top-level message types

ID Description
1 Hello message
2 Log event message
3 Test status change message
4 Test run status change message

We use only a few data types in the remote control protocol. For numbers, we use
unsigned integers, which are stored as variable integers without any transformation
before encoding16. A string is stored in UTF-8 encoding as length delimited payload.

Each field is stored as a variable integer header, composed of the field ID shifted
to the left by 3 bits and 3-bit specifier of the wire format, followed by field data as
mandated by the wire format.

Being stored as a list of key-value pairs, messages may be merged by simple
concatenation (if the two messages contain the same key, the latter is used). This
is a desirable property in some cases, but we need to send and receive individual
messages. If we sent the messages through a channel that does not delimit individual
messages, such as serial port, we would not be able to distinguish, which key/value
pairs belong to which message. Therefore, we wrap each message in a simple envelope
that contains its length, message type and the payload (encoded in the same way as
a length-delimited field).

5.4.1 Hello message

The hello message is used to introduce the remote control listener implementation
and currently only contains information about whether the remote control client is
connected to the user-space or kernel implementation.

Having a message of this type allows the client to know when it can issue com-
mands to the remote party, for example to initiate a test run.

Using the protocol buffer language[22], the contents of this message may be defined
as follows:

message HelloMessage {
enum ImplType {

UNKNOWN = 0;
USPACE_REMOTECTL = 1;
KERNEL = 2;

}

16Protocol buffers support zig-zag encoding which is more efficient for storing negative integer
numbers. The specification also instructs how to encode floating point numbers
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optional ImplType type = 1 [default = UNKNOWN ];
}

5.4.2 Log event message

The log event message is emitted by the remote control server whenever a new message
appears in the system log. It currently contains information about the source, severity
and the log message. A timestamp may be added in the future.

message LogEventMessage {
enum LogLevel {

/* Fatal error , program is not able to recover. */
FATAL = 0;

/* Serious error , program can still recover. */
ERROR = 1;

/* Easily recoverable problem. */
WARN = 2;

/* Information message (printed by default ). */
NOTE = 3;

/* Debugging purpose message. */
DEBUG = 4;

/* More detailed debugging message. */
DEBUG2 = 5;

}
optional LogLevel level = 1 [default = NOTE ];
optional string log_name = 2;
required string message_text = 3;

}

5.4.3 Test ID submessage

This message is embedded in other messages and represents a test identifier.

message TestIDMessage {
required string name = 1;
optional string provider = 2;

}
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5.4.4 Test status change message

This message is sent when a test finishes.

message TestStatusChangedMessage {
enum TestStatus {

/* The test has not been executed */
NOT_RUN = 0;

PASSED = 1;
FAILED = 2;
SKIPPED = 3;
ABORTED = 4;

}
optional TestStatus status = 1 [default = NOT_RUN ];
required TestIDMessage test_id = 2;
optional string result_text = 3;

}

5.4.5 Test run status change message

This message is sent whenever the test run changes state, such as when a new test is
launched, the test run completes, etc.

message TestStatusChangedMessage {
enum TestRunStatus {

/* The test run has not been executed */
NONE = 0;

RUNNING = 2;
WAITING = 5;
ABORTED = 9;
FINISHED = 10;

}
optional TestRunStatus status = 1 [default = NONE ];
required uint32 total_tests = 2;
required uint32 done_tests = 3;
optional TestIDMessage current_test_id = 4;
optional string waitpoint = 5;

}
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Chapter 6

Comparison with other solutions

In this chapter we compare our framework with other solutions with respect to several
properties.

6.1 Test life-cycle management
In our framework, the main component that manages the life-cycle of tests is the
user-space test runner. It prepares a list of tests, executes them, and reports the
intermediate state and final results to the component running outside of the virtual
machine. The same program can be run directly from HelenOS, even when HelenOS
is running on real hardware.

NetBSD’s Anita[13] and Automated Testing Framework (ATF) tools used in con-
juction also allow to run tests in a virtual machine or on a real hardware[14]. Anita
is a tool to (optionally) download and install NetBSD in a virtual machine. Once
the system is installed, Anita executes ATF, which runs full test suite and stores the
results on the hard-drive. Anita then extracts test results from the virtual hard-drive.

On the other hand, OS-autoinst[11], a tool for running automated tests of operat-
ing systems using QEMU or VirtualBox, executes and determines test results outside
of the virtual machine. OS-autoinst tests wait until an expected event occurs (such
as an image appearing on the screen) and automate the virtual machine (e.g. by
sending keystrokes using virtual keyboard).

Genode[15] has a tool named autopilot that works in a similar way. This tool
uses QEMU and uses similar ”wait until an expected event occurs” approach.

