Charles University in Prague
Faculty of Mathematics and Physics

MASTER THESIS

Be. Lukas Mejdrech

Networking and TCP /IP stack for HelenOS
system

Department of Software Engineering

Master thesis supervisor: Mgr. Martin Décky

Study programme: Computer Science, Software systems

2009

Acknowledgements I wish to thank to my thesis supervisor, Mgr. Martin Décky,
for his advice and direction in this research. I owe the greatest gratitude to my family,
for making this thesis possible and their constant patience and support.

I hereby declare that I have created this work completely on my own and used no
other sources or tools than the ones listed, and that I have marked any citations
accordingly. I agree with lending and publishing this work.

Prohlasuji, ze jsem svou diplomovou praci napsal samostatné a vyhradné s pouzitim
citovanych pramenti. Souhlasim se zapujcovanim préce a jejim zverejnovanim.

In Prague Be. Lukéas Mejdrech

Nézev préace: Networking a TCP/IP stack pro systém HelenOS
Autor: Be. Lukéas Mejdrech

Katedra: Katedra softwarového inzenyrstvi

Vedouci prace: Mgr. Martin Décky

E-mail vedouciho: decky@dsrg.mff.cuni.cz

Abstrakt: V této praci studujeme implementaci TCP /IP subsystému. Duraz je kladen
na navrh a implementaci respektujici koncept operacniho systému s mikrojadrem.
Praktickou ¢asti pak byl vyvoj TCP/IP subsystému pro systém HelenOS. Nejprve
jsou popsdny koncepty sifové architektury a TCP/IP subsystému obecné. Ndsleduji
specifické aspekty kladené systémem s mikrojadrem. Déle je uveden navrh architek-
tury a implementaéni rozhodnuti vlastni implementace.

Klicova slova: sitové architektury, TCP/IP subsystém, HelenOS, ovladace sitového
rozhrani

Title: Networking and TCP/IP stack for HelenOS system
Author: Be. Lukas Mejdrech

Department: Department of Software Engineering
Supervisor: Mgr. Martin Décky

Supervisor’s e-mail address: decky@dsrg.mff.cuni.cz

Abstract: Within this work we study networking and TCP/IP stack implementa-
tion. The main interest is directed to the TCP/IP stack design and implementation
respecting the microkernel operating system concept. The practical part was a de-
velopment of a TCP/IP stack for the microkernel operating system HelenOS. First,
we describe the networking and the TCP/IP stack concept in general. The special
aspects of the microkernel concept follow. For the practical part, the architecture
design and implementation decisions are included.

Keywords: networking, TCP/IP stack, HelenOS, network interface drivers

Contents

1 Introduction
Motivation

1.1

1.2
1.3

1.1.1
1.1.2

History
Implementation .

Structure of the thesis .

1.3.1

Style conventions

2 Context of the thesis

2.1 Networking stack models
2.2 HelenOS specific design
221 Kernelcode
2.2.2 Modularity
2.2.3 Inter—process communication
2.3 Qemuemulator
24 N E T. . . . e
3 Networking stack design
3.1 New networking stack
3.1.1 Extent of the implementation
3.1.2 Architecture
3.1.3 Modular architecture
3.1.4 Packet management system
3.2 Networking stack modules
3.2.1 Central configuration module - net
3.2.2 Network interface drivers
3.2.3 Network interface layer
3.24 Internetwork layer L
3.2.5 Transport layer
3.2.6 Application programming interface - libsocket
3.2.7 Applications
4 Discussion
4.1 Implementation
4.1.1 HelenOS internals

O BN IEN BEN I e eI

10

12
12
12
13
13
14

15
15
15
16
16
20
21
22
23
25
29
35
37
38

4.1.2 Support structures

4.1.3 Modules
4.1.4 Startup module - netstart
4.1.5 Extending the networking stack
416 Qemunetwork Lo
4.1.7 N.E.T.user protocols,
4.2 Running and testing oL
4.2.1 Applications
4.2.2 Software prerequisites

5 Evaluation

5.1 Nettest2 — data transfer performance
5.2 Nettestl — the overall performance
5.3 Ping — ICMP echo performance
54 Conclusion L

6 Other architectures

6.1 BSD
6.2 Linux s
6.3 Windows e
6.4 MiInix e

7 Conclusion

8 Terms and abbreviations
Bibliography

A Test results

B UML diagrams
B.1 Networking stack overview L.
B.2 Module parts interaction L
B.3 Network interface initialization
B.4 Datatransfers

Chapter 1

Introduction

1.1 Motivation

In this work we analyze, compare, design and implement a networking stack which
is an operating system’s subsystem connecting computers into networks. Although
computer networks are in massive use these days there is no variability in reference
implementations. Most of them are monolithic, having all the networking function-
ality bundled in one large module, although the stack is internally layered. The
target implementation introduces modular architecture into the networking stack.
This means building the stack up from smaller modules where each module encap-
sulates and provides one area of functionality, a protocol for example. They will be
separate server modules each running as one task in the target operating system 1.
The stack is intended to be integrated to HelenOS, a microkernel operating system
being developed at the Faculty of Mathematics and Physics, Charles University in
Prague. The microkernel design and philosophy are briefly described as well as its re-
quirements for additional modules’ architecture. The result of this thesis makes effort
to become a modular TCP /TP networking stack proof-of-concept implementation.

1.1.1 History

The history of computer networks began in late October 1969 when the ARPANET
project was born [25]. Before that time computers were isolated individuals. Since
that time they are able to communicate with each other.

The ISO/OSI model was developed to standardize computer communication and
is the first and most comprehensive networking model. It defines seven layers of
functionality and abstraction. Unfortunately the model does not contain concrete
protocols and the applicants did not have anything to follow. Another problem was
its megalomaniac attitude. The model tries to solve almost all possible questions and
uses of interconnected computers. Therefore it was far to complex to implement and
spread protocols respecting it. Furthermore, the applicants had to pay a significant
amount of money just to obtain the detailed model specification.

Tt can be viewed as a service oriented subsystem.

6

However, a different approach succeeded, the TCP/IP model. The model was
based on simple and concrete protocols which were used to build up what was really
needed. Its bottom—up approach led to its current world domination. This protocol
family is called the TCP/IP protocol suite where the IP stands for the inter-network
protocol and is the base protocol of the suite. It works on the principle of the best
effort, the protocol tries to do its best to deliver data from one computer to another.
The word “try” is the key as nothing is guaranteed. On the other hand TCP is
probably the most used protocol on top of the IP protocol, it offers reliable connection
between two computers. The TCP/IP suite contains many protocols covering most
aspects of computer communication. Most of attention of this work will be drawn to
this suite.

The protocols and design concepts are published as numbered RFCs which are
public and rather technical documents covering usually only one topic, a protocol for
instance. There is an RFC for each protocol in the suite, however, some protocols are
extended in many RFCs. For example, there is one base RFC of the TCP protocol
but hundreds of RFCs extending or altering its functionality in any way. RFCs do
not become obsolete too often, they are usually updated or extended. The actual
base RFCs of the TCP/IP suite come from early 1980s.

1.1.2 Implementation

As it was mentioned before, the TCP/IP protocol suite is extensively used. Com-
puters usually do not have any other option how to connect themselves into current
computer networks. One of the goals of this thesis was to develop a modular TCP/IP
stack for a microkernel operating system HelenOS.

Porting an existing stack was also an option. It would have brought in many
more features in exchange to the clean modular design as mentioned before. Some
HelenOS-specific workarounds would have also looked odd in the system as a whole.

Therefore a new implementation is introduced. It is designed from scratch and
based only on the relevant RFCs. The modular design and inter—process communi-
cation of the microkernel system are respected, of course. A modular and extensible
architecture which seems to the author to be trusty to its purpose, as this archi-
tecture complies with the overall architecture of the target microkernel system. The
TCP/IP protocol suite is very well described and documented in RFCs and almost
no other resources are needed.

1.2 Goals

This work follows a few goals. The main goal was a networking stack implementa-
tion respecting the microkernel design of the target operating system. This emerged
from the fact that the target HelenOS operating system did not have a network-
ing stack. A new concept was to be thought up and designed. The networking stack
moves HelenOS to the next level. It brings the possibility to communicate with other
computers and systems.

The second goal is connected to the first one. This implementation might be-
come, with a bit of luck, the reference implementation of a modular TCP/IP stack.
Many believe that microkernel operating systems will have bright future and modu-
lar architecture is the right way to go. Probably the most famous propagator of the
microkernel design is Andrew Tanenbaum, an author of many publications about
operating systems [27] and the microkernel operating system Minix. There are many
advantages and disadvantages, attitudes and reasons for and against both the mono-
lithic and microkernel operating systems 2. Most often mentioned disadvantages of
the microkernel design are inefficiency and insufficient flexibility. Both are explained
and at least partly invalidated in the work of Jochen Liedtke [9].

There is also a research capacity to compare the modular stack implementation
overhead to the monolithic approach. For this purpose the compilation into many
small modules or one large module is designed and supported. We will measure and
analyze differences between these two approaches.

1.3 Structure of the thesis

Here is a description of the master thesis structure and content of single sections:

Chapter 2 An introduction to the context of the work, the networking stack model
and HelenOS.

Chapter 3 A summary of the modular architecture requirements with the proposed
networking stack design. It includes detailed networking model layers, analysis
and proposed modules’ description.

Chapter 4 A discussion about implementation decisions and problems.
Chapter 5 Architecture evaluation and comparison results.
Chapter 6 A few other networking stack implementations.

Chapter 7 A conclusion of the thesis.

1.3.1 Style conventions

The text follows a few style conventions:
e File and directory names are printed as source_file.c.

o All referenced header and source files are located in the HelenOS source sub
directory uspace/srv/net/ if not stated otherwise.

e Inter—process message names are printed as MODULE_MESSAGE (argument).

e Code samples are printed in blocks

2Many were mentioned in the so—called Tanenbaum—Torvalds debate [1].

command ;
function_call(argument) ;

e Constants and functions in the text are printed as ¢ ‘constant’’ and func-
tion(argument) respectively.

Chapter 2

Context of the thesis

2.1 Networking stack models

The networking stack can be divided into a few layers. Each of them represents
an abstraction for a particular functionality. The ISO/OSI model [31] defines seven
layers whereas the TCP/IP stack defines only four or five [26]. The TCP/IP stack
layer count varies sometimes because the bottommost layer may be split into two.
Although this work focuses on the TCP/IP stack the ISO/OSI model should be
mentioned first as it is more general. Its concept uses seven layers. Each layer uses
the layer underneath and provides some functionality to the upper one. Except some
rare exceptions layers should not traverse more than one level . The layer abstraction
is that layers of the same level but on different hosts communicate with each other
using lower layers transparently. A short description of the ISO/OSI layers follows
and their scheme is in the Figure 2.1. The TCP/IP stack is described in detail
the Section 3.2.

Physical layer

The bottommost is a physical layer. This layer transfers the smallest portions of
data between network interfaces. Namely zeros and ones using electrical or optical
impulses etc. Not only two network interfaces can be aware of the communication.
Wireless networks are the best example that every network interface can hear the
communication. Data unit being transferred by this layer is a bit. Some devices are
capable to transfer more bits at once. In the sense of more bits at once, without any
further knowledge about the data. This layer is about the transport medium, wires,
air etc. and the transport perception.

Data link layer

The next layer is a data link layer. Whole data blocks are transferred between network
interfaces. The source host directs the data block using the destination host’s address.
The addresses are physical, usually assigned by network interface manufacturers. The

S0 called cross layer optimization [24].

10

Data unit Layer
Data 7. Application
Host 6. Presentation
layers 5. Session
Segment
Packet 3. Network
Media
layers Frame 2. Data link
Bit

Figure 2.1: ISO/OSI Layers, the colors are assigned to the layers here and entities
in other figures will preserve the colors of their parent layers.

data blocks are called frames. The network interfaces are the main business of this
layer.

Network layer

The third layer is the network layer. It provides logical addressing and routing of data
blocks. The data blocks, called packets, are logically routed through networks by this
layer. This layer makes a computer network allowing indirectly connected computers
to communicate. The lower layers make connections only between computers on the
same transport medium.

Transport layer
A transport layer is the next above. This layer provides a transparent data flow be-
tween two hosts. It can also provide reliable, flow and error controlled data transfers.

Session layer

The fifth is a session layer. It maintains logical connections between distant host
applications. The logical connections allow the host to handle many networking ap-
plications at the same time.

11

Presentation layer

There is also a data presentation layer. Transferred data have to be interpreted in the
same way on both communicating sides. There can be highly different devices on each
end of the connection. Therefore some standardization or pre-transport negotiation
is necessary. A network byte order is the best example. The big-endian byte order 2
is used in the networking.

Application layer

The last layer is an interface for applications willing to use the networking stack. It
offers host identification, connection establishment and data flow to the end appli-
cations.

2.2 HelenOS specific design

In this section we describe the target system of the networking stack. HelenOS is
under development of a research group at the Faculty of Mathematics and Physics,
Charles University in Prague. It follows the microkernel design [8].

2.2.1 Kernel code

In operating systems there are two types of code execution, the kernel or privileged
mode and the userspace or normal mode. Hosted applications run in the user space
mode. The kernel code runs in a privileged mode. This mode allows access to all
hardware, whole available memory including other tasks’ memory and all parts of
the operating system as well. Therefore any bug in the kernel mode may lead to
system instability, data loss or even hang ups.

The smaller the code is the easier it is to double or triple check it. While studying
the microkernel design, an interesting observation was made, that the kernel code can
be really minimal [27]. The microkernel design attempts to minimize the kernel code
and modularize the system as a whole. The kernel code needs to handle hardware
interrupts, host applications and provide hardware access to drivers. HelenOS follows
the thought that only really necessary parts should run in the privileged mode.

2.2.2 Modularity

As the microkernel design runs little code in the privileged mode it is easier to run
more stable. In addition some operating system tasks do not have to run in the
privileged mode at all. Many drivers or abstraction layers function well even when
placed into the user space. The possible inconsistency due to code defects stays local
in the task itself if it runs in the user space. The kernel basically gives no other
option. Therefore much of the standard operating system functionality is broken
into small pieces running in the user space. Such pieces can be called modules. They

2The most significant byte is stored first, with lowest address.

12

offer services to other modules so the overall architecture can be thought of as the
service oriented architecture.

Furthermore the modular design may be used to reduce the overall complexity
and ease development. The system is broken into functional components with defined
interfaces [6]. The inner implementation is encapsulated and other components use
it as a black box. The overall functionality is then built up from these components.

Another possible extension to the current view of an operating system is the pos-
sibility to check and restart defect modules. Either by polling the modules whether
they are operational or by check—pointing their state.

2.2.3 Inter—process communication

Tasks communicate with each other through open connections using inter—process
communication. The standard message passing mechanism is used. The sending task
passes a message and can wait for a reply. The receiving task picks up the message
and processes it replying the answer. Standard messages can have up to five integer
arguments and up to five integer return values. The term “phone” is used in HelenOS
for the task’s identifier of an open connection.

HelenOS provides an asynchronous library which maintains these connections
and creates a fibril for each of them. Fibrils are the smallest points of execution
in the user space. They are like threads in a main thread. Each connection fibril
processes messages only of its connection. This leads to parallelism where there can
be many messages processed at a time. The client connections are isolated and do
not interfere with each other.

A memory block can be also copied between two tasks. This is useful for large
data blocks. The memory block is copied if the tasks agree. The kernel does the job
in this case.

The last possibility is to share memory blocks. The kernel maps the memory block
into the address space of the target task. So both tasks are able to use the shared
memory. Great care has to be taken and the memory access needs to be synchronized
or standardized.

2.3 (@Qemu emulator

As it is a bit hard to develop an operating system on a real hardware a simulator
was used. A simulator gives the pleasure to develop test and debug the system in
an efficient way. There is no need to dedicate a whole computer to run the system.
Neither to transfer the built binaries to be able to execute them. Qemu is run on
a host operating system and runs a guest operating system as if it was a standalone
computer.

Furthermore, Qemu has a simple network interface. It emulates, among others,
an ISA NE2000 network interface. ISA cards have the nice feature that the device
IO port has to be statically set. This is the memory address used to communicate

13

with the device. Device registers are mapped there and the device is controlled by
reading and writing them.

24 N. E.T.

In order to test and debug a networking stack a universal networking application is
highly recommended. The stack itself contains functions and their counterparts which
can be tested together. However, this would not reveal possible design mistakes, only
programmatic. For example the checksum computation and check can function well
together but it might be a different implementation than the protocol actually uses.
Therefore an external application using another networking stack implementation is
better as it tests these functions with their external counterparts. This should reveal
both programmatic and design mistakes.

