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Introduction
HelenOS environment is missing a system daemon1 that would give the user
a grip on the servers that are running in the system. That begins with control
and configuration of the startup process and monitoring state of the servers.
Currently, there is only hardcoded starting sequence and no unified notion of
a service.

The thesis will survey existing system daemons in various operating systems
with emphasis on solution of this problem in microkernel systems.

Then it will explain concepts and mechanisms in the HelenOS operating sys-
tem that are relevant for the operation of the service manager.

In the next chapter we will analyze needs and problems connected with system
daemon more in-depth and we will look how are these particular topics solved by
other service managers.

Finally, we will apply the resulting knowledge to design a system daemon for
the HelenOS environment and describe its implementation.

Goals
The first goal is to provide a way to capture and resolve dependencies between
services and control the booting sequence by that means.
The second goal is to achieve reliable monitoring of the state of the services.
Let’s also mention that making the system reliable by automatic restarting of the
services is not a goal of this thesis.

1System daemon and service manager are used interchangeably in the context of this thesis.
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1. Existing service managers
In this chapter we present some existing service managers. The list is not meant
to be complete, it should rather illustrate variability of approaches.

1.1 init
There are two major implementations of software that usually go by the name
init: BSD style init and System V style init.

1.1.1 BSD init
The operations of the init program in BSD-based operating systems are described
here, in particular FreeBSD and OpenBSD were studied and common features
are explained (differences were mainly in the interfaces of the programs).

The startup operation is quite simple. It distinguishes between single-user
mode, which just starts the superuser’s shell connected to the console device,
and multi-user mode. When started in multi-user mode it executes the start-
up script /etc/rc and then maintains terminals for users as defined in the file
/etc/ttys. This encompasses monitoring for process termination and keeping
session database files (/var/run/wtmp, /var/run/utmp) up to date. 1

POSIX signals are used to ask init for a system shutdown. When such a re-
quest arrives, the shutdown script /etc/shutdown.rc is executed and any re-
maining processes are terminated (first by SIGTERM and if they do not terminate
within a timeout, SIGKILL is sent).

rc scripts

The main flow of system initialization is recorded in the /etc/rc script. Each
service has its control script located in /etc/rc.d/<service-name> and can use
the common utility functions defined in the /etc/rc.subs file.

The order of service starts is hardcoded (in /etc/rc in OpenBSD) or it is
a topological sort based on partial ordering defined by special comments in ser-
vice control scripts (FreeBSD). Reverse order is then used when a shutdown
is requested. To stop a service, a signal is sent to each process whose execu-
tion command matches the given mask (this is all transparently implemented in
/etc/rc.subr),the same approach is used when checking the state of the service).

History and usage

The BSD style init originates from the Version 6 AT&T UNIX init [18] that was
released in 1975 [30]. Nowadays, its successors are used in the BSD family of op-
erating systems (FreeBSD, OpenBSD and NetBSD). Since MINIX 3 (Section 1.5)
builds upon NetBSD userspace, it uses BSD style init as well.

1The process being monitored is getty or similar. This feature can also be used to auto-
matically respawn any other process.
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1.1.2 System V init
Another flavor of init daemon is the System V init (shortly sysvinit). For refer-
ence, we use open source clone (conceived by Miquel van Smoorenburg) which
once became widespread across many Linux distributions.

Sysvinit introduces an idea of declarative specification of system services which
includes the notion of runlevels.

inittab

Sysvinit stores its configuration in the /etc/inittab file that is a line-oriented
text file where each line corresponds to a process and various attributes regarding
ordering and state control are specified. See sample file (Listing 1) for clarifica-
tion.
# Level to run in
id:2:initdefault:

# Boot-time system configuration/initialization script.
si::sysinit:/etc/init.d/rcS

# What to do in single-user mode.
~:S:wait:/sbin/sulogin

# Control scripts for runlevels
l0:0:wait:/etc/init.d/rc 0
# ...
l6:6:wait:/etc/init.d/rc 6

# Keep virtual consoles in runlevels 2 and 3
1:23:respawn:/sbin/getty 38400 tty1

Listing 1: Sample inittab configuration

Each record consists of colon-separated columns: identifier, runlevels, action
and process. The first field can be ignored for the sake of the explanation, the
second field enumerates runlevels for which the record applies and the last field
specifies an executable and its potential arguments. The third field action is the
most interesting, it sets how the process is controlled. Some of the possible values
follow:

initdefault It just marks a runlevel as default, process is ignored.

sysinit, boot, bootwait Entries to be executed on system start, i.e. the run-
level field is ignored.

wait, once The process is started when entering specified runlevel(s). With the
wait variant, sysvinit waits until the process terminates.

respawn Similar to once, however, sysvinit restarts the process upon termina-
tion.
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Symbol Meaning
s, S special runlevel for single-user mode
0 runlevel is used before system halt4

1 runlevel before entering single-user mode
6 similar to runlevel 1, however used before reboot
2, 3, 4, 5 main runlevels for administrator’s use

Table 1.1: Sysvinit runlevels and their traditional meaning

There exist a variety of other actions which are described in more detail in manual
page [17].

Startup sequence and runlevels

The sequence of actions performed by sysvinit on startup corresponds to rows in
the inittab configuration.

Sysvinit distinguishes two modes of operation (similar to BSD init (Sec-
tion 1.1.1)): single-user mode and multi-user mode. In single-user mode the
only processes started are those with sysinit action and S runlevel.2

When running in multi-user mode, sysvinit also starts processes with boot
and bootwait actions on top of sysinit. Consequently, sysvinit enters the default
runlevel.

Runlevels represent a logical set of processes (services) for various high-level
goals and sysvinit ensures the correct switching between the runlevels. Processes
that are present in both the current runlevel and the new one are left untouched,
processes not defined for the new runlevel are terminated and processes belonging
to the new runlevel only are spawned.

When terminating a process, sysvinit first gives it a chance for graceful ter-
mination by sending a SIGTERM signal3 and only after a certain period (5 seconds
by default) is an unconditional SIGKILL signal sent.

See Table 1.1 for a conventional list of runlevels.

Init scripts

Although sysvinit and its inittab configuration provide means for controlled
spawning and termination of processes, typical usage involves sysvinit on the
coarse level only and actual service management is delegated to scripts.5

For each service there is a so called init script that implements start and
stop operations for the particular service and may also expose other operations
(e.g. restart, configuration reload, state of the service and so on [10]).

In order to specify in what runlevels services should be running, the scripts are
referenced by symbolic links from /etc/rc?.d/ directories (? denotes the given
runlevel). Names of the links determine a moment how and when a script is run

2Sysvinit can even start in single-user mode with very limited configuration without actually
reading inittab file.

3It actually kills whole process group, for groups see Section 3.2.2.
5This simple setup is nowadays declining though (in POSIX world). See other systems

described in Section 1.2 and Section 1.7.
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– a service can be either started or killed when entering the given runlevel and
scripts are executed in a given order (see Listing 2).

$ ls /etc/rc2.d/
$ K00serviceA S00serviceB S10serviceC

Listing 2: Example of symbolic links names of init scripts. serviceA is not active
in runlevel 2, services serviceB and serviceC are active and serviceC should
only be started after serviceB.

The logic of executing appropriate init scripts is also implemented in a script
– /etc/init.d/rc. This script (with runlevel as a parameter) is what is stored
in the inittab entry and what sysvinit controls.

History and usage

Sysvinit was already used in AT&T System V UNIX [28], which dates back to
1983 [29].

Currently, it is used in the Solaris operating system [23] (and its open source
derivative Illumos [8]) only in order to launch more advanced SMF (Section 1.2).
Sysvinit is also used in the GNU Hurd (Section 1.4.3) where it is a part of the
Debian distribution software layer.

Previously, sysvinit was also used by various Linux distributions until it was
replaced with another init system (mainly with systemdand for some years also
with Upstart)

1.2 Service Management Facility (SMF)
SMF was developed for the Solaris operating system as a successor of sysvinit.

1.2.1 Concepts
SMF formalizes the concept of a service. Service is an abstract entity that rep-
resents either an indefinitely running application, a device or a group of other
services. The actual realization of services are service instances that inherit the
configuration of a service and it can be overriden for each service instance too.

Various properties of a service can be configured, the properties are quite
universal and store both persistent and runtime information about a service (in-
stance), furthermore, application-specific data can be stored in dedicated property
groups.

One of the service properties are dependencies. They can be both positive and
negative (exclude_all) and the service can depend on another service or a file.
Together with dependencies comes a notion of milestones, which can be thought
of as void services that only specify dependencies.

SMF also defines numerous states of service instances (e.g. offline, online,
disabled, degraded).When we neglect externally caused transitions between
states (caused for instance by a service failure), each service is assigned a restarter
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that is responsible for bringing a service instance to the desired state. The mech-
anism is extensible since a restarter executes predefined methods specified in the
configuration. For illustration, the default restarter svc.startd requires start
and stop methods and both of them can be configured.

The information about all the services is kept in a configuration repository
that unifies configuration setting and snapshotting.

1.2.2 Configuration and control
The two main executive processes of SMF are svc.startd and svc.configd, the
main restarter and configuration repository respectively.

From the user perspective, two utilities are of special interest. The first one
(svcadm) is used to control individual services, typically via executing restarter
methods. The second one (svccfg) serves to manipulate the configuration repos-
itory (e.g. load or archive settings of all services).

1.2.3 History and usage
The first system using SMF by default was Solaris 10 in 2005 [20]. SMF worked
well and is still used in Solaris and its open source derivatives.

1.3 Windows services
This section describes what a Windows service is, what the main goals of Ser-
vice Control Manager (SCM) are and briefly mentions system processes that are
related to the services lifecycle.

1.3.1 Structure of Windows service
There exist several types of Windows services: filesystem drivers, (kernel) drivers,
and service applications. Metadata about the service such as its type, name,
dependencies or path to an executable are stored in the Windows registry.

In the following paragraphs, service applications will be looked at in more
detail. The service is not an arbitrary program, it has to stick to a protocol
for communication with SCM. Since the process is just a container for multiple
services, it must first notify SCM about all the services it can provide, for that
purpose the main thread of the process calls StartServiceCtrlDispatcher in
which it maps service names to their entry points. The library then ensures
that the entry point of each service is started in a separate thread. Commu-
nication from the SCM to the service is delivered to a handler registered with
the RegisterServiceCtrlHandler function and in the opposite direction, the
service notifies SCM about its state by the SetServiceStatus function. The
operations that SCM may perform on the service are shown in Table 1.2 and the
possible states of a service are shown in Table 1.3.
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category operation explanation
service lifecycle pause service should pause

continue paused service should resume
stop service should stop

SCM notifications shutdown service should clean up, system is shutting down
paramchange service should reload its parameters
interrogate service should notify its state

network services … notifications for network services

Table 1.2: Service operations as specified in handler function documentation [7]

stable active states started
stable inactive states stopped

paused
transitional states start pending

stop pending
continue pending
pause pending

Table 1.3: Service states as accepted by SetServiceStatus function [13]

1.3.2 Service Control Manager (SCM)
Service Control Manager (SCM) is the main component responsible for autostart-
ing, controlling and monitoring Windows services.

It is at startup that SCM has the most work to do, and the following describes
what happens. SCM is not the first program started and some drivers are required
even before it is started, so the first thing that SCM does is to check whether
all the drivers as listed in the registry are started.6 Consequently, SCM creates
a named pipe \Pipe\Netsvcs that is used to communicate with the services.
Finally, SCM signals its readiness via a SvcctrlStartEvent_A3752DX event.