6.2 Test isolation
OS-autoinst and Genode’s autopilot execute tests in separate virtual machine in-
stances. This provides good isolation of individual tests, but incurs overhead of
booting the system every time. This is not a problem when hardware assisted virtu-
alization is used, as it is relatively fast, but may amount for a significant portion of
time when not used.
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Like Anita, our framework executes tests in a single instance of a virtual machine.
Running the whole test suite in a single instance is more appropriate for HelenOS
where the tests will be run in a virtual machine with different architecture than the
host is running, which means that hardware-assisted virtualization cannot be used
to speed-up the execution.

Each test executed using ATF is a separate process (that may launch other pro-
cesses as well). ATF executes test in an empty temporary directory that is cleaned
by the framework after use.

Since NetBSD uses a monolithic kernel, they have a special framework to run
portions of the kernel in user-space during testing. HelenOS is a microkernel based
OS so the majority of the code resides in user-space and such framework is not
necessary.

MINIX 3 has tests in different formats and places, mainly because it uses a lot of
other POSIX-compatible programs, which come with their own tests. Some MINIX
3 specific tests restart a service they are testing before and after test execution,
otherwise the tests are isolated by being run in a separate process.

In HelenOS, we decided to take the isolation of user-space tests even further –
each test is executed inside a sandbox that contains a fresh environment composed
of services necessary to execute the test (although tests may be written so that they
can access services outside of the sandbox, if necessary).

6.3 Information gathered during tests
Most frameworks store diagnostic messages or other information that is output during
tests. OS-autoinst runs outside of the virtual machine, so it mostly logs information
about its actions and events (when it detected something on screen, serial output, or
when it sent key presses etc.). It also saves images of the screen and creates a video
of the test run.

NetBSD ATF stores output of tests (standard output and error streams), test
results, and also includes stack traces, if a test happens to crash.

Our framework stores log messages from kernel and user-space logs as well as test
log messages (these go to special log channel) interleaved so that events happening
at the same time are close in the log. Events such as when test is started, stopped
or is waiting are also stored.
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Conclusion

In this thesis we created a test framework for running automated tests tailored to
HelenOS needs. This framework should replace the basic code that is already present
in HelenOS so that more sophisticated tests can be executed and evaluated. This
framework allows to add new user-space tests easily as well as extend the framework
itself at different levels.

We also described HelenOS subsystems related to the design and implementation
of the framework as well as the original code to execute tests that our framework
replaces.

Since the topic of creating an automated testing framework for an operating sys-
tem such as HelenOS is broad, we included an analysis of what should be the focus
of our work.

We also elaborated on the design decisions and implementation details of the
framework and compared our implementation to other solutions.

Achievements
We achieved most of the goals set out in the section 4.4.

The framework we implemented allows to execute a QEMU virtual machine run-
ning an instance of HelenOS. The parameters to launch the emulator are automati-
cally determined based on current HelenOS build configuration. When configured to
execute tests, the system runs all kernel and user-space tests it discovers.

Tests may also be executed directly from command-line within HelenOS, in which
case the test batch is controlled by the user via console, which also shows test results.
Similar capabilities are available in the kernel if it was built with support for the
debugging console.

Log messages from the system as well as individual executed tests are transmitted
outside of the virtual machine live as they are emitted, where they are processed and
stored in a log file.

Support for system tests that require external action to happen was added. The
tests may wait at a named point to be either resumed with success or an error
condition. Unfortunately, due to unexpected limitiations of some drivers (and a lack
of time to fix the limitations), it is currently not possible to respond to those events
from the test runner residing outside of the virtual machine. The support may be
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nevertheless excersized using semi-automatic mode where the tests wait for a human
operator to complete the action and resume the tests.

Userspace tests are isolated in a sandboxed environment that allows to safely test
basic services of HelenOS userspace. Without this sandbox, testing services such as
the naming service or virtual filesystem might cause disruptions to the test framework
or other HelenOS subsystems.

It is possible to use use the test runner in GDB mode that allows to read log
messages from the kernel using the debugger, at least with ia32 HelenOS builds. Ex-
tracting results of tests is not implemented, again due to time reasons, but the kernel
test runner stores its data structures so that adding this support should be straight-
forward when using the facilities already used to extract log messages. Support for
GDB in QEMU does not work as advertised on other architectures we tried. When
this is issue is fixed, only small changes will be required in our test runner.

Contributions
During developement of the framework we have introduced support for logging struc-
tured messages in the kernel to match existing user-space implementation. The two
logs may now be transparently synchronized.

Improvements in various parts of code were made along the way, some directly
related to our work, some not.