This application was developed as a testing tool of networking communication a
few years before this work began. It is a modest application capable of communication
using the lowest protocols, namely UDP and TCP. It is designed to provide useful
networking communication information of the local and remote computers. The basic
application features are:

e Sending and receiving packets of the TCP and UDP protocols on various ports
as both the client and the server,

e Listening for connections,

e Ping and trace,

e Active ports enumeration,

e Getting host information including addresses,

e Getting protocol capabilities, configuration and information,
e Logging all printed information into a file, and

o GUIL

Despite the fact that this simple functionality is sufficient for the networking
stack testing, the main feature is that the application allows users to define their
own protocols. The whole process starting by a used protocol, connecting sequence,
confirmation data, statuses and disconnecting sequence may be defined.

14

Chapter 3

Networking stack design

3.1 New networking stack

For the microkernel HelenOS a completely new networking stack was designed. The
detailed description of requirements, architecture, support structures and modules
follows.

3.1.1 Extent of the implementation

The networking stack was intended to implement current basic standards of the
TCP/IP Stack. The standards are described in the form of RFC documents. The
relevant RFCs are mentioned where appropriate. All the additional features of the
TCP/IP Stack are far beyond the scope of this work. There are hundreds of ex-
tensions, alterations or concretions on top of the core design. Only the minimalistic
functionality allowing the stack to function was to be implemented. The detailed
functional rules are enumerated in later sections closer to their topics. The imple-
mentation goals were:

Initialize and use a real network interface network interface recognition, con-
figuration, initialization and shutdown, sending and receiving packets, fault
and state reception,

Support for more than one network interface advanced modular and depen-
dency design, IP routing tables,

Implement the TCP/IP Stack IP, ARP, ICMP, UDP and TCP protocol mod-
ules,

Implement the BSD socket interface for applications a socket application li-
brary providing connecting and sending and receiving data functionality, and

Demonstrative applications ping, echo and similar applications.

The standardized TCP/IP Stack implementation allows the stack to coexist in most
of the current networks whereas the standardized BSD socket interface eases porting
of networking applications.

15

As HelenOS is written in the C language and it is an operating system with
its own libc library, there are not many support structures. At least a basic ob-
ject oriented approach is achieved by using structures as data classes and sets of
functions manipulating them as methods. Implementation of the support of C+-+
in HelenOS would involve implementation of the C++ library. RTTI, inheritance,
virtual methods, STL and integration with IPC would increase the scope of the
thesis dramatically. Without this features there wouldn’t be any additional benefits
compared to C. So the networking stack is written in C.

3.1.2 Architecture

For the stack development two approaches are possible. One monolithic—like module
and separate device drivers and on the other side a fully modular architecture can
be used.

The monolithic-like module and separate device drivers have one big advantage
— there is no internal inter—process communication at all. There are only normal
function calls internally. The union of functional modules offers also the possibility
to keep shared data on one address in the address space which decreases resource
consumption. The performance is probably the most obvious reason to use this de-
sign. Nevertheless, there are disadvantages as well. Parts of this system are physically
bound to each other. These parts correspond to functional modules in the meaning of
reference model layers. Programmers are allowed to develop a bit fuzzy design with
mixed global data structures and some possibly dirty workarounds and bypasses
between functional modules. The stack is compact and extending it could involve
internal changes. The stack cannot be divided easily either. Functional modules can
depend on each other and function calls cannot be easily recognized and isolated.
This is just a hypothesis if someone wants to exclude particular functionality. It can
be, for example, an attempt to provide a special purpose networking stack based on
a simplified one.

The fully modular architecture has every functional unit in a separate module.
The modules communicate only using well defined interfaces. It needs a bit more
detailed analysis of the modules’ cooperation. Also the common data structures have
to be distributed to all concerned modules. This approach is preferred in order to
demonstrate a functional modular stack running in a microkernel operating system.
There is one important advantage — each functional module is physically isolated.
The functional modules have well defined interfaces and could be fully replaced
without the need to modify any other modules. New modules are free to connect to
this interfaces and extend the stack. There is also well defined module dependency
and modules can be excluded.

3.1.3 Modular architecture

In this section we describe the module concept in general. The networking stack is
split into many small modules which reduces the overall complexity and encapsu-
lates functionality. Each module represents an actual implementation of a particular

16

protocol or driver. For each networking layer there are several modules. Every mod-
ule communicates only in its or the next bottom or up layer. The modules provide
their functionality only to their neighbours and the upper layer. It complies with the
networking stack models where at most one level should be traversed. An overview
can be seen in the Figure 3.1. Usually, networking stacks are internally modular. The
difference is that the proposed one will be modular globally.

Application

lbsocket

/J_l

Ai i
ﬁ%
!L\
eth nlld/ljjr\nmy

Figure 3.1: Modular networking stack

l@

On one hand the networking stack architecture is a bit complicated, but, on the
other hand it complies with the modular design. There can be several network inter-
faces controlled by their drivers. The TCP/IP stack does the routing and registers
its receive points at the drivers. On the other end an application should not interact
directly with the stack but rather through a standardized library. Applications use
a networking library which provides an abstract socket interface masking the stack
underneath. The stack itself contains many functional modules corresponding to the
networking layers and protocols.

In the compile-time configuration of the proposed stack, either the modular or the
monolithic architecture type can be chosen. This is supported with the consideration
of the later demonstration and comparison of both the monolithic and the modular
implementation.

In fact, the whole stack cannot be compiled into just one module as the network

17

interface drivers have to be separated. That is due to the big number of driver families
and a networking stack bundled with all of them would be really huge. Therefore
the right division line of the monolithic implementation has to be drawn. The same
problem is a layer up in the network interface layer as well. There are many network
interface access protocols which are specific to the used network interface driver
family. For example Ethernet, Token Ring, ATM, Point—to-Point Protocol etc. They
cannot control all types of network interfaces and vice versa. This means that the
present network interface implicates the driver module and the data link module.
On top of that, the TCP/IP suite works abstracting from the fact how the data link
layer works. So the division is set between the data link layer and the network layer
and is depicted in the Figure 3.2.

Application

libsocket

Figure 3.2: Monolithic networking stack

We should consider hardware and application limitations as well. There has to be
a network interface driver for each network interface family. The driver can be also
capable of controlling multiple devices in order to avoid multiple instances of the
same driver and unnecessary overhead. On the other hand a bug in the controlling of
one of the devices can break the controlling of the others. Devices keep most of their
configuration and state in their own data structures and allow drivers work with

18

them through memory address spaces. Therefore the driver itself is almost stateless
and it can handle more devices at a time without any disruption. There can be
several network interfaces controlled by their drivers in the system at a time. Either
using the same or several drivers *. The TCP/IP stack does the routing and registers
its receive points at the drivers.

The applications willing to use the networking capabilities of the system use a li-
brary. The socket interface was developed to unify the abstraction of the networking
stack. The applications using this interface can be ported to and function with other
networking stack using the same interface. The library is only a wrapper providing
the networking interface to applications.

Inter—process communication

In order to successfully orchestrate modules their cooperation should be carefully an-
alyzed. There is an interface designed for each of the modules to publish its function-
ality. There are layer— and module—specific interfaces. The layer interface is a general
layer functionality whereas the module specific serves its special purpose. This allows
layer abstraction where more similar modules can work in the same layer and other
layer modules could use either of them. The network and network interface layer
modules are the best example as we discussed them in the context of the monolithic
division line. Only known and almost hardwired connections would be possible oth-
erwise. The driver just sends packets and state notification to its network interface
layer buddy but the TCP protocol has to distinguish between the IP and the ICMP
protocol. A module usually implements its layer interface.

Server modules should be able to serve many connections as they offer their
services to others. They are also clients of other server modules. It would be very
inefficient if a module had to wait until another message gets processed. Some com-
plex messages can take a long time to complete. They can involve several other IPC
queries. Therefore the networking stack should work in parallel.

On the other hand the parallelism lays stress on global data structures in the
server modules. The global data have to be protected against multiple fibrils pro-
cessing messages. Most of the messages can be easily divided into two groups. Some
does not change the global data, but they need to read them. For example if a packet
gets passed through a module, only the actual setup is read, the packet is processed
and passed to another module. Other messages change the module setup. For exam-
ple the initialization of a new protocol or device involves reading configuration or
setting up routing tables. The most adequate synchronization primitives are there-
fore the read—write locks 2. The rest of the messages can change the module setup
on some conditions. They either swap the lock from reading to writing or lock it for
writing. It depends on the likelihood of the writing process.

! An Ethernet router contains many instances of the same network interface to allow many hosts
to connect whereas a host can contain an Ethernet and WiFi network interfaces.
2The read—write lock can be hold by multiple readers or by only one writer at a time.

19

3.1.4 Packet management system

A packet in the sense of the networking stack is a block of formatted data. Networking
stack processes packets and have to pass them between its modules. The memory
block can be passed between modules via inter—process communication messages.
Unfortunately, this would be highly ineffective as the packet data would get copied
due to the task isolation. In the monolithic-like stack this would happen only at the
top and at the bottom of the stack, from client applications and to network interfaces.
If the stack is to be modular the inter—process communication performance is the
cutting edge. The fastest way is to transparently share the packet as an address
space page. So only packet identifiers get transferred. This rapidly increases the
stack performance. There is no internal copying of data. They are copied only at the
top and at the bottom of the stack as in the monolithic case. However, the shared
packet memory block has to be distributed between the concerned modules first.
Strict rules need to be stated and obeyed as well:

1. Only modules in the networking stack and network interface drivers may have
access to packets,

2. Only provided packet manipulation functions must be used,
3. A module processes a packet only if it is the exclusive owner of the packet:

e The module becomes the exclusive owner if

— requests a new packet, or
— is asked to process the packet

e The module is the exclusive owner until

— passes the packet to another module, or
— releases the packet.

The packet structure itself should never be accessed directly. Packet manipulation
functions are provided in a form of a library described in the Section 4.1.2.

Architecture

The networking stack packet management system consists of a packet server and
a library. The packet server needs to be implemented by one well-known module in
the stack. Its job is to manage packets. All packets in the stack are in possession
of this module. The packet library should be part of each module willing to process
packets. It provides packet mappings into the task’s address space and communicates
with the packet server. Other modules can request a new packet and the packet server
creates a new one or reuses an old one. Until the packet is released again it cannot
be reused by the server. Any stack module can release the packet, not only the
requesting one. If a module is asked to process a packet it uses the packet library
to get the packet. If the packet has already been used, the library finds the packet
mapping to the task’s address space. If not, the library requests the packet from

20

the packet server. The packet server shares the packet as a memory block with the
requesting task and the library returns the newly shared packet.

Packet processing

There are two directions of packet processing. A network interface driver uses clean
or new packet to provide the received data to the networking stack. The transferred
application data are incrementally unwrapped on their way through all the modules.

The topmost layer uses clean or new packets to send data through the networking
stack. The transferred application data are incrementally wrapped on their way
through all the modules. The processing time is crucial, so we would like to avoid data
copying as much as possible. There has to be some infrastructure developed around
the packet processing. As we mentioned before, each module wraps or unwraps the
passed data. Each module knows how to do its job and does not have to be aware of
the others. The idea is to keep the application data on one place during the whole
process. The modules then incrementally just cut or prefix and/or suffix their specific
wrappings.

Another option would be a list of succeeding memory blocks 3. Each module just
prefix or suffix its wrapping as another memory block. This increases the complexity
as one packet is split into—possibly many—small pieces. For example a checksum
computation of such a packet have to jump from one piece to another. Furthermore
this is not a universal solution. All modules have to be able to process such block
lists. However, some network interfaces are able to transfer only continuous block of
data *. The blocks need to be serialized for them first. Unfortunately, this would be
another data copying decreasing performance.

The packet size is loosely limited only by the MTU setting. However, the IP
protocol, for instance, allows content only up to 65535 octets long. The MTU may
be specific for each device, network or protocol used. New outgoing packets have
to be created with the MTU size taken into account. The IP protocol supports
packet fragmentation for “small packet” networks. The upper protocols do not have
to respect this setting as it is transparent for them. However, they could decrease
load of their underlying IP module by doing so.

3.2 Networking stack modules

The HelenOS networking stack is described from the bottom layer up according to
the TCP/IP model. The relevant ISO/OSI layers are referenced where appropriate.
Each module description is followed by its public interface. Module interactions are
described and some even depicted in UML diagrams. For a visual representation
of the whole stack in an UML diagram see the appendix Section B.1. A central
configuration module is described first.

3The technology of transferring and receiving succeeding blocks of data as one frame is called
scatter—gather or vectored input—output.

4They can use only a simple DMA access to read a continues block without any other option,
for example.

21

3.2.1 Central configuration module - net

The central module is the heart of the networking stack. This module implements the
packet server, reads the networking configuration and starts required service modules.
The configuration consists of the general networking stack and network interface
specific parts. The stack configuration is textual. Numeric settings are parsed as
integers, switches starting with 'y’ as enabled. The general configuration specifies:

MTU The default maximum transmission unit. Set to ¢ “1500°°.

ICMP_ERROR_REPORTING The Internet Control Message Protocol error
generation and reporting switch. Set to ¢ ‘yes’’.

ICMP_ECHO_REPLYING The Internet Control Message Protocol echo reply
generation and reporting (ping) switch. Set to ¢ ‘yes’’.

IPV The default Internet Protocol version. Set to ‘4.
IP_ROUTING The general IP routing switch. Set to ‘ ‘no’’.

UDP_CHECKSUM_COMPUTING The User Datagram Protocol optional out-
going traffic checksum computation switch. Set to ¢ ‘yes’’.

UDP_AUTOBINDING The User Datagram Protocol optional automatic bind
on send if not bound switch. Set to ¢ ‘yes’’.

The network specific configuration contains:
NAME The network interface name.

NETIF The network interface driver module name.
NIL The network interface layer module name.

IL The inter-network layer module name.

The generic stack configuration can be overridden by the network interface specific.
Any other configuration is also tracked so stack modules are free to add their specific
settings. Module specific settings are mentioned at each of them. Modules can query
the net module about a general or specific setting by its label. If the network interface
specific setting is not found the general stack configuration is searched then.

This module starts needed modules of the stack and initializes network interfaces.
The networking stack startup is described later in the Section 4.1.4.

net interface

The net module offers the following interface:

e net_connect_module(net_service) function and its backing
IPC_M_CONNECT_ME_TO message to connect to the net module returning
the connection phone.

22

o net_free_settings(configuration, data) to release the returned setting values.
Should be used in conjunction with either general or network interface spe-
cific configuration request. If used in a bundle module, no memory is freed as
the values buffer is empty:.

e net_get_device_conf req(net_phone, device_id, configuration, count, data);
NET_NET_GET_DEVICE_CONF to read the network interface specific config-
uration. The requested setting labels are transferred as measured string field
and values in the opposite way. If used in a bundle module the values are not
copied to the buffer and must not be freed.

e net_get_conf-req(net_phone, configuration, count, data);
NET_NET_GET_CONF to read the general configuration. Similar to the pre-
vious one.

3.2.2 Network interface drivers

A network interface, often referred as a network card, is the most important part of
the stack. Roughly said, it is used to communicate with the outside world. Therefore
all the outgoing and incoming traffic goes through the network interface. This is the
bottommost layer in the ISO/OSI model, the physical layer.

There are a few basic capabilities of a network interface driver which need to
be implemented. The most important ones are sending and receiving packets. The
driver should be able to start and stop the device and accept a configuration from the
networking stack. The devices can be present and configured but temporary disabled
if desired. Controlling multiple devices is an optional feature.

Drivers can also provide some diagnostics and statistics for the system which
should be updated appropriately.

The driver should be capable of:

e Discovering a device,

e Configuring a device,

e Starting a device,

e Stopping a device,

e Sending a packet,

e Providing a received packet,

e Returning device usage statistics, and

e Returning the current state of a device.

23

A network interface layer module can register itself as the packet supplier and con-
sumer of the device. Incoming packets are delivered to that module asynchronously.

The network interface layer could also poll the driver frequently to obtain received
packets. This option is not used as it increases overhead and is inefficient when there
are no packets. On top of that if the driver is not queried often enough, the received
packets can fill its buffers and may be discarded.

The driver can use device specific hardware settings such as input/output address
space and IRQ. The driver then registers and handles IRQ events. Network interface
drivers obtain the IRQ numbers and IO port addresses at the device initialization.
Device configuration entries IR(Q) and IO, respectively, are forwarded to the driver.