Once SCM is fully operational, it can proceed to start the services marked with
an auto-start option. The service can be assigned to an order group, and in the
registry HKLM\System\CurrentControlSet\Control\ServiceGroupOrder there
is a sequence of group names that define the actual order in which the services
are started. Services without any group are started last.

Dependency resolution

The dependency of a service can either be another service or the order group,
the semantics of the latter is that at least one service from the group must be
started.

Dependencies are resolved iteratively in each order group. SCM checks whether
the dependencies of a service are satisfied, and if they are, the service is start-

6Information both about drivers and application services is stored in the same format un-
der the HKLM\SYSTEM\CurrentControlSet\Services registry entry. There are three types of
automatic starts: boot-start, system-start and auto-start. Only auto-start services are directly
controlled by SCM, the rest is started by I/O Manager and SCM only checks drivers presence
in a namespace managed by the system.
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ed. If the dependencies refer to a later group (or a service in a later group), it
is considered a cyclic dependency and resolution fails. Otherwise, the service is
skipped and revisited during the next iteration. Group is considered as resolved
when all services were started or cyclic dependency was detected.

Shutdown

The system shutdown is orchestrated by the client/server runtime subsystem
(csrss.exe), it sends a notification to each process, waits a predefined amount
of time for it to exit and if it does not terminate, it is killed. SCM is handled
a bit differently – timeout for SCM can be tuned separately and SCM can block
the shutdown process. The idea behind this is that a service can negotiate an ar-
bitrary wait time, provided that it regularly responds to SCM – SCM then blocks
the shutdown procedure. Analogy to startup dependencies is the order of shut-
down notifications stored in the HKLM\SYSTEM\CurrentControlSet\Control\
PreshutdownOrder registry value.

1.3.3 Other important processes
svchost.exe As already mentioned, multiple Windows services can share a pro-
cess, svchost.exe is a generic container for various services. Each service speci-
fies its group7 and SCM ensures that only a single scvhost.exe is launched and
other services are started via a dedicated API to svchost.exe.

smss.exe The session manager (smss.exe) can be started in multiple instances,
one of them is the master session manager – it is the first process started by the
kernel after initialization. The master session manager performs some initializa-
tion steps (such as checking for disk errors, initializing paging file or preloading
some DLLs) and in the end it launches another two intermediate instances of
itself (both for interactive and non-interactive session). The main goal of the
intermediate session manager is first to start csrss.exe and then winlogon.exe
(for interactive sessions) or wininit.exe (for non-interactive sessions).

csrss.exe The client/server runtime subsystem process is vital for the running
system. It plays a role in process communication and termination of user sessions,
however, it is not that important when considering Windows services.

wininit.exe wininit.exe is the main process of the non-interactive session
(referred to in the session manager). It also performs some initialization tasks,
but what is more relevant is that it starts the service control manager (SCM)
together with the local security authority process (LSASS) and the local session
manager (LSM).

7Group is a parameter of the service image path (e.g. %SomePath%\svchost.exe -k
group-name), path to the actual library with service implementation is in custom parameters
of the service.
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winlogon.exe Similarly to wininit.exe, winlogon.exe is the main process
of the interactive session. It manages the interactive login (in cooperation with
credential providers and the LSASS) and in the usual case it results in starting
a graphical shell (which defaults to explorer.exe). Later on, winlogon.exe
intercepts for the Ctrl+Alt+Del key combination.

services.exe The service control manager (SCM) runs in the services.exe
process together with other components that support various background tasks.

1.3.4 History and usage
Windows services are a concept of the Windows NT family systems which first
appeared in 1993 [25].All derived Windows versions thus use this approach.

1.4 GNU Hurd8

GNU Hurd is a microkernel based operating system that is meant to be the GNU
project’s replacement for UNIX. More precisely, it encompasses the GNU Mach
microkernel and a set of servers and protocol specifications which comprise the
Hurd itself.

1.4.1 Concepts
The basic entities of the GNU Mach kernel are tasks that are just light envelopes
that aggregate resources of a running program (most notably the virtual address
space). Tasks communicate by sending messages to each other’s ports and Hurd
defines the protocols for communication over the ports. For instance, a file is
a port that implements the file protocol, typically, such a port would reside on
the filesystem server.

In order to achieve universality and extensibility, GNU Hurd makes use of
so called translators. Simply put, a translator is a server that consumes one
port and provides another with a potentially different protocol. Most prominent
are translators bound to files (nodes in the global filesystem namespace).9 In
traditional terms, such translated file nodes can be thought of as mount points.
With the distinction that the translator assignment to a file node may be persisted
by means of the underlying filesystem (again, in a similar way to traditional
symbolic links).10

1.4.2 Essential servers
The GNU Hurd environment builds upon a few servers that are necessary for the
reasonable operation of the system. These are called essential tasks and they are:
root filesystem server, exec server, proc server and auth server.

8The content of this section is based on information from the GNU Hurd project website [22],
reference manual [21] and source code of the version 0.6.

9For instance ftpfs that can transparently represent a remote directory.
10Interestingly, a translator can be assigned passively to a file node. Then it is only started

when it is needed – it is implemented in the libdiskfs library.
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The root filesystem server uses GNU Hurd’s libdiskfs library and conse-
quently device drivers that are part of the microkernel.

The exec server accomplishes loading of executable files (also scripts with
a shebang) and launching them within a new task.

The proc server creates abstraction of processes on top of GNU Mach’s tasks.
It keeps track of processes and their relations (parent-child, process groups).

The auth server serves as a trusted mediator when two programs need to
authenticate each other.

1.4.3 Startup, monitoring and shutdown
GNU Mach supports multiboot bootloader specifications and thus additional bi-
naries (apart from kernel itself) are present in the memory, ready for being start-
ed by the kernel. They consist of the root filesystem server and the exec server.
The root filesystem plays a principal role in the system startup. This behavior is
caused by command line arguments passed by the kernel to the server and it is
implemented in the libdiskfs library. Since both servers start concurrently, the
root filesystem server waits for the exec. Afterwards, the root filesystem server
executes program startup.

The startup program continues the startup sequence by starting the process
and the auth server. As already mentioned, those two tasks (together with
exec and root filesystem) are essential, thus startup registers at the kernel
to be notified when such tasks terminate. Should this happen unexpectedly,
startup orchestrates a whole system reboot. In the final stage, startup launch-
es a runsystem.sh script – in the case of Debian Hurd,11 this script starts sysvinit
(Section 1.1.2) that starts the actual services.

System shutdown is not documented, however, implementation suggests that
any task can register at startup program to be notified before shutdown. Upon
shutdown the startup notifies all registered tasks (waits with timeout for a reply
to the notification) and only after that are all tasks terminated.

1.5 MINIX 312

Originally, MINIX systems were created for educational purposes. MINIX 3 is
the most recent version, which is intended for use outside the academic world.
It is based on a microkernel and a set of servers that together comply to POSIX
specifications.

1.5.1 Concepts
The architecture of MINIX 3 consists of four layers: kernel, device drivers, server
processes and user processes. All parts except the kernel run in the userspace.
The kernel ensures scheduling of processes and execution of privileged code. The
server processes will be described later, but in brief, they provide the POSIX API

11Debian Hurd is a software bundle that allows for the running of the software from the
Debian distribution on top of the GNU Hurd infrastructure.

12The content of this section is based on the information from “The MINIX book” [26], online
documentation in the project wiki [16] and MINIX 3 source code revision 5055c7e.
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on top of the microkernel. Device drivers are processes that are similar to server
processes, however, they are privileged to interact with I/O. User processes are
both user programs and servers in the traditional meaning (e.g. web server).

IPC happens between endpoints mainly by the means of message passing.13

There is one endpoint per process at a time, and the endpoints are identified by
their respective process ID combined with generation ID (to prevent PID reuse
collisions). The messages of fixed sizes consist of a header and a payload. The
payload structure is given at the compile time and is matched according to the
header. The messaging API is primarily synchronous and blocking, however,
there are also asynchronous and non-blocking variants.

1.5.2 System servers
The process manager (pm) ensures process creation and basic monitoring (in terms
of POSIX syscalls. They are: fork, waitpid, kill and exec). Interestingly, the
process manager used to also be partly responsible for the virtual memory,14 now
the burden has moved to the separated vm server.

The virtual filesystem server (vfs) is another necessary system server. It serves
as a proxy to particular filesystem servers and unifies access to them. It also tight-
ly cooperates with the process manager when necessary (e.g. implementation of
the setuid bit). The role of the vfs implies that the root filesystem server
(e.g. MINIX filesystem server mfs) is also a system server.

The reincarnation server rs15 is of the most concern to this thesis. It monitors
other servers and ensures that they are restarted should there be any problem
detected. Furthermore, it is also used for manual control of the considered servers.
Details about the operation of the rs will be described later.

The last important system server is the init, which is actually an “ordinary”
BSD style init (Section 1.1.1) that oversees the user servers and brings up most
of the userspace.

In addition to the aforementioned servers there are several others that are
vital for the whole system. They are: vm (the server that controls virtual memory
and paging), ds (the data store server that stores generic data for others), tty
(for handling input and output to the terminal) and pfs (pipe filesystem that
implements POSIX pipes).

1.5.3 Startup, monitoring, shutdown
The first program to run is a NetBSD bootloader, which is a multiboot compliant
bootloader ([11]) that loads the kernel image and the images of the other programs
as well. Some of the programs are part of the kernel (e.g. clock task) and the
rest are the system servers (Section 1.5.2). The kernel first starts just the virtual
memory server (vm) and the resurrection server (rs), other system servers are

13Larger data transfers are performed via so called memory grants, which is in principle
memory sharing between endpoints.

14MINIX used continuous areas of the physical memory for the whole virtual memory of
a process. The process manager thus had to find an appropriate “hole” to fit the process’
requirements.

15Sometimes the abbreviation is explained as a resurrection server
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loaded, however, they are not scheduled yet. Since the rs knows what system
servers exist, it passes this information to the vm server so that it can prepare
appropriate paging structures. Only after that are the remaining system servers
scheduled, and the startup proceeds with initialization of the user servers under
supervision of the BSD style init (Section 1.1.1).

The resurrection service monitors not only the presence of other services’
processes, but also their liveness. System servers register upon start to the resur-
rection service with a special message (RS_INIT) and are then expected to send
heartbeat messages in response to the resurrection server’s ping requests (this
is implemented in the layer called System Events Framework (SEF)). When the
resurrection service concludes that the monitored system server is dead (termi-
nates unexpectedly, is stuck in a deadlock), it attempts to restart it. There is
a special version of fork call (srv_fork that is implemented inside the process
manager server) that gives the resurrection service more powers when initializ-
ing the new process – interestingly, one of them is the usage of an in-memory
executable image in case the filesystem is not working.

System shutdown is mostly controlled by the user servers. The shutdown is ini-
tiated from the shutdown utility that consequently executes /etc/rc.shutdown
script. The script basically does two important things: a) notifies the resurrection
service that the system is about to exit, b) sends SIGTERM to the init server,
which in turn kills all processes. The notification to the resurrection service pre-
vents restarting of killed system servers.

1.6 Upstart
Upstart is quite an exception among service managers. Basically it is an event
framework meant to replace the sysvinit. The services are started as a reaction to
events and they also emit events for others to react. Interestingly, the framework
allows handling compound events, e.g. service starts only when multiple events
have been emitted.

More information about Upstart is also in sections 3.4.4 and 3.5.4.

1.6.1 History and usage
Upstart originated as a service manager for Ubuntu distribution, where it was
a default service manager until Ubuntu 15.04 when it was superseded by systemd.
Chrome OS uses Upstart as of 2015.