We have also discovered several bugs in various HelenOS components and fixed
them. Most of those fixes were also contributed directly to HelenOS mainline.

Future possibilities
Once the framework is merged into HelenOS mainline, the obvious way to proceed
is to actually start using the framework and add test cases beyond the few ones for
that were included for demonstration. Old tests should be ported to the framework
and new tests leveraging all of the features of the framework should be written.

After more tests are available, it makes sense to run the test suite periodically
as part of continuous integration process. This shall provide early notifications of
regressions, which may manifest on architectures other than that the developer is
using.

When the necessary drivers are added, the framework should be able to communi-
cate on more platforms. To extend the reach to platforms not supported by QEMU,
support for other simulators can be added.

The remote control server could be extended to send more information from the
system and manipulate various subsytems. This can be used in a tool that could
provide support and convenience for developers. For example, when a task crashes,
the tool could allow the developer to directly open the reported source code line in a
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text editor of choice on the host system.
If an interface definition language is introduced into HelenOS, the framework could

leverage the information provided by such definitions to automatically generate test
cases that inject faults into IPC communication of the various HelenOS components.

Last but not least adding support for computing code coverage could be explored.
This should help identify which code paths are not covered by tests and generate
further test cases to excersize them.
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Appendix A

Source code

This appendix contains instructions how to compile and run the source code of modi-
fied HelenOS containing our changes. The source code is stored inside source.tar.gz
file in the root of the CD-ROM attached to this thesis. The source code is stored in
a bazaar repository and may also be obtained by branching our repository:

bzr branch http://ho.st.dcs.fmph.uniba.sk/˜mato/bzr/helenos-testing

Structure of the source code
HelenOS source distribution is divided to subprojects. Main projects that produce
output that goes into a bootable image are abi, boot, kernel and uspace.

Table A.1: Top level directories of HelenOS source code distribution

Directory Description
abi Headers defining interface between kernel and userspace

boot Boot loaders
contrib Various contributed files

defaults HelenOS configuration profiles
kernel HelenOS kernel (SPARTAN)
tools Tools to be executed in the developer’s environment

uspace User-space programs, configuration, etc.

The files that contain our changes to HelenOS are in different places all over the
source hierarchy, but the main parts of the framework can be found in:

• Part of the framework that runs outside of a VM

– tools/run.py

– tools/runner/

• Kernel test runner
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– kernel/generic/src/tester/
– kernel/include/test/

• User-space test runner and test library

– uspace/app/test/
– uspace/lib/test/

• Sample tests

– uspace/test/

• Remote control server

– uspace/srv/remotectl

• Logging subsystems related changes

– kernel/generic/src/log/
– kernel/generic/include/log.h
– uspace/srv/logger/sink.c
– uspace/srv/klog/

Compiling and running
This section briefly explains how the system can be built and executed. For further
information about building HelenOS, please refer to the HelenOS User’s Guide:

http://trac.helenos.org/wiki/UsersGuide/CompilingFromSource

In order to build HelenOS from source, it is necessary to install a supported
compiler toolchain in a GNU/Linux system. A script to automatically download and
install the necessary tools is a standard part of HelenOS source code distribution.
The script is located in tools/toolchain.sh.

For the following text, let’s assume that a shell variable HELENOS ROOT is defined
and points to the root directory of the source code distribution.

To build a toolchain for the ia32 architecture, execute from a temporary directory:

$HELENOS_ROOT /tools/ toolchain .sh ia32

With the toolchain installed, proceed to build the system:

cd $HELENOS_ROOT
make

A configuration screen should appear allowing to set various configuration param-
eters. Please select Load preconfigured defaults and then ia32.

The next step is to configure some options:
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• Support for NS16550 controller (kernel console) should stay disabled

• Enable Line debugging information

• Enable Run test suite at startup

After pressing Done, the build process starts. When the build finishes, you may
then proceed to run ./tools/run.py to launch a virtual machine. Tests will be
executed, their results collected, and the virtual machine stopped. When the process
finishes, an HTML report should be generated in test-results.html.

The run.py script expects QEMU to be in system path. Optionally, you may set
QEMU DIR environment variable to the location of the QEMU’s bin directory and the
script will run QEMU from there.

With --gdb option, the runner uses GDB to extract kernel logs from the running
virtual machine. Note that a recent version of QEMU (at least version 1.2) is required
for this feature to work correctly.

In case you want to try the user-space runner, you can build the system without
running the tests automatically (which closes the VM when done):

make distclean
make

Just don’t select Run test suite at startup during configuration.
When a terminal window appears in HelenOS, the you can list all available test

by typing

test

and execute all tests by running

test *

or just user-space tests:

test directory :*
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