Network interface driver interface

The network interface driver modules offer the following interface:

o netif bind_service(netif_service, device_id, calling_service, receiving_callback)
function and its backing IPC_M_CONNECT_TO_MFE message to register itself
as the received packets consumer.

o netif_get_addr_req(netif-phone, device_id, address, data);
NET_NETIF_GET_ADDR to read the network interface hardware address.

e netif probe_req(netif phone, device_id, IRQ), i0); NET_NETIF_PROBE to probe
if there is a device at the specified memory address using the specified IRQ.

e netif send_msq(netif phone, device_id, packet, sender_service);
NET_NETIF_SEND to send the packet via the specified device.

o netif start_req(netif phone, device_id); NET_NETIF_SEND to start the speci-
fied device.

e netif stats_req(netif_phone, device_id, stats); NET_NETIF_STATS to read the
specified device’s usage statistics.

e netif stop_req(netif phone, device_id); NET_NETIF_STOP to stop the specified
device.

Loopback network interface - lo

The loopback network interface is a special device which returns all outgoing packets
back as incoming ones. The motivation for this device is to enable network commu-
nication between both server and client applications running on the same host. The
applications are connected as being remote, however, the communication goes just
through the local networking stack. There are no problems with carrier, protocols
and formats and “the other side” is always reachable ®. There is also no need of a real
network interface device.

5Although the other application may not be reachable.

24

The lo driver is designed as a standalone module with capabilities of a regular
device driver. The driver itself creates a virtual device and returns all outgoing
packets as incoming incrementing the usage statistics accordingly. This is due to
the requirement of usage statistics and transparent driver interface. In the extreme
case only the user knows that this network interface is the loopback. Therefore the
loopback does not need any special configuration.

NE2000 network interface driver - dp8390

The main goal of the networking stack is to connect the computer to a computer
network. A real network interface enabling us to connect to the outside world is
needed. There are hundreds of network interfaces and supporting them would be
a long term run. For the successful networking stack demonstration one is enough.
A NE2000 network interface family was chosen ®. A lot of its clones 7 exists which is
one of the main reasons. Another one is its simplicity. An ISA version of this network
interface resides in the address space on one of the specified locations.

Qemu emulates the NE2000 network interface as well. So the decision was made to
support this one. A more recent chip DP8390D by National Semiconductor actually.
This chip is well documented in the data sheet [7] on the manufacturer’s website.

3.2.3 Network interface layer

The network interface layer is the data link layer in the ISO/OSI model. This layer
transfers whole blocks of data between two network interfaces, possibly on different
hosts. The network interface layer module is specific for the type of network the
computer is connected to.

There can be many network interface layer modules implementing various types of
networks such as Ethernet, TokenRing etc. The network type is partly determined by
the used network interface. Not all network interfaces support all types of networks.
The NE2000 supports only the Ethernet.

The interface for the upper layers is transparent of the network type. So the
bundle build is supported only with drivers, not the upper stack.

The network interface layer module can also distribute packets between the upper
layer modules according to the inner frame protocol. There can be more than one
upper layer module using this one for sending and receiving packets. The upper
service module has to register itself and the network interface layer module can take
into account the packet distribution. Packets are passed one by one. Concrete rules
are module specific and will be described in the later example of IEEE 802.3.

Network interface layer interface

The network interface layer modules offer the following interface:

6This is a product line started in early 1990s originally by Novell. It became de facto a standard
because it spread widely thanks to its low price.

"Clone is a compatible network interface, it behaves and can be controlled in a very similar
way.

25

e For the upper stack:

— nil_bind_service(nil_service, device_id, calling_service, receiving_callback)
function and its backing IPC_M_CONNECT_TO_ME message to register
itself as the received packets consumer, there can be more consumers per
device based on the stated service.

— nil_device_req(nil_phone, device_id, mtu, netif service);
NET_NIL_DEVICE to register a device and its driver.

— nil_get_addr_req(nil_phone, device_id, address, data); NET_-NIL_ADDR to
read a network interface hardware address.

— nil_get_broadcast_addr_req(nil_phone, device_id, address, data);
NET_NIL_BROADCAST_-ADDR to read a network interface broadcast
address.

— nil_packet_size_req(nil_phone, device_id, addr_len, prefix, content suffir);
NET_NIL_PACKET_SPACE to read maximum packet dimensions, min-
imal address length, prefix and suffix and maximum content length in
bytes.

— nil_send_msq(nil_phone, device_id, packet, sender_service);
NET_NIL_SEND to send a packet (queue) via the specified device.

e For drivers:

— nil_device_state_msg(nil_phone, device_id, state);
NET_NIL_DEVICE_STATE to process the device state change.

— nil_received_msg(nil_phone, device_id, packet, target_service);
NET_NIL_RECFEIVED to process the received packet.

Dummy network interface layer - nildummy

There is one special network interface layer module, a dummy one. It is used just to
bridge communication between a network interface driver and the upper stack. One
module is allowed to register itself as a consumer of received packets. Only devices
registered with the nildummy module are available.

The purpose of this module is to keep the layer division. A driver does not have to
process network interface layer messages nor sends them to an upper inter-network
layer module. The messages are translated appropriately. Furthermore, the invariant
that layers should not traverse more than one level is kept as well.

The most obvious network interface driver lying underneath is the loopback one
where no added functionality is needed.

IEEFE 802.3 - eth

One of the most widely used network types is the, informally called, Ethernet. The
technology is standardized as IEEFE 802.3. The history of the original Ethernet begun
at XEROX PARC in 1976 [12]. The name comes from an ether, a fluid allowing

26

transfer of electromagnetic energy as it was thought at the end of the 19" century.
The name Ethernet was released to the public domain later. It coexists as Fthernet I
or DIX FEthernet 8 now. IEEE 802.3 is a bit younger technology describing almost
the same. IEEE 802.3 covers data transfer between two network interfaces at the
same medium, for example connected by a wire. There are a few variants according
to the medium, transport direction and speed used.

DIX Ethernet IEEE 802.3 IEEE 802.3
+ 802.2 + 802.2
+ SNAP

Source Source Source
address address address
Destination Destination Destination
address address address
Ethertype Frame length Frame length
IEEE 802.2 IEEE 802.2
Ox__ __03 OxAA AA 03

SNAP

Checksum Checksum Checksum

Figure 3.3: Ethernet frame formats

There can be also more network interfaces attached to the same medium and
therefore addressing of data plays its role. Devices are assigned MAC addresses by
their manufacturers. This addresses should be globally unique. They are hardwired
but some devices allow users to change them. The network interface should receive
only data labelled with its assignhed MAC address . There exists a standardized

8DIX stands for the founding companies Digital, Intel and Xerox.
9There are also network interface operation modes allowing to receive all frames or respecting
an address pattern.

27

broadcast address to send data to all listening network interfaces.

The frame format differences are described in this paragraph and depicted in
the Figure 3.3. Both DIX Ethernet and IEEE 802.3 use almost the same header
preceding the actual frame data. A frame type or ethertype header field in DIX is
used as a frame length in IEEFE 802.5. The basic frame type was used to distinguish
the inner frame protocol, the higher protocol transferring its own data inside the
Ethernet frame.

On the other hand the frame length offers better consistency check. Furthermore,
the length is important as there is a minimum length limited. The frame content has
to be at least 46 bytes long. It is padded with zeros if shorter. The frame length
reveals such a padding whereas the frame type does not and the inner protocol or
protocols have to find it out by themselves.

The IEEE 802.3 does support frame type as well, but in an additional IEFFE
802.2 header. The usual frame types are all numbers higher than 1536 (020600). So
IEEE decided to restrict frame type to be higher than 1536 and frames are allowed
at most 1500 bytes of data. The coexistence of this two frame formats is explicitly
possible. Frames can be easily recognized by the frame type/length header field.

The IEEE 802.3 header can be further extended by IEEE 802.2 and SNAP head-
ers. The IEEE 802.2 appends the destination and source service access point iden-
tifiers to the IEEE 802.3 header. This service access points are equivalents to the
frame types. The IEEFE 802.2 header format is in the Figure 3.4. The last byte—the

DSARSSAHA Ctrl

Figure 3.4: IEEE 802.2 header, each field of one byte.

control one—can be used in many ways. For upper layers encapsulation only the
Unordered Information frame type of the value 0203 is used.

When the service access points were designed a one byte field looked long enough.
However, it was quickly almost exhausted. SNA P—represented in the Figure 3.5—is
the most recent approach reintroducing two byte frame types on top of IEEE 802.2.
Both service access points are set to 0xAA and the original frame type is attached.

Org. code |Ethertypsg

Figure 3.5: SNAP header, organization or protocol code of three bytes, ethertype of
two bytes.

The RFC 948 [28] defines transfer of higher protocol IP in Ethernet frames. The
above mentioned frame types are supported. This definition can be also generalized
for all higher protocols.

28

Ethernet also introduces a consistency check. At the end of each frame a checksum
is carried. Ethernet checksum is based on CRC32. To be precise, a bitwise comple-
ment of CRC32 with a seed of all ones is transferred in the network byte order.This
checksum is used to identify faulty transfers.

The eth module implements all of the above mentioned frame formats. A modern
network interface should be able to receive frames of all formats and should generate
only one frame format [16]. So IEEE 802.3 with SNAP is the default despite the
fact that the very first network interface (DP8390 in Qemu) understands only the
DIX Ethernet *°. This emerged in a device configuration setting ETH_MODE of the
“‘DIX’’, ““8023_2_LSAP’’ or ‘‘8023_2_SNAP’’ value. The DP8390 network inter-
face also handles frame preamble and checksum computation and check on its own.
Therefore another device configuration setting is used to enable explicit frame pream-
ble and checksum computation and checks. This switch is labelled ETH_DUMMY
and is disabled by default.

3.2.4 Inter—metwork layer

Going a layer up, we traverse the conceptional division line. We are getting into the
domain of the TCP/IP stack core protocols. The first layer supplies the ISO/OSI
network layer.

This layer enables logical networking and routing. Packets being transferred be-
tween hosts can traverse multiple network interfaces or even logical networks. The
inter—network layer allows hosts to identify available routes and other hosts’ presence.

A host can have more network interfaces and this layer routes packets to ap-
propriate ones. The host with more network interfaces can be also connecting more
logical networks. They are so—called multihomed hosts and can function as gateways
between the networks.

Inter—network layer interface

There is a standardized interface used by lower layers to communicate with the
inter—network layer modules:

o il_device_state_msg(il_phone, device_id, state, target_service) function and its
backing NET_IL_DEVICE_STATE message to process the device state change.

o il_received_msqg(il_phone, device_id, packet, target_service);
NET_IL_RECEIVED to process the received packet.

e il_mtu_changed_msq(il_phone, device_id, mtu, target_service);
NET_ILMTU_.CHANGED to process the device MTU change.

On the other side no standardized interface exists for networking stack modules as
they are aware of whom they are sending messages to. The TCP/IP Stack is designed

10Tn fact this is one of two proposed transfer methods for the IP protocol over the Ethernet in
the RFC 948 [28].

29

to function with a concrete protocol in the inter—network layer, the IP protocol. So
the upper layer modules do know exactly who is underneath.

Address Resolution Protocol - arp

As the TCP/IP stack communicates with hosts according to their logical IP ad-
dresses, lower layers do not understand them and the addresses have to be translated.
The ARP protocol provides this service. The protocol is defined in the RFC 826 [21].
It is a universal protocol translating addresses to and from many protocols.

If an address translation is not already known a discovery request packet is sent to
all connected hosts. ARP uses a variable length packet where appropriate hardware
and logical address spaces are allocated for both the source and the destination
host . The destination hardware address is unknown and left empty. The hardware
broadcast address is used as the destination address of the packet so other hosts’
network interfaces receive the request.If the host recognizes its logical address a reply
with all addresses filled is sent back to the request source.

ARP implementations cache translations for further use. If an error occurs—
packets do not get delivered or the host unreachable notification is received—the
cached translation should be cleared.

A timeout would be also an option. However, there is a bit of inefficiency. If
a host is present, the timeout clears the mapping and the broadcast query needs to
be send and replied. This puts unnecessary load to all connected hosts frequently.
It can also lead to flooding in a big network. However, the timeout helps to discard
unused entries and to propagate dynamic network changes.

On the other hand if a packet gets lost or an error is reported, the mapping is
cleared and the packet can be resend. This involves the broadcast request as well,
however, the caused load is unavoidable in order to recover from the error.

Although there is only the arp module present in the stack, some other can be
added later. The particular ARP module can be specified via the device configuration
ARP setting. This device specific setting is passed to the relevant inter—network layer
module. That module should respect the ARP configuration and use the proposed
ARP module.

ARP interface The address resolution protocol modules should offer the following
interface:

e arp_clean_cache_req(arp_phone) function and its backing
NET_ARP_CLEAN_CACHE message to clear whole cache.

e arp_clear_address_req(arp_phone, device_id, protocol_service, address);
NET_ARP_CLEAR_ADDRESS to clear the device protocol address transla-
tion.

1Tn case of IP and Ethernet the logical address has four bytes whereas the hardware has six
bytes.

30

o arp_clear_device_req(arp_phone, device_id); NET_ARP_-CLEAR_DEVICE
to clear the device cache.

e arp_connect_module(arp_service); IPC_M_CONNECT_-ME_TO
to connect to the arp module returning the connection phone.

o arp_device_req(arp_phone, device_id, protocol_service, netif_service, address)
NET_ARP_DEVICE message to register the arp module for the device at the
driver and to save the requesting protocol logical address.

o arp_task_get_id() returning the task identifier if called in the bundle module.

e arp_translate_req(arp_phone, device_id, protocol_service, address, translation,
data); NET_ARP_TRANSLATE to translate the protocol address to the hard-
ware address.

Internet Protocol - ip

The central protocol of the suite is the Internet Protocol. The IP protocol version 4 is
defined in the RFC 791 [18] by DARPA from 1981. This protocol provides best—effort
packet transfers. It tries to do its best to deliver packets to other hosts.

The fourth version is the first widely deployed version. There is a newer IP ver-
sion 6. This version introduces longer addresses, extended addressing and routing,
mobility, and IPsec. Implementation of this version could be a topic of another mas-
ter thesis. The still used and simpler version4 is implemented in this one instead.

IP addressing Hosts are identified by their IP addresses. Each address falls into
an [P network. The address prefix of certain length is the network. The IPv4 uses four
byte addresses and networks are assigned by IANA. There are groups of networks
with fixed number of bits where the very first few bits of an address determine the
network group. The textual addresses are written as four decimal numbers separated
by dots.

The four byte addresses might have been enough for the world—it is 4 294 967 296
addresses, more than 4 billions—but not the network groups. An organization willing
to have all its computers in its own network has to request a network. The network
is assigned from the smallest group the computer count fits in. As bits in the ad-
dress cannot be divided, only sizes in multiples of two are available. The problem
deferred by using two special networks 192.168.0.* and 10.*.*.*. Anyone may use
these networks while not being directly connected to other networks, especially to
the Internet. Such networks are local and can be connected to other networks using
gateways.

Along with network groups there are also network masks. It is a bit more universal
approach. The address is divided into a network address and a host identifier. The
mask contains ones at the network address places and zeros at the host identifier,
respectively. A network can be divided into smaller parts if the mask sets more bits.

In order to communicate with others, a host has to maintain its routing table.
The table contains entries where to send packets targeted to other hosts. Hosts of the

31

same network can be accessed (almost) directly but hosts of other networks not. The
institution of multihomed gateways is introduced for the latter case. The host can be
configured to send packets to other network using a gateway. The gateway forwards
that packets further to the proper network or another gateway. The gateway routing
can be set as a network and a netmask, where only the mask bits are compared to the
target address. It can be less than the target network mask. Similar entries can be
grouped together by shortening the mask. This is called the Classless Inter—-Domain
Routing.

Hardware address resolution Any ARP module can be configured for the hard-
ware address resolution needs. The ip queries the ARP module for IP address trans-
lations then.

There was an option to ask the ARP to send the packet itself which would save one
message in the inter—process dialogue. However, it would shift some IP functionality
to ARP modules which would be against the modular architecture decided before.
Therefore the address is requested, read and the packet is then sent. Please see
Figures 3.6 and 3.7.

IP requesting a destination address translation which is not cached

o

| network interface driver | | network interface layer | | ARP | | |
T
|
|
|
| (NET_ARP_TRANSLATE(address)
1

NET_NIL_SEND(request)

ENOENT

D NET_NETIF_SEND(request)

Figure 3.6: IP requesting a destination address translation which is not cached.