1.7 systemd
systemd is an init daemon for Linux operating systems. Its basic concept is a unit,
which is a polymorphic object that serves to control and configure the system.

More information about systemd can be found in sections 3.4.5 and 3.5.3 and
also in Section 3.2.3 since systemd makes heavy use of cgroups.
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1.7.1 systemd units
Here is a description of some of the most important systemd unit types based
on [19].

Service Running process or group of processes.

Target Plain unit that only has dependencies.

Mount A mountpoint controlled by systemd.

Socket An endpoint of a service, its independent of the service, can be used for
socket activation.

Timer Unit that is activated at specified time/period only.

Scope Basically container for processes of anonymous services.

Slice Wrapper around cgroups so that you it affect multiple services in terms
of resource control.

1.7.2 Dependency types
There are multiple types of dependencies between units in systemd.

Requires Unit A is required for a unit B. If B is started, then A is started as
well. If A fails to start, B fails as well.

Wants Similar to Requires, however, dependent unit is not affect when depen-
dency fails.

Conflicts Bidirectional dependency, prevents two units to be both active at
a time.

After Not a dependency (i.e. doesn’t propagate activation) but when both
units are to be started, it specifies the order.
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2. HelenOS architecture
The goal of this section is to provide insight into HelenOS internals that are
necessary to understand when reasoning about service manager. The description
is valid for version mainline,2352.

2.1 HelenOS IPC
Inter process communication in HelenOS is based on messaging which has the
form of method calls (they can be seen as methods of a server). The two most
important types of messages are1 requests and answers.

Message Every message consists of six integer fields (their width depends on
the architecture). The first field is handled distinctively – for requests it repre-
sents a method number and for answers it is a return value. The content of the
remaining five fields is an application specific payload. Please note that the pay-
load may also be attached to the answer message, which contrasts with traditional
methods returning single values.

Before explaining the detailed semantics of the methods, it is necessary to
understand phones and answerboxes.

Answerbox An answerbox is a buffer for incoming messages and it is trans-
parently managed by the kernel. Every task has one dedicated answerbox and
the userspace retrieves messages from it via system calls.

Phone A phone is a means for sending messages. A correctly initialized phone
is connected to a particular answerbox and messages cannot be sent anywhere
else but the answerbox. That implies that the cardinality of phone-task relation
is multiple phones per task. A phone can be created by special (IPC) methods
(Section 2.1.1) and userspace typically refers to phones by their integer descriptors
(obtained from the kernel). To call these special methods the process needs to be
provided with at least one phone. Each task in HelenOS has such a phone with
a well known descriptor (0) since birth and it is connected to the naming service.

2.1.1 System IPC methods
In general, semantics of the methods are defined by applications, however there
are a couple of methods that convey special meaning to the kernel, which then
acts accordingly. These are called system methods (as opposed to user methods)
and here follows their desription.

Phone related methods

IPC_M_CONNECT_ME_TO This method serves clients to create new phones.
1There are also special types of messages used by the kernel to deliver information to

userspace. (Section 2.4).
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Upon sending such a message, a new phone for the sender is allocated and
it is connected to an answerbox of the final receiver. This is a very versatile
concept when put together with message routing. Tasks can forward the message
according to method arguments without accepting it.

The first three method arguments arg1, arg2, arg3 are application specific.
The argument arg4 is used by the async framework (Section 2.1.3) to transfer
IPC flags (see Section 4.7.1). The argument arg5 is modified by the kernel to
contain information about the new phone. On the receiver’s side, there is a unique
system-wide phone identifier (phone hash) and when the message is accepted, the
answer contains the phone descriptor in the arg5.

IPC_M_CONNECT_TO_ME This method serves clients to create reverse (callback)
connections.

When the receiver accepts the message a new phone is allocated for them and
it is connected to the sender’s answerbox.

The first arguments arg1 to arg4 are application specific and arg5 carries
information about the created phone (the receiver will see the phone descriptor
and the answer to the client will contain a phone hash).

IPC_M_PHONE_HANGUP This method notifies the receiver about terminating con-
nection and the sender’s phone is deallocated. The answer message is discarded.

Data methods

IPC_M_DATA_WRITE By calling this method, the sender’s buffer is copied to the
receiver’s address space.

arg1 is a pointer to a buffer, respectively in the address space of the sender
(request) or in the adress space of the receiver (answer). arg2 is the size of the
data to copy (sender side) or to accept (receiver).

IPC_M_DATA_READ The sender of this message presents a buffer that is to be
filled by a copy of the receiver’s data.

arg1 is a pointer to a buffer, respectively in the address space of the sender
(request) or in the adress space of the receiver (answer). arg2 is the size of the
data to accept (sender side) or to copy (receiver).

IPC_M_SHARE_OUT This method works in a similar way to IPC_M_DATA_WRITE
although data are not copied, they are just mapped into the receiver’s address
space.

Apart from the buffer specified by the arguments arg1 and arg2, the third
argument arg3 is used to pass the flags set for the mapping (e.g. readonly, exe-
cutable).

IPC_M_SHARE_IN A mapping of receivers memory is created in the sender’s
address space, analogously to IPC_M_DATA_READ.
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In a request, arg1 is the maximum accepted size, arg2 is a custom argument.
In a (received2 ) answer, arg2 are sharing flags and arg4 is a pointer to the
receiver’s address space where data were mapped. (arg1 and arg3 of the answer
are ignored by the sender since they make no sense in its address space.)

Advanced connection methods

IPC_M_CONNECTION_CLONE This method creates a new phone for the receiver
that is connected to a specified answerbox – an answerbox that the sender is
already connected to through a phone.

The request’s arg1 is a phone descriptor to be cloned, and when the receiver
obtains the request it is a descriptor of its cloned phone.

IPC_M_CLONE_ESTABLISH This is the first method to be sent through a phone
cloned by IPC_M_CONNECTION_CLONE. When it is received, the hash of the cloned
phone is in arg5 (compare to IPC_M_CONNECT_ME_TO).

Special methods

IPC_M_STATE_CHANGE_AUTHORIZE This method is used to notify a third task
that two tasks agreed they both have a phone connected to that third task. The
request’s arguments arg1 to arg3 are application specific, arg4 is unused and the
arg5 is a sender’s phone descriptor of a phone connected to the third task. The
receiver sends a phone descriptor supposedly connected to the same third task in
arg1. When both the sender and the receiver refer to the same third task, the
third task is notified via the kernel event called EVENT_TASK_STATE_CHANGE (see
Section 2.4).

IPC_M_DEBUG This method is used for calls to the separate answerbox of a task.
It is used for debugging.

2.1.2 Low level IPC API
Low level IPC API is a set of wrappers of IPC related system calls. The following
section describes the existing low level IPC functions and thus gives an insight
into which system calls the kernel provides. 3 It is worth stressing that system
calls themselves are designed for asynchronous messaging.

The code can access messages (calls) in two ways: indirectly by referring via
call identifier (ipc_callid_t) and directly through call structure (ipc_call_t),
which is the case when manipulating incoming messages (both requests and an-
swers).

2Be aware that it is the answer received by the sender: sender – request – receiver – answer
– sender.

3It is not important to distinguish here, however, some of the system calls and related
functions exist in two versions (fast and slow) depending on the number of message arguments
that are actually used.
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Messaging functions

ipc_call_async(phone, method, arg1, ..., arg5, callback, preempt,
private) This function sends a request through the given phone and registers
(optional) callback to be called when an answer arrives (providing it with a private
context).

The function call is asynchronous and typically non-blocking, although when
number of unprocessed messages through a given phone reaches the kernel limit
(IPC_MAY_ASYNC_CALLS) it may be delayed (this is implemented in userspace).

ipc_wait_cycle(call, timeout, flags) This function retrieves a message
from the task’s answerbox and ensures that registered answer callbacks are in-
voked. It then returns the call identifier and fills call structure (output param-
eter).

This is the only spot in IPC API where blocking behavior is supposed4

ipc_answer(callid, retval, arg1, ...) This function sends an answer to
a request message identified by a call identifier, see ipc_wait_cycle.

Mixed functions

ipc_forward(callid, phone, method, arg1, ..., arg5, mode) This
function is used when routing request messages, the message is not explicitly
processed by a task, it is sent again through the given phone instead.

In the case of user methods (for definition see Section 2.1.1), the forwarding
task can fully modify the message (including the method). The system method
requests are restricted regarding modifications, so that the forwarding task can
issue methods with at most three arguments (since (system) method of the for-
warded call cannot be changed, its number is stored in arg1 and system methods
manipulate with phone hash stored in arg5).

ipc_hangup(phone) This function disconnects the specified phone from its an-
swerbox and releases the phone.

ipc_poke() This method wakes up a thread of the calling task that waits in
ipc_wait_cycle function (invalid call identifier is then of course returned).

Events and notification functions

ipc_event[_task]_subscribe(event, method) This method registers a task
to receive notification messages when a kernel event occurs (Section 2.4). Users
can specify an arbitrary method to distinguish between individual events.

4The call can be non-blocking when proper flags are set. Although it is the only blocking
function by design, the ipc_call_async function can also block due to limited size of buffers.
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ipc_irq_subscribe(inr, devnr, method, code) This method is similar
to ipc_event_subscribe, difference is that it registers listeners for hardware
interrupts propagated by the kernel.

It is listed just for completeness, to summarize which subsystems can generate
messages for a task.

2.1.3 Async framework
The async framework is a layer built on top of the low level IPC API (Sec-
tion 2.1.2). From the user’s point of view it allows for both sticking to the
asynchronous nature of IPC messaging and more conventional synchronous com-
munication.5

Fibrils

The key concept behind the async framework are fibrils. Fibrils are execution
containers within a task similar to threads. Since the Spartan kernel supports
classical threads, the term execution container is used as a more generic term
covering both fibrils and threads to prevent possible confusion.

Theoretical advantages of fibrils over threads are as follows:

• They can be implemented in userspace only.

• Smaller consumption of resources (e.g. in scheduler).

• Faster context switch (no system call necessary).

The main disadvantage of fibrils is that they don’t support preemptive schedul-
ing and all user code must be written with that in mind.

The effectiveness of HelenOS implementation is disputed,6 however, in general
they are considered a cheaper resource and the design of the async framework
relies on this.

Async framework entities

Exchange An exchange is the smallest element of communication from the
client’s perspective. It can be as simple as a single IPC method call, multiple
IPC calls are possible as well. What comprises the exchange depends on the
particular protocol between the client and the server.

Session Session represents the client’s communication context when two tasks
communicate in a client-server fashion. The main purpose of sessions is manage-
ment of exchanges that is specified upon session creation. There are three possible
exchange management styles: atomic (all exchanges are supposed to be single-
call only), serialize (to avoid interleaving, execution of concurrent exchanges is
serialized) and parallel (concurrent exchanges are carried out using parallelism).

5In this context, synchronous means that the caller is blocked until an answer to its request
arrives.

6http://trac.helenos.org/ticket/552
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Connection Connection represents the server’s communication context when
client-server communication takes place. Note that it is rather bound to the
client’s phone and not the client task (i.e. one client can open multiple distinct
connections to the server).

Worker fibril A worker fibril is (automatically) created at the server for each
connection. This allows for handling multiple clients at once together with block-
ing calls within the server’s code (they would block only the current fibril).

Worker fibrils are also created for handling IPC notifications (kernel events,
interrupt notifications). Fibrils that are created explicitly by users themselves
are considered to be worker fibrils as well.

Manager fibril Manager fibrils7 are the core of the async framework. A man-
ager fibril runs an endless loop in which it intercepts all incoming IPC messages.
It creates a new worker fibril when a new connection is initiated (upon receipt of
IPC_M_CONNECT_ME_TO call, IPC_M_CLONE_ESTABLISH) or a when a notification
arrives. Other messages are routed to a particular connection’s queue (distin-
guished by phone hash).

The cooperative scheduling works as follows. A worker fibril is running its
code and when it would block waiting for an IPC message, it is switched to the
manager fibril. The manager fibril then checks for other ready worker fibrils and
possibly switches to one. Only when there are no worker fibrils ready, does the
manager fibril block the whole thread waiting for an incoming message.

Async framework functions

For the sake of simplicity, it can be said that all low level IPC functions described
in Section 2.1.2 have their wrappers in the async framework layer. This is mainly
because of control over cooperative scheduling and partly because of different
abstraction level (sessions instead of phones). Here follows a description of the
additional functions of the async framework.

async_connect_me_to[_blocking](mgmt, exch, arg1, arg2, arg3 This
function8 creates new sessions and it hides forwarding of the IPC_M_CONNECT_ME_TO
method by a broker task. As explained in Section 2.1.2 such a call can use at
most three arguments and the sender must already be connected to a broker (the
call is sent within the exchange exch).

async_exchange_begin(sess), async_exchange_end(exch) These functions
are “brackets” that group individual calls into exchanges.

async_wait_for(async_call, retval) This is the function that makes IPC
calls behave synchronously. Each request call results in async_call structure
and this function blocks the current fibril until an answer is received.

7There might be multiple manager fibrils when task is running multiple threads.
8Actually a pair of functions. The difference is only in implicitly passed IPC flags.
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async_req(exch, method, arg1, ..., arg5, retval, rarg1, ..., rarg5)
This is just a syntactic sugar that compounds sending a request message and
waiting for the answer and extraction of answer arguments.

async_connect_to_me(exch, arg1, ..., arg3, callback, private) This
function invites a server to connect back to a client. As for other connections,
a new fibril is spawned and callback is executed within it (with private con-
text).

2.2 New task creation
2.2.1 Tasks created by kernel
The kernel itself can start tasks whose program image is already present in the
memory. The purpose of this is to start first userspace processes after kernel
initialization (for details see Section 2.6.3).

2.2.2 Tasks created by userspace
There is the only way that a userspace task can create another task – execute
the SYS_PROGRAM_SPAWN_LOADER system call. As the name suggests, the kernel
creates and starts a new loader task from the well-known program image. The
loader image is stored in the kernel since the boot, then the loader is processed
differently to other boot time tasks because of the mark in the PT_INTERP ELF
header. The loader program image is not started, it is stored instead and is only
started later via SYS_PROGRAM_SPAWN_LOADER system call.

In reality, ordinary tasks do not use the SYS_PROGRAM_SPAWN_LOADER system
call directly, they just request to be connected to it via the naming service. The
naming service then spawns the new loader instance and enables connection to it
from the originating task.

The communication between the task_spawn caller and the loader goes as
follows:

• Task A requests connection to the loader via the naming service.

• The naming service handles such requests specially and spawns the loader.

• The first thing done by the spawned loader is the registration at the naming
service as an ordinary server (through its initial phone connected to the
naming service, the phone exists until the spawned task terminates). The
naming service matches the new instance with the appropriate connection
request.

• Task A is connected to the loader instance.

• Once the session with loader is opened, instructions defining spawned task
are sent to it (executable filename, opened files and so on). Both task A
and the loader communicate in the same way as any other two tasks.

• (At this stage dynamically linked libraries might be loaded.)
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• Finally, the task A asks the loader to start the new program (simply by
jumping to its entry point) and hangs up its phone to the loader.

2.3 Task monitoring and control
This section describes how can tasks interact between each other without using
any explicit client-server protocol. 9

2.3.1 Task monitoring
A way of task monitoring are the task_wait* group of functions. They are used
when a task needs to be blocked until another task provides a return value. Note
that in the context of HelenOS, returning a value from a task does not imply
that the task has terminated – it may just notify the waiting task that a server
successfully started and is running until it is killed. On the other hand, a task
may terminate even without a return value (e.g. due to an unexpected error),
the task_wait will return in such a case (it cannot block forever), however, the
return value of the task is undefined.

It is worth mentioning that there are two variants: task_wait_task_id and
task_wait. One may be satisfied with the former one only, however, there would
be a race condition when you wanted to wait for a task you spawned and it
terminated earlier than your task_wait_task_id call.10 That is the purpose of
the task_wait function that does not take the task ID, but rather a structure
initialized by the task_spawn call that ensures the correctness.

The waiting mechanism is implemented in cooperation with the naming ser-
vice. Remember that each task was born as a loader (see Section 2.2) that kept
a phone connected to the naming service. The naming service can thus detect
task termination by receiving an IPC_M_HANGUP call (details in Section 2.1.1). 11

2.3.2 Task control
A task can control another task in a very limited manner – it can (forcefully)
request its termination by SYS_TASK_KILL system call (it takes the task ID as an
argument). This will cause unconditional termination of all the task’s threads and
the kernel to release its resources. As for related resources in userspace servers,
it is up to their implementation – they will receive the IPC_M_HANGUP message.

2.4 Kernel events
Kernel events are a mechanism by which the kernel can notify userspace about
various events. They are complementary to system calls and similar to IRQ
notifications – they are both delivered as IPC messages. In contrast with IRQ

9Some information related to task monitoring is stored in system info, which is a generic
database maintained by the kernel and accessible for userspace in read only mode.

10Not mentioning that due to task ID reuse the caller may even wait for a totally different
task.

11This mechanism can yield in false positives when a misbehaving task would circumvent the
standard library and would hangup the phone prematurely.
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notifications, the kernel events can only be raised by the kernel itself (not by
a peripherial).

There are two event namespaces: task namespace and global namespace.
Events from a task namespace are specific for a particular task and only

the task itself can subscribe to them. There exists only one task kernel event
EVENT_TASK_STATE_CHANGE, its semantics are explained in Section 2.1.1.

Global namespace contains events that are self describing, no task context is
necessary. For illustration, the names of existing global events are: EVENT_KIO,
EVENT_KCONSOLE, EVENT_FAULT, EVENT_KLOG. The most important event in the
scope of this thesis is EVENT_FAULT that occurs when the task has to be terminated
by the kernel due to a processor exception (e.g. accessing an invalid address).

Be aware that only a single task can subscribe to a given global event (per
type).

2.5 Basic servers
From the Spartan kernel’s point of view all tasks are equal. From the IPC point
of view, some tasks are servers, some are clients and some are both. And from
a functional point of view, some servers are more important than others – they
are critical for any advanced system operations (i.e. everything above functions
provided by the microkernel). These fundamental servers are described below.

2.5.1 ns (naming service)
The naming service serves two purposes: it is the first brokerfor every task and
implements task monitoring API (Section 2.3.1).

The names of servers registered at the naming service are just simple well-
known integers so that they can be passed in ordinary IPC messages.

The task monitoring exploits the fact that the naming service is a little bit
different from the kernel’s perspective – when a new task is spawned (more in
Section 2.2) it is created with a phone connected to the naming service.

Interestingly, the naming service is the only HelenOS server that is not im-
plemented using the async framework (Section 2.1.3), it uses low level IPC API
(Section 2.1.2) directly. It is mainly for historical purposes and partly due to less
resource consumption and better robustness.

The HelenOS standard library provides naming service communication API
both for servers (service_register) and clients (service_connect[_blocking]).

2.5.2 vfs (virtual filesystem server)
This server is an entry point for all filesystem related operations. It manages the
filesystem namespace in the form of a rooted tree where subtrees are handled by
specialized filesystem servers – this is the result of mount operations.

The client code for vfs is implemented in the standard library and it first
communicates with the vfs server. According to the given path, the vfs will find
the responsible filesystem server (known since the call to the mount operation)
and data-intensive IPC messages are forwarded from the original client to the
filesystem server. The filesystem server then communicates with a block device
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server to obtain/manipulate raw data (it depends on filesystem implementation,
it is not the case for “virtual” or in memory filesystems.).

The virtual filesystem server is vital for the system operation because without
it program executable images are not available.

2.5.3 locsrv (location service)
The purpose of the location service is to allow clients to find and connect to
servers. It is similar to what the naming service (Section 2.5.1) does, however,
the location service doesn’t monitor the tasks in any way and its API is more
comfortable.

The location service also has a more advanced model of naming. Each server
can register itself under multiple names – services. The names are strings (as op-
posed to the naming service’s integers) and they can be nested within namespaces
(the namespaces don’t nest, i.e. there is a one-level hierarchy).

The direct naming is complemented by registering services into categories.
There can be multiple services in the same category, categories can be enumer-
ated and location service clients can register a handler for category membership
updates.

The services registered at the location service can be also accessed as files in
a virtual locfs filesystem (directory structure matches the namespaces).

2.5.4 rd (RAM disk)
This server creates a block device (which is just a service exposed at the location
service supporting specific communication protocol) that operates over a memory
range. In this case, it is memory where the data with the root filesystem image
were loaded by the bootloader – the kernel makes information about the memory
range available to the userspace via sysinfo.

2.5.5 devman (device manager)
The device manager is a central component of the device driver framework, which
is described in detail in [27]. Here is a brief description of just the relevant parts
only.

The core data structure of the device manager is the device tree. It contains
nodes of two types: devices and functions. The meaning is that devices provide
functions and functions can be subordinate devices. The leaf functions then rep-
resent services for other tasks that are exposed via the standard location service
API (this registration is carried out by the device manager, not the driver itself).

The role of the drivers in the device tree terms is that they take in a device
node, perform appropriate operations for the given device and output function
nodes. Similarly, drivers are used when the tree is disassembled to properly
remove function nodes from the devices.

The device manager ensures that the correct drivers are started when they
are needed. For this purpose it keeps a database of known drivers which contains
information on how to match drivers to devices, and a path to the driver’s ex-
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ecutable.12 The database is filled during the initialization of the devman when
the configuration files are loaded.

The device manager is also a broker for the driver servers. It allows:

• Communication of a driver to its parent device driver.

• Direct communication of clients with drivers, when clients refer to drivers
by the path of the respective device in the device tree.

• (Indirect) communication of clients to drivers via their service names ex-
posed in the location service. In this scenario, the call from a client is
routed through both the location service and the device manager to the
target driver.

2.5.6 Filesystem servers
Filesystem servers are servers that register themselves at the virtual file system
server (Section 2.5.2) and implment the required functions so that the vfs can
delegate filesystem operations to them. One filesystem server can handle multiple
mount points (with different contents) of its type.13

HelenOS provides a library libfs to the programmer so that filesystem server
implementation is easier. Currently, the following filesystems are supported: cdfs,
locfs (see location service, Section 2.5.3), tmpfs (in-memory filesystem), exfat, fat,
mfs, ext4fs, udf.

2.5.7 Device drivers
There are two kinds of device drivers due to historical reasons. The newer ones
that utilize the device driver framework as described in Section 2.5.5 and older
ones that do not. However, the older model drivers can be thought of as stan-
dalone servers that expose their API via a broker (mostly the naming service).
They have no relation to the device manager.

In a similar way to filesystem servers, HelenOS provides a libdrv library that
facilitates writing drivers for the device driver framework.

2.6 HelenOS start process
This sections breaks down what happens from the machine start to the moment
the HelenOS is usable by a user. It is focused on the IA-32 architecture.

2.6.1 Bootloader
Generally, the Spartan kernel supports any multiboot compatible bootloader [11].
This interface specifies that the bootloader (as well as loading and jumping into

12Each driver has a configuration .ma file which contains the match information, the name
of the configuration file then implicitly specifies the name of the executable as well.