IP requesting a destination address translation which is cached

network interface driver | | network interface layer | | ARP | | 1P
]
|
|

T
|
|
|
| 4 NET_ARP_TRANSLATE(address)
|
|
|

EOK(translation)

NET_NIL_SEND(packet)

T
NET_NETIF_SEND(packet) ’_‘ : !
! |

' ' I

Figure 3.7: IP requesting a destination address translation which is cached.

32

IP protocol The IP packet header consistency is verified by a checksum. Although
this checksum is weaker than the CRC in the Ethernet Section 3.2.3 presented earlier,
it is used in other core TCP/IP protocols as well. The RFC 791 [18] authors stated

...experimental evidence indicates it [the checksum]| is adequate, but
it is provisional and may be replaced by a CRC procedure, depending on
further experience.

Nevertheless, the proposed checksum computation is still in use, 28 year later. This
is partly because it is sufficient and partly because it has spread widely and any
change would be very costly as many implementations already use that. Its RFC
definition 2 seems hard to understand but the principle is in fact very simple. The
packet header is divided into 2 byte blocks which are summed. The result is split into
high and low two bytes and summed again until the high part is zero.

As some protocols are not obligated to compute the checksum and set it to zero
a computed zero checksum has to be distinguishable. The computed zero is flipped
into all ones.

On one hand there is problem of this checksum as it cannot recognize 2 byte blocks
being swapped, but, on the other hand it allows partial checksum computation and,
furthermore, in any order. This feature and more are presented in the RFC 1071 [4]
with implementation examples to speed up the checksum computation.

tp module The ip module implements the IP protocol. The module supports more
network interfaces and implements CIDR routing tables.

Based on the device configuration IP_ROUTING switch it can serve as a router.
The incoming traffic will be forwarded further if not targeted to the local host,
the router. For security reasons only routers should enable this setting. An Internet
attached host can serve as a gate to its inner local network otherwise, even if not
intended to. Packets for the inner network sent from the outside network would be
routed properly in.

The module also allows connection to the local host via a loopback network
interface which should have the IP address 127.0.0.1. The default gateway for un-
determined routing direction can be set as well. The IP protocol supports packet
fragmentation if a packet does not meet the target network MTU.

In case of errors during packet processing, error notifications are generated using
the ICMP protocol 3. Either if the network is unreachable, the host is unreachable,
the checksum check fails or the time to live runs out. No additional notifications
should be generated while processing error notifications.

Client modules register themselves at the ip module by their IP protocol iden-
tifiers. Received packets are delivered according to these protocol identifiers. The
networking stack can be easily extended with other protocols on top of the IP pro-
tocol.

12The checksum computation and optimization techniques are described in the RFC 1071 [4] and
its updates 1141 [10] and 1624 [22].
13The ICMP protocol is described in the later section as well as general error processing.

33

IP interface The ip module uses more device configuration settings along with the
ARP and the IP_.ROUTING. First and most important is the IP_.CONFIG denot-
ing ¢ ‘static’’ address configuration. No other value is supported yet as the net-
working stack contains only core protocols and further would be necessary, namely
DHCP or at least BOOTP. For the static configuration the network interface address
IP_ADDR, IP.BROADCAST and IP.GATEWAY addresses and IP.NETMASK are
read. They should be set to a textual [P addresses, € €10.0.2.15°° for example.

ip interface The ip module offers the following interface:

o ip_add_route_req(ip_phone, device_id, address, netmask, gateway) function and
its backing NET_IP_ADD_ROUTE message to add a route entry for the device.

e ip_bind_service(ip_service, protocol, calling_service, receiving_client_connection,
receiving_callback); IPC_.M_CONNECT_-TO_ME to register itself as an upper
protocol, either the callback or the client connection function is used according
to the build architecture.

e ip_connect_module(ip_service) to connect to the ip module returning the con-
nection phone.

e ip_device_req(ip_phone, device_id, netif service); NET_IL_DEVICE to register
a device and its driver.

e ip_get_route_req(ip_phone, protocol, destination, address_length, device_id,
pseudo_header, header_length); NET_IP_.GET_-ROUTE to get a destination di-
rection and pseudo header for sending.

e ip_packet_size_req(ip_phone, device_id, addr_len, prefix, content suffiz);
NET_IL_PACKFET_SPACE to read maximum packet dimensions, minimal ad-
dress length, prefix and suffix and maximum content length in bytes.

o ip_received_error_msg(ip_phone, device_id, packet, target_service, error_service);
NET_IP_.RECEIVED_ERROR to announce a received error notification.

o ip_send_msq(ip_phone, device_id, packet, sender_service, error_service);
NET_IL_.SEND to send a packet (queue). A particular device can be specified.
If the error service is set, no further errors are generated.

o ip_set_gateway_req(ip-phone, device_id, gateway); NET_IP_.SET_GATEWAY to
set the default gateway.

Internet Control Message Protocol - icmp

The ICMP protocol defined in the RFC 792 [19] is a support protocol for the TCP/IP
suite protocols. It carries error notifications and diagnostic messages. If an error
occurs an ICMP packet is created. It contains the beginning of the original packet
starting with the original IP header.

34

ICMP packets are sent via IP and there is a protocol number assigned for the
ICMP protocol as well. Therefore ICMP behaves in a similar way like upper protocols
in the transport layer. The icmp module registers at the ip module and received ICMP
packets are then delivered to the icmp. However, the ICMP protocol actually falls
into the inter—network layer next to the IP protocol. It does not add extra logic as
other protocols in the above layer.

The ICMP error reporting can be disabled by setting the global configuration
ICMP_ERROR_REPORTING switch to anything else than ‘ ‘yes’’.

The ICMP protocol offers more than just error notification. There is one highly
demanded functionality, the echo. One host sends an echo request to another host
and waits for a reply. If the other hosts is reached—and is not configured to block
ICMP echo requests—the same packet is sent back as the echo reply. The packets
contain sequence numbers to match the replies with the previous requests. The ICMP
echo replying can be disabled by the global configuration ICMP_ECHO_REPLYING
switch. A local application is allowed to connect to the icmp module and call the
echo process.

The ICMP protocol client application can use the interface:

e icmp_connect_module(icmp_service) function and its backing
IPC_M_CONNECT_-ME_TO message to connect to the icmp module returning
the connection phone.

e icmp_echo_msq(icmp_phone, message_size, timeout, ttl, tos, dont_fragment, ad-
dress, address_length); NET_ICMP_ECHO to ping a host.

icmp interface The icmp module offers the following interface:

e icmp_connect_module(icmp_service); IPC_M_CONNECT_ME_TO to connect to
the icmp module returning the connection phone.

e icmp_destination_unreachable_msg(icmp_phone, code, mtu, packet);
NET_ICMP_DEST_-UNREACH to report the destination unreachable error.

e icmp_parameter_problem_msg(icmp_phone, code, pointer, packet);
NET_ICMP_PARAMETERPROB to report the parameter problem error.

e icmp_source_quench_msg(icmp_phone, packet);
NET_ICMP_SOURCE_QUENCH to report the source quench error.

e icmp_time_exceeded_msg(icmp_phone, code, packet);
NET_ICMP_TIME_EXCEEDED to report the time exceeded error.

3.2.5 Transport layer

Although the IP protocol offers host to host communication this is not enough. The
next layer, the transport layer, enables more host connections to run parallel.

35

Every connection or connection—less transfer uses ports. The host address, pro-
tocol and port determines the communication source or destination. This triplet is
called a half-socket. The other side is also identified by a half-socket, both together
creating the socket. The socket is used to identify the communication.

Client application create and hold such half-sockets. The client part of the art is
described in the next Section 3.2.6.

Transport layer protocols have to register themselves at the 7p module with their
IP protocol number. After that they can use the ip interface and consume their
received packets. They can also use the ICMP protocol if desired.

The transport layer is the topmost layer of the networking stack. Client appli-
cations are directly connected to modules of this layer using the—later described—
socket library:.

As this is the last layer of the stack no packets are allowed to go any further.
Client application data have to be copied to and from their address space from and
into packets.

Transport layer interface

There is a standardized interface used by lower layers to communicate with the
transport layer modules:

o tl_received_msg(il_phone, device_id, packet, target_service, error_service) func-
tion and its backing NET_-TL_RECEIVED message to process the received
packet. Either the registered function or the IPC message is used.

Internet Control Message Protocol - icmp

As the ICMP protocol falls into the inter—network layer in fact it is described there
in the Section 3.2.4 earlier. It supports the general transport layer interface.

User Datagram Protocol - udp

The User Datagram Protocol is the simplest transport layer protocol. It is described
in the RFC 768 [17] and does not add any other functionality to the underlying IP
protocol but sockets. Client applications are offered the state-less and best—effort
communication. Data can get lost, arrive out—of—order or more than once.

The module can be configured to compute checksums for outgoing packets. The
same checksum as in IP is used except that it spans the IP pseudo header, the UDP
header and the data as well. The IP header is included in the checksum to identify
misrouted datagrams and the UDP header and data are included to verify their
consistency. The checksum is optional but highly recommended. The UDP checksum
global configuration switch is called UDP_CHECKSUM_COMPUTING.

The UDP protocol is a state-less protocol so it can be viewed as half-sockets
communicating with each other. An application can send data to anyone and receive
data from anyone. The application has to provide the destination identification, the

36

address and the port. With a received packet the source address and port are always
provided with the packet data.

Although it can be desired to just send data and not receiving any, the default
is not to. The module assigns a listening port automatically on send if not already
assigned. This behaviour can be changed using the UDP_AUTOBINDING global
configuration switch.

Transmission Control Protocol - tcp

The second transport layer protocol is much more powerful. The TCP protocol es-
tablishes reliable communication between two hosts and ensures data transfers. Both
sides cooperate to deliver all data exactly once and in the right order.

The hosts establish the connection first. One side listens and waits for an incoming
connection as the other one initiates the connection. Similar dialogue happens at the
end of the connection.

Transferred data are acknowledged when received in the next outgoing or a sep-
arate packet. Packets are retransmitted if not acknowledged within a specific time.
The TCP protocol uses the same consistency checksum as the UDP protocol. The
tep module contains much more logic maintaining socket states and buffering data.
The comprehensive description of the TCP protocol can be studied in the work of
Zaghal and Khan [30].

There exist many extensions on top of the original RFC 793 [20]. To name some
of them: congestion detection and avoidance, MDb5 checksum, slow start, fast re-
transmit, selective acknowledgement, adaptable retransmission timers etc. Many are
enhancements, optimizations or security improvements.

3.2.6 Application programming interface - libsocket

There is a client library for client applications willing to use the networking capa-
bilities of the system. A standardized—in the right meaning—API does not exist.
However, the BSD Unix operating system came up with a networking client design
in the release 4.2 BSD in 1983. Its application programming interface became a de
facto standard soon and is called the Berkeley socket interface [11].

The client library implements core functions of the Berkeley socket interface.
This fulfils networking needs and eases porting of networking applications. The li-
brary maintains local sockets and connections to needed transport layer modules
and registers its own client connection function to process messages sent by these
modules. All this is transparent to the client application.

libsocket interface The libsocket library offers the following interface:

e accept(socket_id, address, address_length) and its internal
NET_SOCKET_ACCEPT message to get an accepted socket and the remote
host identification.

37

bind(socket_id, address, address_length); NET_-SOCKET_BIND
to bind the socket to a local port for listening.

closesocket(socket_id); NET_-SOCKET_-CLOSE to close the socket. This func-
tion behaves like the original close() but differs in the name as the name is
used in HelenOS for file operations.

connect(socket_id, address, address_length);
NET_SOCKET_-CONNECT to connect to the remote host.

getsockopt(socket_id, level, name, value); NET_-SOCKET_-GETSOCKOPT to
get the socket option value.

listen(socket_id, backlog); NET_-SOCKET_LISTEN to set the maximum number
of waiting accepted sockets.

recv(socket_id, data, length, flags); NET_SOCKET_RECYV to receive the data
via the connected socket.

recufrom(socket_id, data, length, flags, address, address_length);
NET_-SOCKET_RECVFROM to receive the data and the remote host identi-
fication via the listening socket.

send(socket_id, data, length, flags); NET_SOCKET_SEND to send the data via
the connected socket.

sendto(socket_id, data, length, flags, address, address_length);
NET_SOCKET_SENDTO to send the data via the socket.

setsockopt(socket_id, level, name, value); NET_SOCKET_-SETSOCKOPT to
set the socket option value.

socket(domain, type, protocol); NET_SOCKET to create a new socket.

All the functions except the closesocket() are blocking—do not return until com-
pleted.

3.2.7 Applications

To demonstrate the operational networking stack a few applications were imple-
mented. The both presented are common part of operating systems with networking
stacks.

Ping - ping

The first application’s purpose is to test if the networking stack is operational. It tests
whether a host is reachable by sending an ICMP echo message. If testing the local-
host address € €127.0.0.1°’ the loopback network interface is checked. If configured

38

correctly the icmp module sends, replies and receives the echo message reporting suc-
cess. If testing another host’s address the real network interface is checked instead.
The icmp reports success if a reply to the sent request is received. The application
prints the overall time taken in both cases.

Echo - echo

The second application listens at a specified port and echoes back what it receives.
The application prints the received data and the source address and port.

39

Chapter 4

Discussion

4.1 Implementation

The implementation follows the networking stack design from the previous sections
to fulfil the TCP/IP stack needs. In this section implementation details and opti-
mizations are described. This part is rather brief and technical.

4.1.1 HelenOS internals

Some HelenOS specific implementation details are mentioned in this section. These
are only relevant fragments of the concept of the system from the networking stack
point of view.

Services A name server module where all tasks can register their services them-
selves is used in HelenOS. The concept can be looked at as a service oriented oper-
ating system where any task can be a service. Even more services. They are used as
system unique identifiers of the module capabilities.

Other modules can query the name server if they are looking for a particular
service. The name server redirects them to the registered module if there is such.

This gives another layer of abstraction and allows indirect task connections, where
the querying task does not know which task it needs to connect to.

The networking stack modules are registered as such services as well. The services
are defined in the uspace/lib/libc/include/ipc/services.h header file in the
HelenOS source directory.

Parallelism If a module wants to process multiple connections as in our case
almost everywhere in the stack, an asynchronous manager provided in HelenOS serves
the best. Module starts in one fibril in one thread and calls the async_manager()
function after initialization. This function starts the asynchronous manager and runs
further in the fibril. There is a new fibril created for each incoming connection. Due
to this fact many fibrils can be present in the service (server-like) modules.

40

Device numbers Devices in HelenOS should be assigned a device identifier. This
identifier enables a system—unique identification of the device. The identifier is gen-
erated in the kernel via a system call device_assign_devno(). The system unambiguity
of the identifiers can be achieved only in the kernel.

Network interfaces are devices as well and therefore the networking stack re-
quests an identifier for each present. Modules in the stack refer to them using these
identifiers.

The central configuration module is able to assign a virtual device number to
the present network interfaces. These identifiers would be networking unique but
not system unique which could lead to confusion. Furthermore, the usage of the
provided system call complies with the system designers’ attitude.

4.1.2 Support structures

A few structures to support the development are going to be introduced. Some of
them are template-like data structures for use with any data types. There are simple
containers to fulfil basic needs of the networking stack in its first version as it is more
a prototype rather than a tuned—up performance—optimized stack.

packet structure

The packet is a memory block with a header at the beginning and a data container
afterwards. This memory block is aligned to the address page size. Packets are also
extended to carry their addresses to ease inter—process communication. Modules can
use packet address containers to pass addresses. The packet is designed as a shareable
memory block with the header containing:

e The packet identifier, the unique packet identifier assigned by the packet server,

e The packet queue placement, packet queue sort order and metric as well as
previous and next packet identifiers,

e The packet length in bytes, the overall packet structure and data container
size,

e The packet source and destination addresses, universal space for passing ad-
dresses with the packet between modules, they are stored right after the packet
header and the data container starts after them,

e The addresses length, the actual length of the stored addresses,

e The prefix reserved bytes, the number of reserved bytes before the application
data,

e The data reserved bytes, the number of reserved bytes after the application
data,

41

e The data start offset, the actual data start to be used at the next processing
step,

e The data end offset, the actual data end to be used at the next processing step,
and

e The data container.

The packet header structure is defined in the structures/packet/packet_header.h
header file. Only the packet server and the packet client library should include and
use it. There is only masked packet pointer definition for client modules packet_t.