13vfs would not even allow to register multiple servers of the same filesystem type. However,
you can tag a filesystem server with an instance number and then even the servers of the same
filesystem type are considered distinct by the vfs.
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the kernel) can also load modules14 and pass information about them to the
kernel.

In case of the GRUB 2 bootloader, the kernel and modules to be loaded are
all stored on the boot partition (it can be any filesystem on any device that is
supported by GRUB 2). The modules are executables of boot time servers, init
program and raw image of the root filesystem.

2.6.2 Kernel initialization
The kernel first initializes its internal structures and subsystems (most important-
ly: kernel console logging, memory management, scheduling) and starts a kernel
thread that continues with processing the data from the bootloader.

The last module is supposed to be the RAM disk (Section 2.5.4) and thus the
kernel stores its location to the sysinfo database, so that the rd server can map
the memory and make it accessible to other userspace tasks.

The remaining modules are expected to be ELF binaries that the kernel can
load on its own and launch them (they are referred to as boot time tasks). Howev-
er, not all binaries are handled equally – the binary that is detected to be a loader
(thanks to flags in PT_INTERP ELF header) is not started, its image is stored in-
stead so that it can be used as a template program for SYS_SPAWN_LOADER system
call (see Section 2.2).

The program that is first in the modules list is also handled specially by the
kernel – all tasks (both boot time and those spawned by SYS_SPAWN_LOADER sys-
tem call) are created with an initial phone that is connected to this first task.

2.6.3 Boot time tasks
In contrast with macrokernel systems where kernel initialization ends with the
start of a single userspace program, HelenOS starts multiple tasks concurrently,
and their proper synchronization is thus important – it is achieved implicitly by
blocking some operations on IPC messaging.

A list of boot time tasks and their roles during system start is below. Note
that the group of boot time tasks greatly overlaps with basic servers, so more
details can be found in Section 2.5.

Naming service The destination of initial phones of all tasks, together with
message routing is vital for establishing communication between boot time tasks.
It also synchronizes tasks by holding messages until their recipient is ready to
accept them.

Location service A similar principle as the naming service. It is necessary for
exposition of the bd/initrd service that is needed to mount the root filesystem.

RAM disk The RAM disk server makes available data from the image of the
root filesystem.

14Not to be confused with any other modules, in this context it is just binary data.
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Virtual filesystem server This is the server where root filesystem mounting is
requested, it coordinates communication of all parties involved (client, RAM disk
server and particular filesystem server). Due to the communication arrangement
it also helps to synchronize the boot time tasks execution.

Filesystem server A filesystem server for the appropriate type of filesystem
must be running so that data for the root filesystem stored at the RAM disk can
be interpreted.

Init program The role of the init program is explained in more detail in Sec-
tion 2.6.4.

Logger The logger is a server that provides a unified interface for other tasks
to log their operations. However, none of the other boot time tasks use this
logging15 and the logger server could possibly be omitted from boot time tasks
and be started later by the init program.16

2.6.4 Init and rest of userspace
The init program ensures that all the userspace tasks that are expected by the
user are started and also that their dependencies are fulfilled. The mounted
filesystem (at least the root filesystem) is a kind of dependency as well and the
mount operations are issued by the init program.

The order in which the init executes the necessary steps is hardcoded and
relies on blocking calls when necessary (e.g. mounting the filesystems).

It is worth noting that the same version of the init program is used across
various HelenOS build configurations – it simply includes the union of all possible
services and it skips any errors. The RAM disk building scripts then effectively
decide what services will be started by (not)placing them to the RAM disk image.

15It is mostly for historical reasons, since the logger server’s API is younger than the rest
of boot time tasks. Furthermore, it would lead to cyclic start dependencies when the logger
server would need the services of the vfs and the vfs would require the logger as well.

16Inclusion of the logger among boot time tasks allows setting its command line arguments
via the multiboot module command line that can be edited during boot. The init program is
more rigid and does not permit such modifications.
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3. Analysis
In this chapter, we analyze various aspects important for the service manager.
And where it is relevant we look on existing implementation in more detail than
in Chapter 1.

3.1 System startup
In the scope of this thesis, system startup is a process that begins after the kernel
initialization by launching the first userspace code and ends when the machine is
ready for its purpose – be it login screens on desktops or a set of various (network)
services on servers.

Effectively, it means populating the memory both with proper code (i.e. start-
ing processes) and customizable data (i.e. apply various configurations and set-
tings). This process needs orchestration by one or multiple cooperating programs.

3.1.1 Early userspace
Early userspace is an approach known mainly from Linux environments. Its main
idea revolves around the problem of mounting the root filesystem (which is a task
the Linux kernel is supposed to do before passing control to userspace, howev-
er, we will see that it relates also to the HelenOS startup process, Section 4.2).
There are far too many possible ways to mount the root filesystem to be handled
by the kernel (such as various filesystems, encrypted device, network filesystem
or an atypical device requiring special initialization). To address this issue, the
startup process is split into two distinct phases: the early userspace and the or-
dinary userspace. The early userspace is initialized with a memory-based1 root
filesystem that the kernel can always mount and this root filesystem contains
everything necessary to mount the (future) root filesystem of the second phase.
The system administrator is provided with utilities2 that allows them to relative-
ly easily modify the contents of the initial root filesystem – much better than
including all that into the kernel.

The to-be root filesystem is mounted in a subdirectory of the early userspace
root filesystem and when everything is ready for the second phase, Linux-specific
pivot_root system call is invoked, which effectively replaces the subtree mounted
in / with the to-be root filesystem.

It varies among system daemons whether the same init program handles both
the early userspace and the ordinary userspace or a cascade of multiple programs
is used (first init is just a shell script and the second fully fledged init resides
on the actual root filesystem).

1Note on terminology – originally Linux used so called initrd (RAM disk) which was a block
device backed by memory which was mounted with contained image of an ordinary filesystem.
Despite nice separation of concerns, it lead to storing the same data in the memory twice (once
in the original device and the second copy was in buffers/caches for the mounted filesystem.
Thus the concept was enhanced to initramfs, which eliminated the block device and data were
stored only once in the form of the aforementioned cache.

2It depends on particular distribution, however, the system should at least offer mkinitrd
or mkinitramfs.
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3.1.2 Metrics watched
System startup is quite a prominent manifestation of system daemon both for
users and administrators, and so system daemon qualities are compared during
startup using various metrics.

Time The shorter, the better. That holds both for desktops (less annoying)
and servers (less downtime).

The startup process consists mainly of loading data into the memory and
initialization of hardware, it is therefore more I/O bound rather than CPU bound,
i.e. naïve parallelization will not affect overall time that much. However, not all
tasks during startup have to be ordered with respect to each other, independent
tasks can run concurrently.3 Some kind of relaxation of the sequential ordering
was thus adopted by system daemons: either explicit declaration of dependencies
(LSB init scripts, SMF, systemd) or concurrent event framework (Upstart).

An interesting approach is used in Windows systems (Section 1.2) where the
start of some services is postponed a certain amount of time (delayed autostart)
if they are unnecessary to display the login dialog.

Further efforts to shorten system startup in Linux systems can be illustrated
by the usage of readahead system call that reduces the time of loading of chosen
files related to system start (e.g. configuration files).

Maintenance Well defined extension points are a criteria of easy maintenance
(i.e. how can a task be added to the startup sequence). From this point of view,
sequential ordering of traditional init scripts is most comfortable due to explicit
positions in the sequence. Event framework is on the other end of the spectrum,
since actual order is obscured by concurrently running events. Dependency based
systems are in between – they provide an idea of dependencies though actual
execution is also concurrent.

Wasted PIDs An interesting metric looking at PID of the first process started
by a user [12]. The rationale is simple – processes are expensive resources and
fewer resources used lead to a swifter startup. This affects especially the tradi-
tional init scripts that run multiple subprocesses and favors integrated binaries
(trading off some universality).

3.2 Process monitoring
Naturally, the kernel has ultimate knowledge of each existing process, its state
and (asynchronous) events that occur during process execution. Not surprisingly,
this information is of great use for the system daemon. The following section is
an overview of various existing APIs the kernel offers to provide the userspace
with this knowledge. kernel the knowledge to the userspace.

3Note on terminology: Concurrent tasks can run on a single processor thanks to preemptive
scheduling, parallel tasks run physically at the same time.
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3.2.1 PID files
Using PID files is the simplest method for service process monitoring. The process
identifier of the currently executing service process is written to a well-known file
(for the service) and the file is to be deleted when the service terminates.

Although this method is straightforward, PID files have drawbacks too.
Firstly, just simply checking PID files on service startup may lead to race

conditions and problems when ensuring only one instance of service is running.
Therefore, some other fuse is necessary, for instance checking processes running
the same executable or processes running the same command line – naturally this
needs support from the underlying operating system.

Secondly, special care has to be taken to always remove the PID file of the
terminating service, especially when it is not expected. Stale PID files may
prevent (re)start of the service or even worse interfere with unrelated processes
(due to PID reuse).

3.2.2 POSIX process groups
The rationale behind the existence of process groups [14] is process multicast (via
signals) and access control to a terminal.

The processes are aggregated into groups and multiple groups from a session.
Each group specifies a principal process – process group leader.

The session is then associated with zero or one controlling terminal (and
controlling terminal has exactly one session). One of the group within a session
can be a foreground group, signals issued by the controlling terminal are delivered
to all processes of the foreground group and the foreground group leader process
is allowed to read data from the terminal.

The mechanism of signal delivery to whole group is not necessarily bound to
the foreground group only and can be used generically to send signals to arbitrary
process group.4 Similarly to processes, the groups are referenced by their numbers
(process group identifiers).

From a service management perspective it is important to know that child
processes inherit teh parent’s process group, though new groups can be created
by setpgid system call.5

3.2.3 Control groups (cgroups)
Control groups [5] (widely referred to as cgroups) are Linux kernel mechanisms for
generic labelling of processes that can be utilized by various kernel subsystems.

The data model of cgroups is quite generic. The top data structure is a hi-
erarchy – it represents a tree of cgroups. There are nested cgroups or processes
in a cgroup.6 A process can be only in one cgroup per hierarchy. However, as
mentioned at the beginning of the section, cgroups can act as labels, which means

4Unless it is restricted by permissions of the user.
5The new group is always created in the session of the calling process. Alternatively, a new

process group can be created together with a new session by setsid system call.
6Although the basic entity for control groups is a thread, but for the sake of simplicity only

processes can be considered. The cgroups actually allows group operation on threads, thus
transparently working with whole processes.
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that a process can be a member of multiple cgroups as long as they belong to
different hierarchies. The kernel subsystem can then use a particular hierarchy
for its purposes (namely resource control).

When a new process is created (by calling fork), it inherits all cgroup mem-
berships from its parent.

Controllers

A controller is a kernel subsystem attached to a hierarchy that somehow makes
use of the process partitioning and hierarchy.

Block IO controller The controller allows throttling group’s IO rate on a par-
ticular device or it can set weights for proportional division of available band-
width.

CPU accounting controller This is a read-only controller that provides var-
ious CPU time usage statistics for a cgroup.

CPU sets controller This controller is another interface to the scheduler’s
features, that allows for specifying on which processors the code should be run-
ning. Sets of CPUs and their properties are nicely mapped onto cgroups (and
their attribute files).

Process number controller The controller limits the number of processes
that may exist in a cgroup. It is enforced by failing fork system call when the
given count is reached for the caller’s cgroup.

Memory resource controller Memory resource controller provides both in-
formation about memory usage and knobs to control its management. Most
obviously, it can restrict the size of available memory for a cgroup.

Other controllers The list of controllers above is not complete and there are
a few other controllers that modify behavior of the networking subsystem or
access to devices.

API

The control groups implementation does not add any new system calls, all its
functionalities are exposed via special cgroup filesystem. There is one mount for
each hierarchy and the cgroup controller is specified as a mount option.

Directories under the mountpoint represent cgroups of the hierarchy and the
special file cgroup.procs lists processes in the given group. New processes are
added to the cgroup by writing their PID into that file.

It is also possible to register an executable to be run when cgroup becomes
empty (i.e. it has no nested cgroups and no processes anymore). This is configured
in release_agent file the root cgroup.
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Unified hierarchy

The generic model for cgroups described at the beginning of Section 3.2.3 with
multiple hierarchies showed to contain too many degrees of freedom in contrast
with controllers that can be assigned to a single hierarchy only.

The reworked model thus uses a single hierarchy7 and controllers are explicitly
assigned to a cgroup’s direct child cgroups (the controllers still exist as single
instances though). Consequently, processes can be in leaf cgroups only, which
makes controllers operations more homogenous.

The clumsy release_agent notification upon emptying a cgroup were re-
placed by a more streamlined approach with cgroup.events file that can be
passively monitored for changes, for instance by poll system call.

3.2.4 Contracts
Contracts [24] are means of monitoring groups of processes in the Solaris operating
system and they were created to be utilized by SMF (see Section 1.2).

The key idea of contracts are events that are raised in the context of pro-
cesses from the contract. The events are delivered to the contract holder. For
illustration, the events are:

• CT_PR_EV_EMPTY – last process exited,

• CT_PR_EV_FORK – new process added to the contract,

• CT_PR_EV_EXIT – a process from the contract exited,

• CT_PR_EV_CORE – a process failed and dumped core,

• CT_PR_EV_SIGNAL – a process received signal from process different from
contract holder,

• CT_PR_EV_HWERR – a process was killed because of a hardware error.
When a new process is forked, it is a member of the same contract as its

parent, unless the parent sets so called contract template. In that case, the new
process is the only member of a newly created contract.

The typical holder of service contracts is the svc.startd, which ensures that
services have their separate contracts. The separation is because of another fea-
ture of contracts – a contract event can be marked as fatal and when such an
event occurs all members of the contract are killed – svc.startd can react to
that for instance by restarting the service.

The API for the contracts is realized via a special contract filesystem that
is accessed by functions provided by libcontract.

3.3 Entities and naming
Despite their name, service managers do not manipulate only services, there are
other entities too, and it is interesting to study what relations exist between the
entities and how they are named.

7It is backward compatible with the classic hierarchy, it only differs with mount options to
the cgroup filesystem.
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3.3.1 Entities
Service The services are the core concept of each service manager,8 at the
abstract level they are just some code that is able to handle other programs’/user’s
requests.

Process The actual execution takes place in processes, they are thus another
important entity worth watching by the service manager (more details in Sec-
tion 3.2). It is possible to find almost all cardinalities of service-process relation
among existing service managers:

1 : 1 This is the case of the classical init (Section 1.1.2) where a service is sup-
posed to be a single child process (either directly spawned by init as specified
in inittab (Section 1.1.2) or managed through PID file (Section 3.2.1) from
initscript). It is also model that uses the reincarnation server to control
system servers in the MINIX 3 system (Section 1.5.3).

1 : n Typical representatives of this group are network servers that spawn a child
for each connected client. Such a service consists of the listening process
and a variable number of worker processes.

n : 1 Multiple services running in the same process are used in the Windows
operating system (Section 1.3.1).

m : n One could argue that having a process A that would route the IPC to
another process B, could be considered the m : n relation (the service is
spread to both process A and B and process A may route for multiple
analogous services). Fortunately, such a complicated relation does not exist
in studied systems (and it is avoided by defining broker services).

Runlevel9 The set of services that the service manager allows to start or stop
at once, effectively switching. See Section 3.5 for details.

Filesystem Details in Section 3.7.

Exposee As will be described in Section 3.3.2 services have names and the
names can be used not only to reference to the service but to somehow commu-
nicate with it. Also, a service can have multiple names, so for the sake of ab-
straction it is worth separating names from services, and refering to such names
as exposees. An example of an exposee is a UNIX socket (exposed as a file on
the filesystem).

Event The notion of events is inevitable because of the dynamic character of
service management. Although the event mechanism is hidden both in systemd
and SMF implementation, the event as the first class entity is used by the Upstart
only (Section 1.6).

8Although Upstart (Section 1.6) calls them jobs.
9Just one of many names: init has runlevels, SMF has milestones, systemd has targets.
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File Sometimes it is desired for a service to depend on a particular file (e.g. a con-
figuration) and in order to capture that, files have to be recognized entities as well.
The files as dependencies can be used both in SMF and systemd, and Upstart
provides a bridge that emits appropriate events concerning a file.

3.3.2 Naming
All the entities listed in the previous section usually have names. Although
naming is not easy,10 it is necessary for being able to refer to things.

Processes are numbered by PIDs, filesystem and files have their names from
a filesystem tree. The most interesting are the names of the services or the
exposees themselves.

Sysvinit itself does not use any names for services, however, init scripts are
named – just as they are listed in the /etc/init directory (flat, without any
subdirectories).

Service names in the SMF are called by their fault management resource
identifier (FMRI), which are names also used by other frameworks of the Solaris
operating system and they are hierarchical (for example svc:/system/cron).

Both SCM and systemd use simple flat namespace for their respective services.
Events in Upstart are named similarly.

D-Bus

D-Bus [6] is an interprocess mechanism that is based on UNIX sockets and used
in Linux distributions. It has the form of a virtual bus where individual objects
and their methods are exposed under sophisticated hierarchical names.

It can be thus used to expose the whole service as objects on the bus (this
mechanism is similar to HelenOS location service, Section 2.5.3).

3.4 Configuration
Configuration is probably the most important aspect of a service manager from
the user’s point of view (together with smooth start, Section 3.1.2) The section
below looks at how studied service managers are configured.

3.4.1 sysvinit
The configuration is stored in a row-oriented textfile and the init program sup-
ports reloading and applying its content without restarting (which would equal
rebooting in the case of PID 1).

The rest of the configuration is stored in a form of initscripts and appropriate
symboling links to them from /etc/rc?.d directories. There is insserv utility
that parses LSB headersand takes care of creation of the correct symbolic links.

10http://martinfowler.com/bliki/TwoHardThings.html
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3.4.2 SMF
Configuration for the SMF framework is in a repository managed by a dedicat-
ed daemon svc.configd. The changes in configuration and runtime operations
(e.g. stopping a service) are both achieved via svcadm utility. The repository
daemon processes the changes of the state and notifies svc.startd which then
executes the necessary actions.

The configuration from the repository can be serialized into XML and that
is the format in which it is stored on the disk. Furthermore, svc.configd also
parses legacy init scripts.

3.4.3 Windows
Configuration is stored in the Windows registry. It can be modified by sc (Service
Control) utility.

3.4.4 Upstart
Upstart uses a standalone configuration file for each service (job), they are all
stored in /etc/init directory. The file is structured into stanzas and it is possible
to create an alternative configuration file that overides only selected stanzas (i.e.
easy site-local modifications).

Since Upstart’s event framework is almost stateless (see compound events in
Section 1.6) changes to configuration files are monitored for any changes and the
changes are applied on the fly.11

Upstart is partly backwards compatible by executing init scripts from direc-
tory /etc/rc?.d, however, it is not possible to control individual services as they
are specified in the init scripts.

3.4.5 systemd
In a similar way to Upstart, systemd also stores its configuration in separate files
for each unit. As well as these unit files, systemd has also configuration files that
affect systemd behavior (e.g. default timeouts).

systemd exploits properly named directories with symbolic links as a way to
store references between units. This is not unlike symbolic links to init scripts
from /etc/rc?.d directories. systemctl utility can create or remove the sym-
bolic links thanks to information in the special section [Install] in the unit file
that serves this very purpose.

systemd loads its configuration during it initialization or when it is explicitly
signalled (e.g. by the systemctl utility) and it generates transient unit files from
legacy configuration files (mainly init scripts and /etc/fstab).

11Interestingly there is a bug in the implementation that may cause crash of the init just by
touching files in the configuration directory [9].
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3.5 Runlevels
In contrast to what the term runlevel may suggest, runlevels are not stages during
system startup or somehow stacked configurations. The concept of runlevels
originates from sysvinit (Section 1.1.2) and it is a desired state of the userspace
in terms of running services.

3.5.1 sysvinit
Each service managed by the sysvinit specifies the runlevels which it should be
run in (Section 1.1.2) and runlevels are identified by a digit from 0 to 9 or a single
letter for special runlevels (Table 1.1).

Sysvinit ensures that appropriate services are spawned when it enters a given
runlevel during boot. Let us denote A1 and A2 sets of services specified for
runlevel 1 and runlevel 2 respectively. When the system is running runlevel 1
and sysvinit is asked to switch it to runlevel 2, it terminates all processes in
A1 \ A2, starts new processes for A2 \ A1 and it does not touch processes in
A1 ∩ A2 at all.

In order to have the same sematics of the runlevel switch also for initscripts,
sysvinit sets the PREVLEVEL environment variable for its spawned children. The
/etc/rc script (see Init scripts in Section 1.1.2) reads the variable and evaluates
what initscripts need to be executed to realize the transition.

3.5.2 Windows
SCM does not support anything like runlevels described in this section, the set
of services is just fixed from the boot.

However, there is a somewhat similar method to start system with limited fea-
tures (and requirements) as well – it is called the safe mode. It is not possible to
simply switch to the safe mode, it can be entered only upon system start. Effec-
tively it means that the set of services normally started by SCM is intersected with
services specified in the HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot
registry entry.

3.5.3 SMF and systemd
Both SMF and systemd expand the idea of runlevels and decompose them into
more fine-grained logical sets of services. Those sets can have dependencies similar
to ordinary services. SMF calls the sets milestones and systemd targets.

SMF has compatibility milestones for the traditional runlevels and since SMF
runs as a child of sysvinit, it is affected by the traditionalswitching of runlevels
by sysvinit (Section 3.5.1) and on top of that it ensures the services for the given
milestone are running.

systemd works with targets only (though there are backward compatible tar-
gets for traditional runlevels) and provides isolate operation that results in
running services from the target only and no others.
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3.5.4 Upstart
Traditional runlevels are transparently mapped to Upstart event mechanism. Up-
start defines the runlevel event that has the runlevel’s name as a parameter.
Services present in the runlevel are declared to start on that event and services
not active in the runlevel stop on the event. Switching the runlevel is then just
emission of the runlevel event with an appropriate parameter.

3.6 Resource control
Resource control comprises limitation of usage of various system resources (CPU
time, memory, I/O bandwidth). In order to be enforced and not only honored,
there must be support in the operating system kernel. As such it is a generic
mechanism that need not be exclusively bound to service processes only.

All studied implementations of resource control come with a container for
processes12 and various resources can be limited or allocated to individual con-
tainers.

SMF, systemd and Upstart natively support confining the service processes
into the resource control containers. Despite the existence of job objects, SCM is
not aware of them.

3.7 Mounting filesystems
Filesystems can be thought of as special services that are accessible via the in-
terface of files and directories.

Systems such as Solaris and Linux store list of filesystems with parameters
to be mounted during startup in well-known configuration files (/etc/fstab in
Linux, /etc/vfstab in Solaris). The respective service manager than specifies
a service that runs early during the startup and mounts the filesystems as declared
in the configuration file. The filesystems are thus handled quite coarsely, systemd
creates a mount unitfor each mountpoint, although it is also parsed from the
/etc/fstab file.