Packet server

The packet server is the central authority of the packet management system. Only
one module in the networking stack should implement it. Its implementation is in
the structures/packet/packet_server.c source file. The hosting module should
be the first and the last running of the whole stack and has to forward all packet
messages to the packet_server_message() function. The packet messages are defined
in the structures/packet/packet_messages.h header file. New packets are created
with the view of memory sharing. Therefore the requested size is rounded up to the
address page. The task receiving a memory block always allocates whole address
pages anyway. So the packet uses as much space as possible which does not only
decrease overhead but also eases packet reuse.

The packet server keeps released packets in queues according to their total size.
There are seven sorted queues to distribute free packets. The first one contains
packets up to one address page size. The second up to two address pages size and so
on exponentially. Packet is inserted to the lowest queue it fits in. New packet requests
are primary served from this queues. The best fit and last recently used algorithm is
used which tries not to waste resources and to avoid frequent TLB page faults. The
queues are sorted and searched from the first of a sufficient packet size. If no free
packet is found a new one is created. If an old packet is reused it is probable that at
least some of the processing modules have already used it. If they have, they have
got it shared in their address space. Therefore the packet server might not be queried
to share the packet at all. The older the packet is the higher is the probability.

Packet library

Every packet management system client module needs to use the packet library.
This library takes care of packet mapping, requesting from and releasing to the
server transparently. The client module has to provide only the packet server phone.
The library also offers functions to manipulate packets such as:

e Set and get packet addresses, variable memory blocks up to the reserved address
size,

e Copy data into the container,

42

e Prefix and suffix data returning a pointer to the new area allocated,
e Queue and detach a packet to and from a packet queue, and
e Traverse a packet queue.

For the packet mapping a global data structure is used. It is an integer to pointer
map with a safety lock. As packets are numbered in the ascending order starting
from one and are not released until the module terminates, only a simple map is
used. The map is created at the module start and keeps filling up with time. It never
releases a packet mapping until destroyed. Mappings are divided into pages of one
hundred identifiers each. So the actual mapping position may be obtained instantly
(in the O(1) time) using the following macros:

/** Packet map page size.
*/
PACKET_MAP_SIZE 100

/** Returns the packet map page index.

* @param packet_id The packet identifier.
*/

PACKET_MAP_PAGE (packet_id) \
(((packet_id) - 1) / PACKET_MAP_SIZE)

/** Returns the packet index in the corresponding packet map page.
* @param packet_id The packet identifier.

*/

PACKET_MAP_INDEX (packet_id) \

(((packet_id) - 1) % PACKET_MAP_SIZE)

The map pages are allocated only if needed as the total number of packets in the
system is variable and is not distributed to all modules. If the packet map is destroyed
it releases all the mapped packets. The packet server itself is also a packet client
because it needs the packet mapping as well to remember all the existing packets.
The only difference is that the packet server inserts the mapping itself and does not
query anyone.

The last optimization is queuing packets. Modules are able to send the whole
queue as if it were only one packet. If possible a packet queue is the preferred way
as it decreases processing overhead.

Measured strings

Another inter—process communication structure is a measured character string. This
is a universal structure containing a character string pointer and its length. The
structure is the measured string header and the actual string is the measured string
data. The structure is used universally for any type of memory block not just the
character string. Its purpose is to transfer large data blocks between modules.

43

There are support functions to send and receive arrays of such strings trans-
parently. The original motivation was to read configuration from a central module.
There are four variants as HelenOS distinguishes between the initiator (i.e. the client)
and the supplier (i.e. the server) for each data flow direction. The communication
sequence is very simple. The measured string field size has to be transferred in the
parent message and then the fields may be sent/received supplying the size. The
sending function computes and sends the lengths of all strings in the field because
both sides have to agree on a length in order to transfer a data block. The receiving
reads the lengths and allocates sufficient memory blocks for both headers and data.
The strings are then transferred one by one as they may not be in one continues
block in the sender’s memory. The receiving function puts them one after another
into the data block separated by the null ("\0’) character. The receiving module then
gets the headers field and the data block. After processing both may be just freed.
The other direction is the same with different HelenOS functions.

This is a workaround to increase performance as well. Standard messages can
take only up to five arguments and both sides have to agree on data lengths. The
strings are of variable lengths so the lengths have to be transferred first. Another
option is to use the parent message arguments but they may not be enough. So the
additional transfer of lengths is needed. This also exhausts one message argument if
the modules are not already aware of the number of strings. On the other hand this
approach is less efficient for just one measured string as the length could be carried
in a message argument instead of the field size. In this case the lengths transfer is
extra.

Dynamic FIFO queue

This structure is a first—in—first—-out queue with dynamic expansion. It uses a round
integer buffer which may expand if full. Insert function contains a maximum size
parameter to limit the queue size. The queue expands only up to this parameter if
specified. If an expansion occurs the buffer is reallocated preserving the inserted val-
ues so the expansion may involve copying all values to the new buffer. The expansion
can be viewed in the Figure 4.1.

\
\N

Head Tail

Figure 4.1: Dynamic fifo queue expansion

44

Character string map

The character string map provides a mapping between character strings and non—
negative integers. It provides functions for inserting, updating and excluding values.
Values are stored in a tree structure. Each node represents a character and a value
for a string starting at the root node. Each node contains also a field of child nodes
according to the next character. The field is not a significant slow down for only
sparse maps used in the stack. The character string may be extended by its length
in which case the map functions traverse null characters ("\0').

Integer map

This is the first macro data structure. It maps integers to pointers of any type. The
map has to be declared and implemented by a set of two macros

/** Integer to generic type map declaration.

* @param name Name of the map. Input parameter.
* Qparam type Inner object type. Input parameter
*/

INT_MAP_DECLARE(name, type)

/** Integer to generic type map implementation.

* Should follow declaration with the same parameters.
* @param name Name of the map. Input parameter.

* @param type Inner object type. Input parameter

*/

INT_MAP_IMPLEMENT (name, type)

with the same names and types. These macros define functions prefixed by the name
accepting and returning pointers of type. If a value is inserted to the map the map
becomes the exclusive owner of the value. The values are freed when excluded from
the map or when the map is destroyed. The map returns an assigned index to a newly
inserted value for further extending or looping. It uses a flat field of key—value pairs
and therefore the map does not sort values and search time is linear (in the O(n)
time). It should be stated that the map is used only for small sets of values such as
device identifiers.

Generic field

The generic field is similar to the integer map but contains only values without keys.

Generic character string map

This is a compound data structure containing a character string to integer map and
a generic field as represented in the Figure 4.2. Indexes to the generic field are stored
in the character string map. It maps character strings to pointers of any type.

45

Generic character map

Character map

Generic field

Figure 4.2: Generic character map

Module map

The module map serves as a container to store information about networking mod-
ules. It is a generic character map to a module structure containing a task identifier,
a service identification, a module message phone, an optional usage counter, module
name and filename and a module connection function. The purpose of the map is to
unify a service modules’ usage. A module fills the map with possible service modules
it can use at the startup. The module calls a function to retrieve a running service
module later. The map checks if an entry exists, if the module is running! and if the
module is connected 2. If not it starts (spawns) the module and/or connects to it
transparently.

4.1.3 Modules

The networking stack modules” implementation details are described in this section.
The programming documentation is in the doc/ directory generated by Doxygen
using JavaDoc style comments. The general module concept is described first.

Module design

The networking stack was decided to support both modular and monolithic compila-
tion. The networking stack architecture can be set by the compile-time configuration
option called Networking architecture.

Each service module has to implement handling of client connections, processing
of IPC messages and its public interface and specific core functions. While the bundle
module implements handling of client connections, processing of all IPC messages
and public interfaces and specific core functions of all its modules. Therefore the
stack modules are compounds of many parts in order to support both modular and
monolithic build.

The module parts are located in separate source files to avoid any architecture
specific source code variants. Furthermore, the source code is distributed into many
smaller functional units which reduces the code complexity. For a visual representa-
tion of the module parts assembly see the Figure 4.3. The module parts interaction
in UML diagrams the appendix Section B.2.

IThe task identifier would be zero.
2The phone would be zero.

46

R O | nidummy.c | O
O
O

1 1

Iy nil_module.c !
\

/l \ /I

/ \ /
\
// \ //
/ \ module.c /

\

!

!__net_remote.c O
|
' | packet_remote.c Q
1
]
1

\
|
1
I
|
|
|
|

(O ‘ N

-0

\
nildummy.c —O

]
" net_remote.c .

I
[packet_remote.d O

Figure 4.3: Standalone and bundle module assembly

Module parts There is a module skeleton in the module. c source file. This skele-
ton starts a module by the module’s startup function and forwards inter—process
messages. The startup function should initialize the module, register the skeleton’s
client connection function and start the asynchronous manager.

The module stubs are located in (module _name) module.c like source files con-
taining the startup and message procesing functions. In a standalone module they
just call their module specific variants. While in a bundle they initialize all bundled
modules by their initialization functions and distribute IPC messages to appropriate
module specific functions. All services the bundle offers should be also registered.

The public interface is implemented in the module itself and in a remote client
source file. The remote client files are named like (server_module_name) _remote.c.
This implementation forwards the interface function calls to the module as standard

47

[PC messages. In order to use the interface all client modules have to be built in the
bundle with the module or standalone with the remote file.

Interfaces and public constants are located in the include/ directory. Some more
often used interface functions are statically defined in the messages.h header file.

As the networking stack can be built as one big module, the message destination
has to be uniquely specified. All bundled modules share the same connections so the
target service is added as one of the message arguments. According to this argument
the real destination module in the bundle can be identified.

The module core implementation source file (module_name) . ¢ contains the mod-
ule specific startup and message processing functions, the public interface imple-
mentation and the specific core functions. The message processing function maps
the public interface to the internal interface or core functions. This means that there
are in fact two entry points for each inteface function, a message from the message
processing function and a direct interface function call.

Compilation As there are no architecture specific source code variants in separate
functional units, the compilation was designed to build each source file at most once.
Object files .o representing .c source files are created and the target architecture is
achieved while linking built object files together and assembling modules.

If a module is built as a standalone the skeleton and this module stub files have to
be included. If it is a part of a larger module, only the module core implementation
source file is used. The main module’s bundle startup file and the skeleton file are
included.

When the other build architecture is chosen no files have to be rebuild which
increases the compilation performance. Only the object files are assembled in a dif-
ferent way into proper modules.

Built modules are then transferred into the /srv/ directory in the HelenOS boot
image.

Packet /packet queue processing
In this section we describe the general concept of packet passing. Although the packet

and packet queues are interchangeable they can have different meanings.

Network interface The network interface driver can send packet queues. The
packets are transmitted one by one. On the other hand the received packets can be
buffered and sent as a packet queue to the network interface layer module.

Network interface layer Packet queues can be passed to the network interface
modules from both directions. Each packet means exactly one frame. They are pro-
cessed and can be forwarded as packet queues as well.

Internetwork layer The arp module can receive packet queues and processes
the packets one by one.

48

The ip module is designed to process received packets or packet queues sepa-
rately. Due to the possible fragmentation and the attempt to minimize data copying,
a fragmented packet is stored as a packet queue containing the packet fragments.
Therefore if a packet queue is transferred to the upper layer, it is also only “one”
packet. On the other side packet queues from the upper layer have to be fragments
of one large packet as well. This is an optional optimization described in the next
section.

Transport layer Client application data have to be copied to and from their
address space from and into packets. Data copying is an expensive operation, talking
about both time and resources. With this taken into account an optimizing approach
is designed.

If a packet is received its size in the number of packets (fragments) is sent to the
appropriate application. When the application initiates the data read, block of data
is continuously read from the packet fragments.

On the other side the transport layer module can specify maximum data fragment
size. When the client application initiates the data write, data are written in blocks
of this size. The transport layer module writes these blocks right into packets.

The fragment size can be the maximum protocol data length. Such packets can
get fragmented later which would involve data copying. If the module is aware of
the network interface’s MTU and subtracts necessary prefix and suffix lengths, great
savings can be obtained. The application data get copied right into packet fragments
which will be passed through the stack without any more copying.

net

The networking stack configuration is static for each of the stack architectures. The
configuration is in the source code as HelenOS did not have file operations support.
File operations and disk image mapping are young features in HelenOS and are not
used by the stack so far. The general design decision about configuration files in
HelenOS is not made yet.

The module source is located in the uspace/srv/net/net sub directory of the
HelenOS source directory. There are two stack architecture specific source files,
net_standalone.c for the modular and net_bundle.c for the monolithic build.

Network interface driver

Architecture The driver module is designed as a skeleton and a stub implementing
device specific routines. The reason to do it like this is that this universal driver design
allows bundle build with any of the network interface layer modules. Furthermore,
the driver is the main module in the bundle.

The skeleton is located in the netif/netif.c source file and uses the general
module skeleton source file module.c. The driver stub implements an interface de-
fined in the netif/netif module.h header file bacause the network interface skele-
ton forwards messages to these functions. The skeleton provides some common func-

49

tionality like message handling (not processing), keeping device information, safety
locking, module initialization and packet mapping and releasing.

Device states Device states are defined as device_state_t. A device is enabled in
the NETIF_ACTIVE state. Device drivers might be, but should not be, started at
the boot. They should be started by the net module on demand which saves some
resources until needed.

Usage statistics Network interface usage statistics are provided in a form of the
net_device_stats structure.

TRQ An IRQ recognition command sequence can be registered in the kernel. Only
a small set of safe commands ® is used. This sequence is run by the kernel if an
interrupt occurs. It should check its device state and accept the interrupt if caused
by the device. The kernel then calls the user space callback function. An example is
in the DP8390D section later.

lo bundle The networking module attaches the loopback driver to a dummy net-
work interface layer module. The nildummy module just passes all messages to and
from the driver. Therefore it is much more efficient to combine networking inter-
face layer and driver capabilities into one module and save a bit of inter—process
communication and system resources. There is support for a separate module as
well as a bundle module. In a productive system the bundle loopback module is
recommended as it lowers both the overhead and resources.

dp8390 Although the chosen chip DP8390D is well documented writing a driver
from scratch is out of the scope of this work. Furthermore a real hardware is needed
at least at the final stage of the driver development as simulators’ functionality can
slightly differ. Both reasons lead to porting an existing driver from other systems.

There are not many drivers under a suitable licence 4. The Linux network interface
driver design is a bit complicated as it spans over many source files. On the other
hand Minix does not support so many network interfaces and drivers are easily
recognizable. On top of that Minix uses the same licensing as HelenOS does so the
Minix driver was taken and ported into HelenOS. The Minix driver uses four probing
functions to support the four most common clones of the basic NE2000, however,
only the original NE2000 was ported.

There are only a few settings the NE2000 ISA card allows and the Qemu card is
located at the address 02300 and uses IRQ 9.

In order to map an address space of a device into the task’s address space the
pio_enable() system call is used. With this function a device driver is able to directly

3IRQ commands are defined as irq_cmd_type in the kernel/generic/include/ddi/IRQ.h file
in the HelenOS source directory.

1Only a few licences allow (almost) free usage and distribution. HelenOS is under the BSD
licence.

50

control its device registers. The probe function is called next to verify the right
device’s presence.

When the device is started an IRQ handler has to be registered via the system
call ipc_register_irg(). This function registers the IRQ recognition command sequence
and a callback function. The command sequence is run in the kernel whenever an
interrupt occurs. For the DP8390 the following sequence is used:

1. CMD_PIO_RFEAD_§ reading an interrupt status register,
2. CMD_PREDICATE skipping the next command if the read value is zero, and
3. CMD_ACCEPT accepting the interrupt, if not skipped.

When the interrupt is accepted the kernel sends an IPC notification which calls
the callback function. The interrupt recognition command sequences are run in the
kernel mode with interrupts disabled whereas the callback function runs in the user
space mode with interrupts enabled again. When an interrupt occurs there can be
more devices using the same interrupt number and therefore they have to check if it
is really their interrupt being processed.

This shows that only the recognition command sequence is run in the privileged
mode. The kernel checks the proposed command sequence and referred addresses
while registering it. This driver is a true user space driver as none of its code ® runs
in the kernel mode.

The driver module in the netif/dp8390/dp8390_module.c source file is written
to provide a solid base for other network interface drivers. There is the network
interface stub interface and the interrupt handler implemented. The ported network
interface core functions in the netif/dp8390.c source file are accessed via a specific
interface in the netif/dp8390_drv.h header file.

Network interface layer

Interfaces The nil/nil_remote.c source file contains functions called only by
drivers whereas the upper stack has to send IPC messages in all cases. As the upper
stack interface is based on common message functions defined in the messages.h
header file, no additional ..._remote.c file is needed.