3.8 Lazy service activation
The lazy activation is a mechanism that is coupled with service’s interface.
It means that a service must have well defined interface in order to determine
where activating mechanism should be inserted. Following section describes some
examples of lazy service activation.

3.8.1 Superserver
Superserver is a network application that waits for clients and when a client sends
message to superserver’s specific endpoint,13 the superserver starts another server

12Projects in Solaris, job objects in Windows and control groups (see Section 3.2.3) in Linux.
13We use the generic term, however, in practice its mostly a TCP port.
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and passes the client communication to it. Following clients can then connect
directly to the spawned child server or new instances can be spawned repeatedly.

The implementation relies on the POSIX accept system call that creates
a fresh socket for each connected client and this socket is then inherited by the
forked child.

Well known superserver in Linux distribution is xinetd (extensible internet
services daemon) that provides rich configuration options.

3.8.2 Socket activation
Since the POSIX API for sockets is polymorphic over various socket types, the
principle of superserver (in the previous section 3.8.1) can be extended for use
with UNIX sockets represented by files in the filesystem.

These sockets are the interface for many services and so the lazy activation ap-
proach was used in practice by service manager launchd in the MacOS operating
system [15]. Later it was adopted also by the systemd.

3.8.3 D-Bus
D-Bus supports also lazy activation as on top of its naming capabilities (see
Section 3.3.2). One can specify an executable for arbitrary object name that
should be accessed via D-Bus and the D-Bus daemon ensures that when a client
looks for the object, underlying process is started so that the object name will
be backed by the real implementation. This is stored in configuration files of the
D-Bus daemon and the format assumes that one process can register multiple
D-Bus objects.

3.9 Service restarting
Usually we need to restart services when they act up or when we need to reinitial-
ize them, e.g. because of a configuration change or an update. Secondly, services
could be restarted when they terminate (either fatally or simply because they are
single-use only).

3.9.1 Non-critical services
For non-critical services restarting is not a big issue, if all dependencies are known
(and there are no cycles) the services are stopped in reverse topological ordering.
If the dependencies are not obvious and cannot be honored, some clients may fail
when their service is down. However, they should be allow for unavailable service
since we are talking about non-critical services.

The second aspect of restarting, i.e. keeping the service always running by
monitoring its state is implemented almost on all studied service managers.

Even the original sysvinit is able to restart services when they terminate (it
is used for getty running on terminals). Other service managers (SMF, Upstart,
SCM and systemd) allow tuning the restarting behavior (i.e. maximum frequency
of restarting, maximum number of failures tolerated).
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3.9.2 Critical services
The critical services are required for the very fundamental functions of the system
and their unavailability is practically equivalent to unavailability of the kernel
itself.

Macrokernel operating systems

Although many of the critical tasks are done by the kernel itself, there is always
at least one userspace process that is critical too – the service manager – if that
fails system is in unspecified state. In Windows, processes explicitly marked as
critical cause the system to reboot. Linux ends up in kernel panic when the init
process terminates.

The POSIX systems can also avoid whole system reboots when the init process
needs to be restarted (typically after update), thanks to the exec system call
that keeps process’s envelope (e.g. open sockets) and executes a new program.
However, if the re-executed init process has some internal state it has to save it
to a persistent location and restore it after re-execution (this is what systemd
does).

Microkernel operating systems

Microkernel architectures have more critical tasks placed into userspace and they
are usually split into multiple processes. That is a potential advantage since it
doesn’t need to fail all at once. However, the processes are heavily interconnected
and the failure thus easily propagates to other critical processes.

The GNU Hurd system monitors such a situation and should it happen, it
initiates whole system reboot (see Section 1.4.3).

The problem with continuous operation is that the (critical) servers are state-
ful and their simple restart won’t conserve the operations. The MINIX 3 operat-
ing system solves this by storing and recovering servers’ state from the data store
server and keeping a copy of the critical executable images (see Section 1.5.3) in
memory of the reincarnation server.
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4. Design and implementation
4.1 Overview of the architecture
The responsibilities of the service manager can be divided into three groups.

Broker The broker is where the exposees (Section 3.3.1) are exposed (obvi-
ously), it provides API for (de)registration of exposees and most importantly it
mediates connections from clients to servers. In the HelenOS context, it could be
said that if the server uses ipc_forward function then it is a broker.

The primary entity of broker is an exposee.

Restarter The restarter is a component that is able to start and stop services
and it also monitors the activity state of the service, keeping always its current
state.

The primary entity of restarter is a task.

Resolver The resolver is responsible for resolving dependencies between ser-
vice, it communicates both with the restarter (so that it knows the dependencies
are fulfilled) and with the broker (so that it potentially knows what the depen-
dencies are).

The primary entity of resolver is a unit.
Merging functionality of all three – broker, restarter and resolver into a single

program would simplify communication of the individual parties, however, it
wouldn’t fit HelenOS environment. Firstly, HelenOS design favors decomposition
into smaller servers and secondly there already exist some of those components
and the merge would be counterproductive.

The brokers are described in more detail in Section 4.4.
The restarter was partially present within the naming service, however, the

relevant part was extracted into newly created server taskman, more about that
is in Section 4.6.

So the only missing component is the resolver. For that purpose sysman
server was created and this chapter describes various aspects of its design. Its
similarity to systemd (Section 1.7) is partly because of inspiration, partly because
of convergence to the same ideas and partly as an attempt to reuse its terminology
so that it’d be more easily understandable for uninitiated.

4.2 Multi stage boot
When the userspace is being started there is a trade-off between size of initially
loaded data and number of steps until the userspace environment is ready – in this
case the environment is mostly the root filesystem. One extreme is to have only
the necessary servers loaded (as described in Section 2.6.3), the second extreme is
to bundle all servers and other data into the initial filesystem image. The solution
to this is to split the starting process into multiple stages. Since having the root
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filesystem is the key event, the stages are two: early userspace that prepares the
root filesystem (more details in Section 3.1.1) and the proper userspace.

The goal of the two stage boot was to strip content of the initial RAM disk
(Section 2.5.4) to necessary minimum. It reduces memory usage, it fits the single
responsibility principle (prepare root filesystem only) and it also makes the RAM
disk content dependent on smaller amount of code, i.e. potentially reducing the
need of its rebuilds on a production system.

A slight disadvantage of the two stage boot is that it requires support in the vfs
(Section 2.5.2) for changing the root filesystem after the actual root filesystem
is initialized, so that all applications can access it transparently. The initial
filesystem is mounted under / and the main filesystem is mounted under /root
and applications were modified accordingly.

Originally, HelenOS build system produced a single filesystem image that was
linked into the RAM disk server. This was changed and now it produces one image
for the RAM disk and second one for the actual filesystem (boot/roothd.img).1
The image boot/roothd.img is attached by the tools/ew.py script as a hard
drive of the testing virtual machine.

Details about execution of the stages are described in Section 4.7.

4.3 Configuration
One of the requirements on the system daemon is to give a user means to easily
define and tune its behavior. Not only because the system daemon controls
system start, this user definitions should be made persistent.

The idea of having a separate configuration server (similar to SMF, Sec-
tion 3.4.2) was rejected due to the complexity (communication, synchronization)
that couldn’t be justified by the single responsibility per server, since there was
expected very little to be done by such a server – in the end it was all implemented
as part of the sysman.

4.3.1 Format
The criteria regarding the format of the configuration were: binary or text format,
syntax and division into files. Multiple text files with INI syntax2 were chosen as
the solution. Text files are easy to read and edit. INI syntax is simple yet versatile
and splitting into files makes configuration more structured and readable.

Since some other HelenOS applications might make use3 of the configuration
parser, the functions were implemented as a libconf library.

4.3.2 Processing
The configuration files are subject to the split due to multi stage boot (early
userspace contains files necessary to prepare the actual root filesystem only) and
thus sysman was designed so that it can load the configuration repeatedly. The

1New configuration options CONFIG_RAMDISK_ONLY and HDFMT were added to this end.
2Author is not aware of any specification of a canonical INI format. Fortunately, the syntax

is quite simple and there is no space for serious ambiguities.
3devman currently uses its own INI-like format, with very simple built-in parser.
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current implementation supports extensions (i.e. adding new units) only, not
modification of the existing units.

Because there can be references to other (not yet processed) units in the
configuration files, the sysman performs two-pass processing of the configuration
to resolve those references. Also the loaded data are marked and only if the both
passes succeed, the marked data are unmarked and used by the sysman routines.
Loading configuration from multiple files is thus made in transactional manner.

4.4 Entities
First, we need to identify what entities (as defined in Section 3.3.1) are there in
the HelenOS environment.

There are servers (Section 2.5) that expose services via the naming service
(Section 2.5.1. There are servers that expose their services via the location service
(Section 2.5.3), such as window compositor or networking servers. Then there
are device drivers (Section 2.5.7) that expose their services (devices) indirectly
through the device manager and the location service or directly through the device
manager (see Section 2.5.5 for explanation). Finally, there are the filesystem
servers (Section 2.5.6) that expose their functions through mountpoints they are
handling.

With the summary of the existing entities, let’s map them to the trinity
scheme described in Section 4.1. The naming service and the location service are
clearly brokers. The device manager and vfs (Section 2.5.2) are also brokers for
their respective specialized servers. The exposees are thus the names registered
at these brokers.4

Once we clarified what the brokers are, let’s think about possible unit types.

4.4.1 Unit types
From the resolver’s perspective, all the servers that have some exposees registered
(regardless the broker) are the same, i.e. they are service units.

When designing other types of units, we realize there is a partial duality be-
tween units and exposees. There can be a unit u with multiple exposees e1, . . . , en
or the same situation can be modelled as units u, v1, . . . , vn where each unit vi
has a single exposee ei and is dependent on the unit u.

Let’s see examples how the duality affected design of unit types.
A filesystem server is a unit that has an exposee at vfs (the registered filesys-

tem type). Further, we can look at mountpoints (handled by the filesystem server)
as other exposees. The dual view, is that there is the filesystem server unit as
previously and on top of that there are other units of the new type mountpoint,
each having a single exposee (the mountpoint).

The second example are device drivers (Section 2.5.7). Each driver (being
a service unit) can have an exposee per device or alternatively there can be
device units that depend on the driver service.

In the case of mountpoints the dual model was because having mountpoints
as units makes them available to the dependency graph and more importantly,

4Filesystem servers are exposed under their respective filesystem type name.
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user can configure behavior of mountpoints since the unit bears its settings.
On the other hand, the devices are just exposees of a driver service. There

is nothing to be configured for them and dependency on a device is realized by
registering a handler at the location service (see Section 2.5.3).

We decribed service units and mountpoint units so far. There are two more
unit types necessary: targets and configuration units. The target units play the
same role as in systemd (description in Section 1.7.1).

A configuration unit represents a fragment of configuration and when it is
started, sysman loads the given configuration. The configuration units were cre-
ated for the purposes of the multi stage startup (details in Section 4.7) so that
the configuration is loaded in appropriate moment.

4.4.2 Units and tasks
Tasks are relevant for the service units only.

Idea of creating a specialized service API (similar to Windows, Section 1.3.1)
was rejected in favor of expanding already existing HelenOS mechanisms of gener-
ic inter-task communication (see Section 4.6.2). That also affected used cardinali-
ty of the unit to task relation. The designed model is 1 : n, however, implemented
is the model 1 : 1. For the explanation of the cardinality, see Process entity in
Section 3.3.1 and for details about implementation of the 1 : 1 model see Sec-
tion 4.6.

The cardinality model n : 1 was deemed suboptimal because it mixes multiple
concerns into one task, doesn’t provide actual separation (common address space)
and makes control of a service via task API inappropriate. In this context, it is
worth noting, that service units are not considered a part of their brokers (it
would only complicate matters, the model would be then m : n).

4.5 Dependency resolver
Dependency resolver is a part of the sysman server that ensures that states of all
units and operations upon them honor the defined dependencies between units.

Units and dependencies between them form an oriented graph. The units are
vertices and oriented edges represent a dependencies between the adjacent units.
For the purposes of the thesis only single type of dependency was implemented
– if there is an edge A → B, then the unit B must be successfully started before
the unit A is started. Inverse relation applies to stop operation.

If the operations with the units were synchronous and non-blocking, the units
would be topologically sorted and the operations applied one by one. Unfortu-
nately, the operations are either blocking or asynchronous and we strive to avoid
blocking of the sysman 5 and for asynchronous operations we must keep units in
transitional states (starting, stopping). Furthermore, we’d need to keep a desired
state in each unit, dependencies would have to be taken into account and it’d
became even more complicated if there was a request to stop a unit while it would
be in a transitional state (starting). This is just an illustration that we need new

5This is just an example, with dedicated fibrils, it’d be possible to perform blocking unit
operations and not block the sysman server totally.
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abstraction that would facilitate asynchronous operations with units. And this
abstraction are jobs – a job is a context of an ongoing unit’s operation.

4.5.1 Job closures
Two data structures are used when jobs are processed: job closure and job queue.6
Let’s explain on an example how these work. Suppose there is a request to start
a unit A that is in the dependency graph shown in Figure 4.1a.

uA

uB

uC

(a) Dependency graph

jA

jB

jC

(b) Job closure of start A

Figure 4.1: Creating job closure from dependency graph

Breadth-first traversal in the dependency graph is started in the node uA

and for each reached unit an appropriate job is created (in this case starting of
dependency units). The type of edge that connects two unit nodes determines
whether there will be a constraint between the respective jobs. The implemented
dependency requires strict ordering and so blocking constraints are added between
the jobs. After the traversal terminates, the set of jobs and constraints is called a
job closure (with respect to the operation on the unit A), see the simple example
in Figure 4.1b.

The created job closure is static, the jobs are not executed. In order to
execute a job, it is added to the job queue together with the constraints from
the job closure. Only the jobs that aren’t blocked by others are dequeued and
executed.

The implementation doesn’t allow multiple jobs for a single unit (not even
queued) and so adding some jobs to the queue can fail. However, if we the added
job is of the same type as the one already present, the jobs are merged.

In order to avoid unexpected unit behavior, none job from a job closure can
have a conflicting job in the queue (see Figure 4.2 for successfully added job
closure). If that happens, the job closure is rejected and job queue is reverted to
original state (jobs are unmerged).

4.6 Task monitoring
Originally, the naming service served both as a broker and a server implement-
ing all task creation and monitoring API (see Section 2.5.1). It was decided

6Job queue is implemented as linked list. Inherent limitation of HelenOS linked lists is that
typical structure can only in one list at the moment. New abstract data structure – dynamic
array – was implemented to serve purposes of job closure (in contrast with linked lists, job can
be in several dynamic arrays at once).
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jA

jB

jC

(a) Job closure

j′B

j′C

(b) Job queue

jA

j′B

j′C

(c) Job queue after queu-
ing and merging the job
closure

Figure 4.2: Enqueuing a job closure (Jobs jB and j′B were successfully merged
(same for C) and job jA was enqueued.)

to extract task related functionality from the naming service into a new server
(taskman), thus properly separating concerns and preparing room for advanced
task monitoring (group-based approaches as shown in Section 3.2).

Currently, taskman allows to register a callback (task_register_event_handler())
from other applications so that they can be notified about retvals or exit values
(see Section 4.6.2) of other tasks. This is mostly useful for the sysman server.

4.6.1 New task creation modification
Because the naming service is not handling task spawning anymore, some changes
were made so that newly spawned tasks are not connected to the naming service
but to the taskman instead (more precisely they are connected to the caller of
the SYS_PROGRAM_SPAWN_LOADER system call,7 which might be possibly exploited
for a nice recursion later).

The goal of the initial loader handshake (Section 2.2.2) is only to introduce
the new task to taskman and obtain a connection to the naming service (however,
that is done lazily so that the naming service itself can start as any other process).

4.6.2 Task termination
The original detection of task termination as described in Section 2.3.1 was not
reliable. Because of that a new kernel event EVENT_EXIT was added.8 This allows
to distinguish when a task just returned its retval and when it really terminated
(exit value). See Table 4.1 for the semantics of retval and exit value.

Also the task_wait API was slightly modified, user can specify by flags in
task_wait_t structure whether they want to wait for retval or exit value and
task_wait would unset appropriate flags to indicate what event actually oc-
curred.

7Except for boot time tasks (Section 2.6.3), they are connected to taskman as well, however,
it is achieved by putting taskman on the first place among boot time tasks.

8For kernel events see Section 2.4. Already existing EVENT_FAULT is newly processed similarly
to EVENT_EXIT (Section 4.6) thus breaking functionality of taskdump application.
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retval exit meaning
none running task is running
none exited task unexpectedly terminated
set running task daemonized itself
set exited task terminated (with or without an error)

Table 4.1: Possible combination of task retval and exit values

4.7 System startup
The whole userspace startup process (compare with Section 2.6.4) is orchestrat-
ed by sysman according to the configuration files. Because of the chicken-egg
problem, little portion of the configuration is hardcoded into sysman. It is the
following sequence of three units that are started one after another by the sysman:

• initrd.tgt Hardcoded target that ensures load of first configuration from
RAM disk.

– init.cfg Hardcoded unit loads configuration from RAM disk (from
/cfg/sysman directory).
* initrd.mnt Hardcoded unit mounts the RAM disk filesystem.
It doesn’t depend on anything since boot time tasks (Section 2.6.3)
are all it needs.

• rootfs.tgt Target that ensures loading and preparation of the root filesys-
tem. This unit is loaded from configuration file /cfg/sysman/rootfs.tgt.

• default.tgt Target that brings the rest of userspace up. It is loaded
from /root/cfg/sysman/default.tgt, however, this path is already con-
figurable in /cfg/sysman/rootfs.cfg.

4.7.1 IPC autostart
IPC autostart is a feature that reduces number of dependencies that must be
explicitly specified in configuration files. Async framework reserves arg4 of
IPC_M_CONNECT_ME_TO method for flags that specifies how brokers should han-
dle connection requests. IPC_FLAG_BLOCKING causes that broker doesn’t forward
the connection request until the particular server registered (instead of failing
immediately).

A new flag macro IPC_AUTOSTART was defined, the behavior is similar to
IPC_FLAG_BLOCKING, however the broker asks sysman to start the appropriate
unit so that it shouldn’t block indefinitely. This new flag was implemented into
the location service and the vfs, since in their case it is quite straightforward how
to translate the exposee name to the unit name.
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5. Conclusion
The stated goals of the thesis were somehow fulfilled. The system is able to
boot, go through the cascade of individual stages of two stage boot and the
services to start are declared in text configuration files. This is more configurable
than the original hardcoded version (although it brings the burden of keeping
configurations for mutliple platforms, which was not addressed in the thesis). The
booting time in comparison with the original solution increased quite significantly.
The reason for that is that the sysman has quite verbose output during the start,
and since the root filesystem is stored on an external device, the system has to
wait for it a little longer.

The second goal, service state monitoring, was achieved by restructuring task
creation procedure and initroducing a dedicated task to process task-related ker-
nel events.

Although the thesis was mainly concentrated on the service manager issue [4],
it also moved forward booting from persistent filesystems [3]. It prepared envi-
ronment to cope with service connection timeouts [1] and almost enabled graceful
shutdown [2].

Future work
There are still many things that’d need polishing and things that would be just
nice to have with the sysman infrastructure existing.

Unordered dependencies

Current dependencies doesn’t allow start of a unit until its dependencies start.
This is not always necessary and it prolongs startup process. The required changes
are small, limited to job closure creation (Section 4.5.1).

Notification API and graceful service stop

Async framework (Section 2.1.3) was extended with functionality to be stopped
(async_manager_stop). Tasks could register to taskman to receive notifications
that could be used for graceful stopping of a service. In the end, graceful shutdown
of the system (thanks to dependency resolver and knowledge of dependencies from
IPC autostart) could be also realized.

Restore taskdump application

Originally, taskmon listened for the kernel event EVENT_FAULT in started taskdump
utility to collect the failed job. Now, EVENT_FAULT is listened to by taskman, some
other task should probably register to the taskman for propagation of this event.

Nested brokers

Devman exposes driver exposees in a subnamespace of the location service. This
prevents effective use of sysman broker API, there should be explicit support for
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nested brokers.

Multiple tasks per service

Extend taskman with task group management and use it in sysman.

Replace naming service with location service

The location and naming service responsibilities overlap and robust location ser-
vice could be used instead of the naming service, thus reducing complexity of the
system.

Recursive boots

Since the taskman is exclusively responsible for its spawned tasks (now all), some
hierarchical model could be used to achieve recursive boots or light userspace
virtualization.
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List of Abbreviations
API application programming interface
CPU central processing unit
DLL dynamically linked library
ELF Executable and Linking Format
IPC interprocess communication
LSB Linux Standard Base
PID process identifier
POSIX Portable Operating System Interface
SCM Service Control Manager
SMF Service Management Facility
sysinfo readonly general purpose database of the Spartan kernel
sysvinit System V init
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A. User documentation
Compile and run
Compile source using standard HelenOS toolchain as described on the official
website.1

• Enable multi stage boot by setting CONFIG_RAMDISK_ONLY to false. 2

• Disable task debugging by setting CONFIG_UDEBUG to false. (Otherwise,
there’ll be no task that’d reap failed tasks.)

Use standard tools/ew.py script to properly setup the virtual machine.
During boot phase, you will see plenty of debug output even after the graphical

interface is rendering. sysman enables kernel console during boot, you have to
escape it by typing “continue”.

Control utility
Fingerprint of the system daemon to the user is very little. You can interact with
it through sysctl utility. It can list the units and their states and manipulate
their state. Start sysctl without any arguments too see its syntax.

Configuration files

[Configuration]
Path = /path/to/configuration/directory

[Mount]
What = devices/path\to\device\node
Where = /path/to/mount/directory
Type = fat

[Service]
ExecStart = /path/to/executable arg1 arg2

[Unit]
After = dependency1.svc dependency2.tgt

Listing 3: Supported sections in respective unit files ([Unit] is universal, target
does have nothing)

Configuration unit files end with .cfg, mounts with .mnt, services with .svc and
targets with tgt.

1http://trac.helenos.org/wiki/UsersGuide/CompilingFromSource
2Single stage boot should in theory work, however it was not tested and proper unit files are

missing.
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B. Source code overview
Source code with implemented changes can be obtained from the repository below
and a snapshot is on the attached CD.

bzr branch lp:~werkov/helenos/system-daemon

Directory structure
Here is a list of substantially modified directories and files.

��� boot/
�   ��� initrd.img RAM disk image
�   ��� Makefile.common definitions of RAM disk files
�   ��� roothd.img root FS image
��� uspace/
   ��� app/
   �   ��� sysctl/ sysman control utility
   ��� cfg/
   �   ��� sysman/ unit file repository
   ��� dist/ RAM disk content
   ��� disthd/ root FS content
   ��� lib/
   �   ��� conf/ configuration parsing library
   �   ��� sysman/ sysman API
   ��� srv/
   ��� sysman/ sysman source
   �   ��� test/ sysman PCUT tests
   �   ��� units/ unit implementatins
   ��� taskman/ taskman source
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