Bundle within a network interface driver The network interface layer module
can be built bundled within the network interface driver module. The driver is the
main module and hence should initialize the network interface layer core at the
startup. The driver registers itself, not the network interface layer service, and the
upper stack should connect directly to it. This is due to the lack of the universal
network interface layer functionality as the bundle cannot function with another
driver except the bundled one. So the networking stack has to be configured to use
or not the network interface layer.

5The interrupt recognition command sequence is in fact a kernel script.

o1

The standalone network interface layer modules should be present and available
at all times—despite the chosen networking architecture—as some additional drivers
may not be bundled with their network interface layer modules.

eth checksum Several variants of the CRC32 function are supported as it was not
clear at the beginning which one is the actually used one. It is the CRC32 in the
host endian version with bit inversions at the beginning and at the end.

htonl (™ compute_crc32(~ Ou, start, length_in_bits));

IP client modules

Because the IP protocol header can contain options and an ICMP error notification
has to contain the original IP header, the header is transferred with the packet to
the upper layer. The client module itself decides whether it wants to read or set some
IP options or not. Client modules should also prepare packets to be sent by calling
the ip_client_prepare_packet() function. The IP header should precede only the first
packet fragment of the queue.

The 4p module offers also a so—called IP pseudo header. This basic header contains
only source and destination addresses, the upper protocol and the data length. It is
often used by client modules for security reasons or checksum computation ©.

The IP protocol client modules can use IP support functions defined in the

include/ip-client.h header file:

e ip_client_get_pseudo_header(protocol, source_address, source_length,
destination_address, destination_length, data_length, header, header_length) to
build the IP pseudo header.

e ip_client_header_length(packet) to get the received packet’s IP header length.

e ip_client_prepare_packet(packet, protocol, ttl, tos, dont_fragment, ipopt_length)
to prepare packet to be sent via the IP protocol.

e ip_client_set_pseudo_header_data_length(header, header_length, data_length) to
update the stored IP pseudo header with the data length.

ICMP error processing

If the ip module wants to create an error notification it checks if the icmp module
has registered. The ip module is operational even without the icmp module but no
error notifications are generated in that case. Other modules just connect to the icmp
module.

The packet and the error description are sent to the icmp module, as depicted
in the Figure 4.4. The problematic packet is truncated, put into the ICMP packet
and sent as a normal packet via IP. In addition, the error service is set to the SER-
VICE_ICMP. This is to avoid generating of error notifications for error notifications.

6See UDP in the Section 3.2.5 for details.

52

IP reporting an error of a received packet

=]

| network interface driver | | network interface layer |
]]

|
|
NET_NIL_RECEIVED(packet)
NET_IL_RECEIVED(packet
NET_ICMP_error(packet, code)

NET_NIL_SEND(notification)
I:::I NET_NETIF_SEND(notification T
I
' ' I

Figure 4.4: IP reporting an error of a received packet.

.

NET_IL_SEND(notification, error

On the other side if an error notification is to be received the packet is delivered
to the icmp module first. The notification IP header is dropped and the packet with
the ICMP header and beginning of the original packet—starting with the original IP
header—is returned back to the #p module. The error service is set and the packet is
to be delivered further as a fault packet. The original protocol receives the packet and
is notified that it is reported as faulty stating the SERVICE_ICMP error service. If
the upper protocol understands the error service it can extract the error description.
It can also drop header up to its own—the ICMP and the original IP one’s in our
case—and try to identify where the error occurred. The process is in the Figure 4.5.
The error notification process is universal so other error handling protocols can be

Received ICMP error notification life cycle

[[
| |
| |
— |
NET_IL_RECEIVED(packet) |
|
NET_TL_RECEIVED(packet)

-

NE[l_IP_RECEIVED_ERROR(packet, efror|)

T
I
|
I
I
I
I
|
I
I
I
I
|

! l

|
NET_TL_RECEIVED(packet, error) D

|
|
|
|
|
|
|
|
|
|
|
I B I

Figure 4.5: Received ICMP error notification life cycle.

added later. The TCP/IP stack uses only the ICMP though.
The ICMP protocol client modules can use ICMP support functions defined in
the include/icmp_client.h header file:

e icmp_client_header_length(packet) to get the ICMP header length of the faulty

53

packet.

e icmp_client_process_packet(packet, type, code, pointer, mtu) to extract error de-
scription form the faulty packet.

The ICMP protocol client application interface is defined in the header files
include/icmp_api.h and include/icmp_common. h.

Transport layer

The transport layer contains two modules, udp and tcp implementing their protocols
above the ip module and under the socket library. The udp module is fully functional
and tested for use whereas the tcp module is a prototype yet and is going to be com-
pleted and extended after the HelenOS team revise the networking stack architecture
and specify their detail requirements.

Sockets

The common part of the transport layer modules is to maintain existing half-sockets
and communication with client applications. The client applications implement the
client socket library which handles the networking communication in fact. The socket
functionality is moved into the socket core functions whereas other common features
are left in the transport layer. The socket core functions help maintain existing sock-
ets, bound half-sockets and transfer data between the applications and the transport
layer modules.

The sockets are designed to buffer received packets and accepted sockets while
waiting for the application to retrieve them.

Socket client library The library should be able to be statically or dynamically
compiled with applications. The socket types, domains and address and protocol
families are defined in the include/socket_codes.h header file whereas the possible
return codes are defined in the include/socket_errno.h header file. The library
libsocket is build as part of the networking stack. The built socket library is located
in the socket/libsocket.a file.

4.1.4 Startup module - netstart

The net module is started by its buddy netstart module in the net/start directory.
This small module can run some self tests of support structures and starts the net-
working stack. net initializes itself and waits for a NET_NET_STARTUP message
sent by the netstart. This is so that the module can be started with a delay. This
can be useful if moved to the initial tasks of HelenOS and disabling the network
interfaces’ automatic start.

During the networking startup network interfaces’ configuration is read. The stack
has two pre—configured, a loopback interface and a NE2000, both are described in
the Section 3.2.2.

o4

The configured modules are initialized for both. The driver task is started and
the probe message from the networking module activates device probing. On success
the device should be operational and ready but not yet enabled—it can but does not
send nor receive data. This allows further stack setup as it delays receiving packets
from the device. The network interface layer module is started and requested to
register the network interface second. It registers itself as the packet supplier and
consumer of the device. The inter—network layer module is started and requested to
register the network interface at the nil last. The network interface is then started.
The process is depicted in detail in the UML diagrams Section B.3.

4.1.5 Extending the networking stack

In this section a principle of integration of new modules into the networking stack is
described. One of the goal was to develop an extendable networking stack and here
is a brief manual.

Each new module has to be added as one of the RD_SRVS tasks in the make file
boot/arch/ia32/Makefile.inc in the HelenOS source directory to be included in
the boot image. Furthermore, the module service has to be defined in the header file
uspace/lib/libc/include/ipc/services.h in the HelenOS source directory.

Most of the modules need to be registered by the add_module() function some-
where in the stack as well. This is due to the fact that the networking stack has to
know the module in order to use it. Since then the module can be configured and
used.

Network interface driver

A new network interface driver should implement the interface defined in the header
file netif/netif_module.h.

The driver should be built with the netif/netif.c source file. The standalone
driver is built with the netif/netif_standalone.c and nil/nil_remote.c source
files while the bundle driver is built with the netif/netif_nil_bundle.c source file
and the appropriate nil/(module_name)/(module_name) .c source file. Please, see
the netif/lo/Makefile as a reference of other needed source files.

In the net initialization function net_initialize() a module description has to be
added by a function call similar to

add_module(NULL, & net_globals.modules, NAME, FILENAME, SERVICE, \
0, connect_to_service));
Network interface layer

A new network interface layer module should implement the interfaces defined in
the header files include/nil_interface.h and nil/nil_module.h and process the
messages defined in the nil/nil messages.h header file.

95

The module should be built with a standalone module stub based on the source
filenil/nildummy/nildummy module.c changing the NAMFE definition and the SER-
VICFE constants accordingly. Please, see the nil/nildummy/Makefile as a reference
of other needed source files.

If the module is intended to function underneath the arp module, the proto-
col mapping needs to be defined in the hardware_map() function in the header file
include/protocol map.h. In the net initialization function net_initialize() a module
description has to be added by a function call similar to

add_module(NULL, & net_globals.modules, NAME, FILENAME, SERVICE, \
0, connect_to_service));

Inter—network layer

A new inter—network layer module should implement the interface defined in the
header file include/il_interface.h and process the messages defined in the header
file i1/il1_messages.h.

The module should be built with a standalone module stub based on the source
file 11/ip/ip-module.c changing the NAME definition and the SERVICE constants
accordingly. Please, see the i1/ip/Makefile as a reference of other needed source
files.

If the module is intended to function upon the eth module, the protocol map-
ping needs to be defined in the protocol_funjmap() and lsap_[un/map() functions in
the include/protocol map.h header file. The further networking stack integration
depends on the module type.

General inter—network module In the net architecture specific initialization
function net_initialize_build() a module description has to be added by commands
similar to

task_id = spawn(FILENAME);

if(! task_id) return EINVAL;

ERROR_PROPAGATE(add_module(NULL, & net_globals.modules, NAME, \
FILENAME, SERVICE, task_id, NAME_connect_module));

for the modular networking, and

ERROR_PROPAGATE(REGISTER_ME(SERVICE, & phonehash));
ERROR_PROPAGATE(add_module(NULL, & net_globals.modules, NAME, \
FILENAME, SERVICE, task_get_id(), NAME_connect_module));

ERROR_PROPAGATE(NAME_initialize(client_connection));

for the monolithic build. Furthermore, the messages have to be forwarded in the
monolithic build altering the module_message() function message switch like:

switch(IPC_GET_TARGET(call)){
case SERVICE:

56

return NAME_message(callid, call, answer, answer_count);

Yelse if(IS_NAME_MESSAGE(call)){
return NAME_message(callid, call, answer, answer_count);

and the start_device() function like:

switch(netif->il->service){
case SERVICE:
ERROR_PROPAGATE(NAME_device_req(netif->il->phone, \
netif->id, intermet_service));

ARP module A new ARP module should implement the interface defined in
the header file include/arp_interface.h and process the messages defined in the
il/arp/arp_messages.h header file. Multiple ARP modules are supported only for
the modular networking architecture as the default arp is built and used in the bundle
net module.

In the ip initialization function ip_initialize() a module description has to be
added by a command similar to

ERROR_PROPAGATE(add_module(NULL, & ip_globals.modules, ARP_NAME, \
ARP_FILENAME, SERVICE_ARP, arp_task_get_id(), \
arp_connect_module));

Transport layer

A new transport layer module should implement the interface defined in the header
file include/tl_interface.h and process the messages defined in the header file
t1l/tl messages.h.

The module should be built with a standalone module stub based on the source
file t1/udp/udp_module.c changing the NAME definition and the SERVICE con-
stants accordingly. Please, see the t1/udp/Makefile as a reference of other needed
source files.

The module does not have to be added to the networking initialization, it can
stand aside and can be started manually. If the module is to be integrated into the
networking stack the following steps have to be taken. In the net architecture specific
initialization function net_initialize_build() a module description has to be added by
commands similar to

if(! spawn(FILENAME)) return EINVAL;
for the modular networking, and

ERROR_PROPAGATE(REGISTER_ME(SERVICE, & phonehash));
ERROR_PROPAGATE(NAME_initialize(client_connection));

for the monolithic build. Furthermore, the messages have to be forwarded in the
monolithic build altering the module_message() function message switch like:

o7

switch(IPC_GET_TARGET(call)){
case SERVICE:
return NAME_message(callid, call, answer, answer_count);

Yelse if (IS_NAME_MESSAGE(call)){
return NAME_message(callid, call, answer, answer_count);

If the new protocol is intended to be published in the socket library a socket
protocols mapping needs to be extended. A new static function to connect to the
protocol module has to be implemented:

/** Returns the NAME module phone.

* Connects to the NAME module if necessary.
* Q@returns The NAME module phone.

*/

static int socket_get_NAME_phone(void);

and the mapping extended in the socket() function like:

switch(domain){
case PROTOCOL_FAMILY:
switch(type){
case SOCK_TYPE:
if(! protocol) protocol = IPPROTO_DEFAULT;
switch(protocol){
case IPPROTO_NAME:
phone = socket_get_NAME_phone();
service = SERVICE;
break;

4.1.6 Qemu network

In the common mode QQemu creates a simple network with a gateway and settles the
guest system in. The network is 10.0.2.%, the gateway’s address 10.0.2.2 and the guest
system has 10.0.2.15. Therefore a static configuration is possible and no additional
DHCP nor BOOTP implementations are necessary. On the other hand the guest
system is behind a firewall. QQemu may be configured to forward some ports to the
guest system and allows all outgoing traffic except ICMP and ARP protocols, so you
can ping only the gateway.

4.1.7 N.E.T. user protocols

The protocol script is written in an XML file respecting the DTD file protocol.dtd.
Each script should refer to the DTD file and comply with it. The whole process
starting by a used protocol, connecting sequence, confirmation data, statuses and
disconnecting sequence may be defined. The script has to be in the current directory
while running the application. Script semantics is as follows

58

Identification Basic protocol settings such as displayed name and lower communi-
cation protocol (lower as BuiltinTCP or BuiltinUDP).

Connect A connecting sequence containing send and receive blocks and a target
state. The application follows the sequence by sending and parsing the received
data. If the sequence is successful the target state is achieved. Next connect
sequence is tried instead if present.

Confirm A set of patterns used by the other host to confirm sent data. If any of
the confirm patterns matches the sent data are confirmed.

State A set of uniquely numbered states (number) of the protocol. Each state may
have a command sequence (command). There is an optional target state for
a command the protocol achieves on success. The command may contain vari-
able data marked as %s which the user can replace by any character string.
The normal percent sign has to be written as %%.

All A set of commands like in the state block which may be used in any state.

Disconnect A disconnecting sequence similar to the connecting one. The connection
is closed on success.

This can be of use for extending the networking stack with further protocols and
applications in the future.

4.2 Running and testing

The networking stack is integrated into HelenOS to proof its operability. After start-
ing either the provided boot images from the attached CD or built from source files
in Qemu, the command line appears. The networking stack is started and initialized
by running a command

netstart

The networking stack is then started and configured network interfaces are enabled.
The current configuration is printed out. Since that networking applications can be
run using the command line as well.

4.2.1 Applications

A few networking applications are located in the app/ directory. Common functions
for parsing command line arguments and printing textual networking error messages
are located in that directory as well.

The networking applications should be built with the libsocket library located
in the socket/libsocket.a file. They can use functions and definitions from the
include/socket.h header file which contains socket API and further includes:

e include/byteorder.h containing byte order manipulation,

59

e include/in.h containing IPv4 socket address structure,
e include/in6.h containing IPv6 socket address structure,
e include/inet.h containing socket address structure and parsing functions,

e include/socket_codes.h containing address and protocol families and socket
types and option levels, and

e include/socket_errno.h containing socket and general error codes.

New applications can be added, for example into the app/ directory. A new sub
directory should be created with the source code and a simple Makefile

NAME = NAME_OF_THE_APPLICATION

NET_BASE = ../../
STRUCTURES = $(NET_BASE)structures/

include ../../../../../Makefile.config

Sources
#

OUTPUT = $(NAME)
SOURCES = \
$(NAME) .c \

LIBS += ../../socket/libsocket.a

include $(NET_BASE)Makefile.module

The source code should include the ../../include/socket.h header file. The next
step is to tell networking stack to compile the module and HelenOS to include it into
the boot image. An entry has to be added to the net Makefile

DIRS = \
app/DIRECTORY/NAME_OF _THE_APPLICATION \

in the boot/arch/ia32/Makefile. inc file in the HelenOS source directory, it has
to be added as one of the RD_SRVS tasks

RD_SRVS = \
$ (USPACEDIR) /srv/net/app/DIRECTORY/NAME_OF _THE_APPLICATION \

The application can be run by the command then

NAME_OF_THE_APPLICATION

60

4.2.2 Software prerequisites

The networking and TCP/IP stack is implemented for the ia32 7 architecture on top
of HelenOS 0.4.1 (Escalopino) 8, the most current stable release of HelenOS. So far
the only one operational network interface supported is in Qemu 0.10.2 and newer °.
To run Qemu a script contrib/conf/qemu. sh for Linux or contrib/conf/qemu.bat
for Windows in the HelenOS source directory can be used. The gemu and its libraries
have to be installed and in the path. These scripts set all the necessary parameters
with some ports redirected from the local host to the guest system. For testing
purposes at least a low level communication application is recommended, N.E.T.,
netcat ete.

In order to build HelenOS and the networking stack from sources a few tools are

required:
e binutils in version 2.19.1 10,
e gcc—core in version 4.3.3 11,
e gcc—objc in version 4.3.3, and
® gcc—g++ in version 4.3.3.

All these can be downloaded and installed as cross—compilers on Linux using a script
contrib/toolchain.sh in the HelenOS source directory.

In addition rats 2, a static source code analyzer, and Doxygen 2, a documentation
generator, were used. All development was tracked in the HelenOS subversion *
repository.

TIA32 is the most common (supported) architecture.

8HelenOS website: <http://www.helenos.org/>

9 Qemu website: <http://www.qemu.org/>
0pinutils website: <http://www.gnu.org/software/binutils/>
1 GCC website: <http://gcc.gnu.org/>
12 RATS website: <http://www.fortify.com/security-resources/rats.jsp>
13 Doxygen website: <http://www.stack.nl/~dimitri/doxygen/index.html>
14 Subversion website: <http://subversion.tigris.org/>

61

http://www.helenos.org/
http://www.qemu.org/
http://www.gnu.org/software/binutils/
http://gcc.gnu.org/
http://www.fortify.com/security-resources/rats.jsp
http://www.stack.nl/~dimitri/doxygen/index.html
http://subversion.tigris.org/

Chapter 5

Evaluation

In this section we compare the performance of the modular and the monolithic
architectures which was one of the goals of this work.

In order to test all levels of the stack the topmost approach was chosen. It means
a testing application using sockets to communicate with another one. The commu-
nication drifted down to a network interface and back up to the other application.
The other application was the echo server just repeating back the received data. This
simulates a real load on the networking stack and the localhost connection ensures
testing of the whole communication process.

The default compile—time configuration for the ia32 architecture was kept except
that the Debug build was switched off. The networking stack was compiled as both
modular and monolithic (Modular and Monolithic boot images).

Four versions of HelenOS were compiled for the testing purposes in fact. In ad-
dition to the configuration mentioned above, another two variants were compiled
with one IP interface call cached (Modular-1 and Monolithic-1). The call was the
ip_packet_size_req() function called by the sendto() function in the UDP module. This
function call queries the IP module about the packet dimensions for the target des-
tination. The UDP protocol is stateless and furthermore packets sent by one socket
can have different destinations and can be routed via different network interfaces.
Therefore the right packet dimensions should be agreed for each outgoing packet.
This is the reason why this caching is sustainable only for demonstration purposes
of the following tests.

HelenOS was always run anew in (Qemu to avoid an interference with another
system and to provide uniform conditions for each test. Therefore, the absolute
results have to be taken with reserve as there is a significant slowdown when using
an emulator.

The raw outcomes of the measurements are in the appendices Section A whereas
average and aggregated values are discussed in this section.

62

5.1 Nettest2 — data transfer performance

The fist test measures the data transfer performance. The goal is to identify main
factors influencing the data transfer performance.
A testing application nettest2 was created performing the following functions

CR sockets_create() to create sockets

SR sockets_sendto_recufrom() to send and receive datagrams of all sockets, each
datagram is sent and a reply is received consequently so the next datagram is
sent after the reply arrival

ST sockets_sendto() to send datagrams of all sockets, all datagrams are sent without
receiving any replies

RF sockets_recufrom() to receive reply datagrams of all sockets for all sent datagrams
SC sockets_close() to close sockets

There are command line arguments to specify the number of sockets (n), the number
of datagrams (m) per socket and the datagram length (s). The application involves
in total:

e one message to connect to the transport layer module,
e n IPC messages to create sockets,
e n IPC messages to close sockets, and

e 2 x n x m datagram transfers as depicted in the appendix Section B.4, each
including

— 26 IPC messages for Modular, 24 for Modular-1 and 12for both Mono-
lithic,
— 4 times s—byte transfers of data,

— 8 times 16 byte transfers of destination addresses for both Modular, 4 times
for both Monolithic,

— 2 times 12 byte transfers of IP pseudo headers for both Modular.

The total times taken of data transfers SR and ST+RF were measured.

The first test variant was set to use 1 socket and 100 datagrams each of 1024 bytes.
The total amount of 100 kB of data was transferred both ways. The application was
run twice by the command

nettest2 -p 7 -t SOCK_DGRAM -n 1 -m 100 -s 1024 127.0.0.1

63

Nettest2 1 socket * 100 packets * 1024 bytes to localhost

1800

1600
1400
1200
1000
800
600
400
200
0

Modular Modular — 1 message Monolithic Monolithic — 1 message

time in miliseconds

M 1strun— SR M 1strun — ST+RF [0 2nd run — SR M 2nd run — ST+RF

Figure 5.1: Nettest2

During the first run a sufficient number of packets was allocated and shared between
all concerned stack modules. The second run used the allocated packets and the
initial packet allocation and share overhead was avoided. There was no graphical
output except the total time taken to measure the real processing time only.

The average values are depicted in the Figure 5.1 where we can see a few inter-
esting phenomenons:

1. 1% runs of SR and ST+RF in the modular architecture differ a lot, by almost
30%. It is due to the fact that SR sends a datagram and waits for a reply. The
datagram is received by the echo server and the reply is sent. There is only one
packet allocated and used in the networking stack in this case. On the other
hand ST+RF sends all datagrams before receiving any replies. Therefore the
replies get buffered in the stack and the total number of 100 packets have to be
created and shared between all 4 concerned modules (udp, ip, nildummy, lo).
The difference is much smaller in the monolithic architecture as the packets
are shared only with the network interface (lo). This overhead can be lowered
either by decreasing the number of modules or optimization of the memory

64

sharing mechanism of HelenOS. The overhead is a singularity only when the
networking stack allocates new packets and therefore the focus is on the packet
reusability instead.

. 2™ runs of SR take a bit more than 1°¢ runs. This is probably caused by more

often TLB page faults. There were allocated and shared many packets during
ST+RF 1% run. These packets are mapped as memory pages in the networking
stack modules” memory. Therefore a frequent reuse of packets can case TLB
page faults more often. The 1% run has to be taken with reserve as it is a special
case when there is only one packet in the networking stack. Further runs of the
SR stabilize at a value close to the 2" run.

. 2" runs of ST+RF take much less than 1% runs. It is caused by the packet
reusability. All the needed packets were already allocated and shared during
the 1% run. The initial packet allocation and share overhead was avoided.

. 2" runs of ST+RF take less time than SR. It is due to the fact that ST+RF
does not have to wait for the reply and sends all datagrams whereas SR does
wait.

. Modular-1 takes a little less time than Modular, by 4.4%. This is caused by
the cached IP interface call. The Modular involves the total of 2600 messages
whereas the Modular-1 only 2400, which is 7.7% less.

. The difference between Modular and Monolithic is significant. Monolithic took
only 46.1% of time of the Modular. This is the major observation made in this
test. The previous case gives us a clue that the number of IPC messages plays
major role when talking about the performance. The Monolithic(-1) involves
1200 messages, only 46.2% of the Modular. Furthermore there is no copying
of the IP pseudo header. There can be also a slowdown caused by the local
networking stack used for both the client and the server. Locking mechanisms
of global structures are used and received packets from the lower layer and sent
packets from the upper can get serialized.

. There is almost no difference between Monolithic and Monolithic-1. The cached
IP interface call is not significant in this case as it is only a normal function
call in the monolithic networking stack.

The second test variant of the test was set to use 1socket and 100 datagrams each
of only 33 bytes. Everything else remained unchanged. The influence of data transfer
sizes was measured by this test.

The average values are compared to the previous results in the Figure 5.2 where
we can see that the performance is almost the same as in the previous case. Therefore
we can state that the data size does not influence the performance. However, thansfer
of blocks of a size close to the MTU is more efficient.

The third test variant was set to use 10 socket and 10 datagrams each of 1024 bytes.
Everything else remained unchanged. The influence of number of sockets was mea-
sured by this test.

65

Nettest2 1024 bytes versus 33 bytes

6000

5000
4000
3000
2000
1000

0

Modular Modular — 1 message Monolithic Monolithic — 1 message

time in miliseconds

W 1024 bytes M 33 bytes

Figure 5.2: Nettest2, byte transfers

The average values are compared to the first set of results in the Figure 5.3 where
we can see that the performance is slightly lower than in the first case. The number
of active sockets influence the performance a bit but not significantly.

66

Nettest2 1 socket versus 10 sockets

7000

6000

5000
4000
3000
2000
1000

0

Modular Modular — 1 message Monolithic Monolithic — 1 message

time in miliseconds

B 1 socket M 10 sockets

Figure 5.3: Nettest2, sockets

5.2 Nettestl — the overall performance

This test measures the overall stack performance. The focus is on the socket and
data transfer performance while increasing the number of sockets and packets in the
networking stack.

The testing application nettest! creates, binds and closes sockets while send-
ing and receiving testing data. It was originally designed as an integration test. It
contains various schemes with one and many sockets transferring one and many data-
grams. The schemes are combinations of the functions from the previous Section 5.1.
The application runs the following sequences:

1. CR-CL, CR-SR-CL, CR-ST-RF-CL with one socket and one datagram
2. CR-SR-CL, CR-ST-RF-CL with one socket and m datagrams
3. CR-CL, CR-SR-CL, CR-ST-RF-CL with n sockets and one datagram

67

4. CR-SR-CL, CR-ST-RF-CL with n sockets and m datagrams

This progress increases the load of the networking stack and ensures its operability.
There are command line arguments to specify the maximum number of sockets (n)
and datagrams (m) and the datagram length (s). The application involves in total:

e one message to connect to the transport layer module,
e 5 (n+ 1) IPC messages to create sockets,
e 5% (n+ 1) IPC messages to close sockets, and

o 2x(n+m+1)+nxm datagram transfers as depicted in the appendix Section B.4,
each including

— 26 IPC messages for Modular, 24 for Modular-1 and 12 for both Mono-
lithic,
— 4 times s—byte transfers of data,

— 8 times 16 byte transfers of destination addresses for both Modular, 4 times
for both Monolithic,

— 2 times 12 byte transfers of IP pseudo headers for both Modular.

The total time taken was measured.

The first test variant was set to use 10 sockets and 10 datagrams each of 1024 bytes.
Therefore there will be a peak of 10sockets and 100 buffered packets in the stack.
The total amount of 142kB of data is transferred both ways. The application was
run twice by the command

nettestl -p 7 -t SOCK_DGRAM -n 10 -m 10 -s 1024 127.0.0.1

During the first run a sufficient number of packets is allocated and shared between all
concerned stack modules. The second run uses the allocated packets and the initial
packet allocation and share overhead is avoided. There was no graphical output
except the total time taken to measure the real processing time only.

The average values are depicted in the Figure 5.4 where we can see that the
difference between Modular and Monolithic is significant. The Monolithic took only
50% of the Modular. There can be many reasons as already mentioned. If we have
a look at the Modular-1 it did a bit better. The Modular involved 3803 IPC messages
whereas the Modular-1 involved only 3519 messages, which is 92.5%. The total time
fell by 5.3% in this case. This complies with the nettest2 results as the data trans-
fer performance is major part of this test as well. Other parts of the test such as
socket creating and closing involve only one IPC message each in both modular and
monolithic variants. Therefore the result is the same as it was in the Section 5.1.

68

Nettest1 10 sockets * 10 packets * 1024 bytes to localhost

Modular Modular — 1 message Monolithic Monolithic — 1 message

4500

4000

3500

3000

2500

2000

time in miliseconds

1500

1000

500

0

B 1strun E2nd run

Figure 5.4: Nettestl

5.3 Ping — ICMP echo performance

The last test aimed at the responses of the localhost and a remote host. The localhost
is reached via the loopback network interface whereas the 10.0.2.2 Qemu gateway
via the emulated NE2000. With an assumption that Qemu does process the ICMP
echo in almost the same time as the local networking stack, the difference between
basic forwarding of a packet and transmitting a packet can be observed.

The testing application ping sends an echo request and waits for a reply. The
time taken between the sent request and the received reply is printed out. The test
was set to send 20 requests. The application was run by the commands

ping -c 20 127.0.0.1
and
ping -c 20 10.0.2.2

respectively.

69

The first requests were discarded because they were influenced by a packet allo-
cation and sharing. Furthermore, in the case of Qemu the reply did not arrive at all
as the ARP mapping did not yet exist and an ARP request was sent instead. The
cached IP interface call does not play any role in this test so the results were put
together for the Modular and Monolithic variants. The average values are depicted
in the Figure 5.5.

Ping

(=2}

time in miliseconds

N w

i

Modular Monolithic

M 10022 W12700.1

Figure 5.5: Ping

The results show that the emulated NE2000 did a bit worse which was expected.
Furthermore, the difference in the performance of the architectures persists.

5.4 Conclusion

According to the test results we can point out some observations. The most obvious
is the overall difference between the modular and monolithic architecture. Despite

70

the results the modular architecture could be further optimized and its advantages
could overbalance the performance loss.

There is a significant overhead when new packets are created and shared between
networking stack modules. This overhead could be lowered only by optimizing the
HelenOS memory sharing.

On the other hand the slowdown caused by IPC messages in general is more
important. It influences the overall and long-run performance of the networking
stack. In order to keep the modular design the total number of modules cannot be
lowered. Optimization and caching of IPC messages should be performed instead.
There could be introduced faster IPC calls for frequently used messages using less
arguments or some sorts of piggybacking. Arguments while passing packets could
be also transferred in the packets themselves as are the addresses now. The locking
concept in the networking stack modules can be also revised if there could be more
shared accesses and less exclusive ones.

Interesting is the fact that the packet size does not influence the performance.
Although the same data would get transferred in more packets the data copying into
packets itself does not slow down the datagram transfers.

71

Chapter 6

Other architectures

In this section we describe other operating systems’ networking stacks. We write
about the general concept of the stacks, the authors’ motivation and goals and some
of the main benefits and features. The list is focused on the main interesting distri-
butions.

6.1 BSD

Berkeley Software Distribution was the first operating system implementing the
TCP/IP Suite. Their first implementation appeared in 1983 in the 4.2 BSD after
a close cooperation with ARPA. The focus was on the protocol suite itself. The
4.4 BSD networking stack is often considered as the reference implementation [11].
It allowed the TCP/IP Suite to spread wide. The BSD networking stack introduced
socket API which became a de facto standard as well.

The BSD stack attempts to be the fastest networking stack. It was the first stack
breaking 1Mpps, routing of one million packets per second [14].

The networking stack is implemented in the kernel as one subsystem. Therefore
interface calls are just normal function calls which increases performance as in the
case of our monolithic configuration.

The stack uses mbuf structure to hold packets. The mbufis a fixed size block and
larger packets are chains of such blocks. The fixed size is a requirement of a SLAB
allocator. Although the buffers are not reused as our packets, the SLAB allocator
does a very similar thing. It reserves the buffers in the memory and allocates them
as needed. The allocation overhead is there for each new packet, however, it is much
lower than our memory sharing. On the other hand our packet reuse takes just one
IPC message and uses no dynamic allocation.

The security of the BSD networking stack tends to be also very high [3]. The
authors of the stack discovered many vulnerabilities of protocols before they were
abused. They try to use pseudo-random number generators where possible which led
to resistance against some blind insertion attacks targeted on sequence numbering.
The counters, session identifiers and timestamps are some of the examples.

Furthermore, the stack does not implement all features of RFCs as some were

72

considered vulnerable or needless. The stack ignores IP options, and some suspicious
ICMP errors for example [15].

BSD uses its own network interface drivers and NDISwrapper, which is a quite
controversial project. NDIS compatible drivers are included and used by the BSD
stack. These drivers are mostly third party drivers developed for Microsoft Windows
NDIS API. Therefore the wrapper introduces third party and often closed code right
into the kernel mode. This approach emerged from the fact that there are many
network interfaces and the manufacturers often support only the NDIS API.

There is one specialty with socket identifiers. Sockets identifiers in BSD refer
to files so the socket API and even the file API can be used to send and receive
data. The sockets are propagated to applications as regular files whereas the system
treats them in a different way. This allows passing sockets to some reading or writing
functions as file descriptors. On the other hand it needs deeper system integration
of the socket API. Our networking stack stands still apart from other subsystems of
HelenOS.

6.2 Linux

The Linux networking stack [2] is very similar to the BSD networking stack, the
whole stack is in the kernel, uses BSD socket API, sockets as special files, a packet
buffer called sk_buff, its own drivers and NDISwrapper. However, it is not a clone of
the BSD networking stack, it has just the same philosophy.

The stack is in fact a compound of many kernel modules. Nevertheless, these
modules are compiled or loaded into the kernel and run in the kernel mode. The
modules register their interface functions as pointers and use global data structures
which reside in the kernel memory. This is for performance reasons again.

The programming security reasons stay a bit aside even though the Linux is an
open source project and has thousands of developers. It is, therefore, hard to revise
all the source code running in the kernel mode.

Linux kernel contains a netfilter which filters the network traffic according to
configured rules. It uses hooks in the networking stack to be informed about packets
at certain times of the processing. This hooks are implemented as function pointers
as well to preserve the performance.

The Linux kernel itself is influenced by the networking stack. One example is
received frames retrieval. There are four possibilities drivers can use. Nevertheless,
the drivers are not forced to use the most efficient. An interrupt handler can be used
to transfer the frames into the driver’s receive queue while blocking any other process
on the CPU as the interrupts are disabled. Another option is to use bottom half and
top half interrupt handlers where only the necessary part of the interrupt handling
is treated by the top half. The bottom half is deferred and runs as a normal process
then. The bottom halves were internally changed to the third option, softirgs. The
softirq runs as a normal thread with interrupts enabled, however, the kernel does not
allow another softirq to run on the CPU before the previous finishes. This decreased
the overhead as the kernel was altered a bit. The last option is polling where the

73

driver asks frequently the network interface to provide received frames. This is very
useful when the load is too high that there are so many interrupts that the driver
can barely get to the CPU to retrieve some of the received frames and the newly
received ones are discarded.

In comparison to HelenOS, only the IRQ recognition command sequence is run
in the kernel interrupt handler with interrupts disabled. The driver is notified by an
IPC message and the callback function does the processing. Although it is similar to
the bottom half, the standard IPC mechanism is used.

6.3 Windows

Microsoft Windows are the most used operating systems. The networking stack was
integrated in early 1990s and used the NetBIOS interface. A newer interface Winsock
was added in 1993, and its newer version 2.2 comes from 1996. The Winsock interface
is quite similar to the BSD socket interface and it supports both synchronous and
asynchronous socket function calls.

The first version of the stack used some parts of the BSD implementation. How-
ever, the stack was completely rewritten for Windows 2000 [13]. The Windows 2000
was an “Internet-ready” release of Windows. It provided support for multiple net-
work interfaces, IP routing, default gateways, VPNs, firewall hooks and other tech-
nologies. The stack was in the kernel and accessible by system calls as well. At the
bottom of the stack there was a packet scheduler, a central module for queueing and
scheduling packets on top of NDIS drivers. This gave another layer of abstraction
and shifted some common functionality from drivers to the stack. A piquancy was
the emulation of wireless network interfaces as normal wired once.

Nevertheless, there is already a newer version of the stack since Windows Vista [5].
It is called the “Next Generation TCP/IP Stack”. The stack is still an integral part
of the operating system and implements much more RFCs than the previous stack.
The stack is internally more modular and dynamic. Its configuration can be changed
even when running.

This release removed the packet scheduler and the wired emulation of wireless
network interfaces. The overall support for wireless network interfaces is much better.
This release implements native IPv6 and changes the network layer into a dual IP
layer with both IPv4 and IPv6 available. There are also security improvements in
easier IPsec configuration and a new Windows Filtering Platform which allows other
applications to use the filtering engine integrated into the networking stack.

6.4 Minix

Minix is probably the most famous microkernel because of its author Andrew Tanen-
baum [27]. The system is under development since 1980s.

Although Minix is a microkernel operating system, the networking stack is in
one large module using BSD sockets API. Currently, there is a plan to break its

74

networking module into separate server modules . Their results could be interesting
in comparison to this work.

Minix does not support many network interfaces, however, the drivers are simple
and functional. One of them is ported in our stack. The drivers support vectored
I/O which allows packets to be chains of memory blocks. These block are not shared
but copied from the networking stack to the drivers’ address spaces by system calls.
There is not a single packet buffer structure.

Other microkernel operating systems tend to use the monolithic networking mod-
ule as well (EROS, Mach, JariOS, QNX Neutrino RTOS ...).

LA project to split the Minix networking stack into number of drivers and servers (IP, UDP,
TCP...) was put up in October 2009.

75

Chapter 7

Conclusion

A functional networking stack is a complex subsystem as it spans over many levels of
abstraction. Nevertheless, there is just a simple interface on top of it. A lot of work
is to be done under the hood to make the stack operational.

In this work we analyzed a networking stack in general. Modular and mono-
lithic architectures were introduced and compared. The modular architecture can
be viewed as a service oriented architecture whereas the monolithic as a standalone
subsystem. The advantages and disadvantages of both architectures were discussed.

The main focus of the work was set to a modular networking stack for a microker-
nel operating system. Having the modern concept in mind the author of this thesis
evaluated and put together the age—proved protocols to create a new implementation.

The stack was also designed to support both modular and monolithic build which
allowed us to compare the modular stack to its monolithic equivalent. Some strengths
and weaknesses of the modular architecture were pointed out. One of the most men-
tioned advantages of the monolithic architecture is the performance which was also
backed up by test results. The main performance factors were analyzed and some
optimizations were proposed which could reduce the inequality of performance.

The idea of a strictly modular networking stack appeared independently in the
Minix community a short time ago which supports our first intention as there is
interest in this topic. It might be a valuable comparison to this work if finished.

The presented master thesis fulfils its goals laid out in the introduction. The
networking stack design was evaluated and revised.A functional implementation in
HelenOS was successfully achieved which made the main contribution of the work
possible, the comparison of the modular and monolithic architectures. Although the
results are not too supportive, we tried to give reasons to overbalance the performance
of the monolithic architecture in favour of the modular design. Furthermore, the
implemented networking stack is going to become an integral part of HelenOS.

Future work

The implemented networking stack was just a starting point for a long—term run.
The networking stack features and capabilities should be improved and extended in

76

successive projects. One field are the optimizations of IPC messages. The network-
ing stack implementation for a productive system should reduce the overhead and
increase its effectiveness.

Some often used features of the stack should be the goals of the first development.
The the TCP protocol is not finished yet and some enhancement and optimization
RFCs could be also added. An IP fragments reassembly could be based on a TCP
packet buffering and timeout fibrils whereas the dynamic IP configuration involves
new service modules running aside. The DHCP protocol uses UDP sockets for ex-
ample.

A support for network interfaces is very limited now. Therefore a development of
new drivers is highly recommended as it will help the networking stack to spread. The
designed driver architecture is, hopefully, flexible enough to allow easy development
and usage of additional drivers.

Another field for extensive work is the overall security. It might be useful and
desirable to implement packet filtering and some sort of restrictions for ports and
module extensions.

And last but not least, porting of many networking applications might follow.

77

Chapter 8

Terms and abbreviations

Here is a list of main networking terms and abbreviations. The abbreviations are
divided into organization names, protocols and others.

Terms
Host A single communicating or a network connected computer.

Network interface A piece of hardware providing networking communication, in-
formally a network card.

Networking stack An actual implementation of cooperative networking protocols
in order to enable inter-computer communication.

Octet One byte in the networking terminology.
Packet A block of formatted data carried in a network.
Socket A virtual network connection between two hosts.

Sockets An API in the context of a networking stack, usually a BSD sockets inter-
face is meant.

Organizations

ARPA Advanced Research Projects Agency, the American institution ARPA is
called DARPA (D as Defense) now.

TANA Internet Assigned Numbers Authority, the central authority overseeing IP
addresses, protocol numbers and parameters allocation as well as root zone for
the DNS.

IEEE Institute of Electrical and Electronics Engineers, a worldwide professional
organization focusing on electrical, electronics and information technology.

IETF Internet Engineering Task Force, an open standards organization with focus
on developing and promoting Internet standards.

78

Protocols

ARP Address Resolution Protocol, a protocol used for mapping logical network
addresses to underlying network addresses.

BOOTP Bootstrap Protocol, a protocol for an automatic configuration of a host in
a computer network. The host uses this protocol only at its networking startup.

DHCP Dynamic Host Configuration Protocol, a protocol for an automatic dynamic
configuration of a host in a computer network.

ICMP Internet Control Message Protocol, an error notification and support pro-
tocol used in the TCP/IP Suite, serves to notify the other party about errors
and transfer network information.

IP Internet Protocol, a key inter—networking protocol in the TCP/IP Suite, it sim-
ulates a connectionless, unreliable and best—effort packet delivery network.

TCP Transmission Control Protocol, a connection oriented and reliable transport
protocol upon IP.

UDP User Datagram Protocol, a connectionless, unreliable and best—effort trans-
port protocol upon IP.

Other abbreviations
ARPANET ARPA Network, the original name of the first computer network.

BSD Berkeley Software Distribution, a Unix operating system developed at the
University of Colorado. The first operating system implementing the TCP /TP
Suite.

CRC Cyclic Redundancy Check, a hash function computing a checksum.

DNS Domain Name System, a mechanism of translation textual addresses to IP
addresses.

IPsec Internet protocol security, a universal protocol suite for securing IP protocol
packets. It provides authentication, encryption and cryptographic keys negoti-
ation.

ISO/OSI International Organization for Standardization / Open System Intercon-
nection, a key networking reference model with seven layers of decomposition—
Application, Presentation, Session, Transport, Network, Data Link and Physi-
cal—but without concrete protocol specification.

MAC address Media Access Control address, a physical address of a network in-
terface. This address is used to identify the source and the destination network
interfaces of frames in the data link networking stack layer.

79

MTU Maximum Transmission Unit, the maximum size of data which can be trans-
ferred at once. The MTU can be limited by a present as well as by a remote
network interface.

NDIS Network Driver Interface Specification, an API of network interfaces devel-
oped by Microsoft and 3Com Corporation.

NetBIOS Network Basic Input/Output System, an original networking API used
in early Microsoft Windows.

RFC Request for comments, an IETF memorandum on Internet systems and stan-
dards

TCP/IP The TCP/IP Suite is a networking architecture with four layers—Appli-
cation, Transport, Inter-network and Network Interface—and concrete proto-
col specifications.

80

Bibliography

1]

Appendix A, The Tanenbaum-Torvalds Debate in Open Sources: Voices from the
Open Source Revolution [on—line]. O'Reilly Media, January 1999, First edition.
[cited November 20 2009]. ISBN 10: 1-56592-582-3. Available on the World Wide

Web
<http://www.oreilly.com/catalog/opensources/book/appa.html>

BENVENUTI, C Understanding Linuz Network Internals. O’Reilly Media, De-
cember 29 2005. ISBN 13: 978-0-596-00255-8.

BIANCUZZI, F. Security Focus. [on-line community]. Document version of
2005-12-10. [cited December 5 2009]. OpenBSD’s network stack. Available on
the World Wide Web

<http://www.securityfocus.com/columnists/361/1>.

BRADEN, R.T.; BORMAN, D.A.; PATRIDGE, C. RFC1071: Computing the
Internet checksum [on-line|. September 1 1988. [cited November 20 2009] Avail-
able on-line

<ftp://ftp.isi.edu/in-notes/rfcl071.txt>.

DAVIES, J TCP/IP Fundamentals for Microsoft Windows. [on-line]. Microsoft
Corporation, Document version of 2008-02-06. [cited December 7 2009]. Avail-
able on the World Wide Web
<http://www.microsoft.com/downloads/details.aspx
7displaylang=en&FamilyID=c76296£d-61c9-4079-a0bb-582bca4a846f>.

DECK?, M. Component—based General-purpose Operating System. In WDS’07
Proceedings of Contributed Papers, Part I. Matfyzpress, 2007, 58—63. [cited
November 14 2009]. ISBN 13: 978-80-7378-023-4. Available on the World Wide
Web:

<http://www.mff.cuni.cz/veda/konference/wds/contents/pdf07/
WDS07_110_i2_Decky.pdf>.

DP8390D/NS32490D NIC Network Interface Controller. National Semiconduc-
tor Corporation, July 1995. [cited November 17 2009]. Available on the World
Wide Web:

<http://www.national.com/ds.cgi/DP/DP8390D.pdf>.

81

http://www.oreilly.com/catalog/opensources/book/appa.html
http://www.securityfocus.com/columnists/361/1
ftp://ftp.isi.edu/in-notes/rfc1071.txt
http://www.microsoft.com/downloads/details.aspx?displaylang=en&FamilyID=c76296fd-61c9-4079-a0bb-582bca4a846f
http://www.microsoft.com/downloads/details.aspx?displaylang=en&FamilyID=c76296fd-61c9-4079-a0bb-582bca4a846f
http://www.mff.cuni.cz/veda/konference/wds/contents/pdf07/WDS07_110_i2_Decky.pdf
http://www.mff.cuni.cz/veda/konference/wds/contents/pdf07/WDS07_110_i2_Decky.pdf
http://www.national.com/ds.cgi/DP/DP8390D.pdf

8]

[10]

[11]

[12]

[13]

[16]

HelenOS 0.2.0 design documentation [on-line]. June 18 2006. [cited November 14
2009]. Available on the World Wide Web:
<http://www.helenos.org/doc/design.pdf>.

LIEDTKE, J. On Microkernel Construction. In Proceedings of the 15th ACM
Symposium on Operating System Principles (SOSP-15). Copper Mountain Re-
sort, Colorado, December 1995. [cited November 25 2009]. Available on the
World Wide Web
<http://i30www.ira.uka.de/research/documents/14ka/1995/
ukernel-construction.pdf>

MALLORY, T.; KULLBERG, A. RFC1141: Incremental updating of the In-
ternet checksum [on-line]. January 1 1990. [cited November 20 2009] Available
on-line

<ftp://ftp.isi.edu/in-notes/rfcl141.txt>.

MCKUSICK, M.K. et al. The Design and Implementation of the 4.4BSD Op-
erating System. Addison Wesley Professional, May 10 1996, Second edition.
ISBN 10: 0-201-54979-9.

METCALFE, R.M.; BOGGS, D.R Ethernet: distributed packet switching for
local computer networks. In Communications of the ACM. ACM, July 1976,
vol. 19, no. 7, 395-404. ISSN: 0001-0782.

Microsoft Corporation. Microsoft TechNet. [on-line knowledge database]. Mi-
crosoft Windows 2000 TCP/IP Implementation Details. [cited December 7
2009]. Available on the World Wide Web
<http://technet.microsoft.com/en-us/library/bb726981.aspx>.

OPPERMANN, A. FreeBSD5 Network Enhancements. [on-line] SUCON 04,
September 3 2004. [cited December 4 2009]. Available on the World Wide Web
<http://people.freebsd.org/~andre/FreeBSD-5.3-Networking.pdf>.

OPPERMANN, A. New Networking Features in FreeBSD 6. [on-line] EuroBS-
DCon 05. [cited December 5 2009]. Available on the World Wide Web
<http://people.freebsd.org/~andre/
New’,20Networking’%20Features’20in’%20FreeBSD%206 . pdf>.

PARZIALE, L. et al. TCP/IP Tutorial and Technical Overview [on-line]. Inter-
national Business Machines Corporation Redbooks, December 19 2006, Eight
edition. [cited December 27 2008]. ISBN 10: 0738494682. Available on the World
Wide Web
<http://www.redbooks.ibm.com/redbooks/pdfs/gg243376.pdf>.

POSTEL, J. RFC 768: User Datagram Protocol [on-line]. August 28 1980. [cited
November 20 2009] Available on-line
<ftp://ftp.isi.edu/in-notes/rfc768.txt>.

82

http://www.helenos.org/doc/design.pdf
http://i30www.ira.uka.de/research/documents/l4ka/1995/ukernel-construction.pdf
http://i30www.ira.uka.de/research/documents/l4ka/1995/ukernel-construction.pdf
ftp://ftp.isi.edu/in-notes/rfc1141.txt
http://technet.microsoft.com/en-us/library/bb726981.aspx
http://people.freebsd.org/~andre/FreeBSD-5.3-Networking.pdf
http://people.freebsd.org/~andre/New%20Networking%20Features%20in%20FreeBSD%206.pdf
http://people.freebsd.org/~andre/New%20Networking%20Features%20in%20FreeBSD%206.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/gg243376.pdf
ftp://ftp.isi.edu/in-notes/rfc768.txt

[18]

[19]

[20]

[21]

22]

23]

[24]

[25]

POSTEL, J. RFC791: Internet Protocol [on-line|. September 1 1981. [cited
November 20 2009] Available on-line
<ftp://ftp.isi.edu/in-notes/rfc791.txt>.

POSTEL, J. RFC 792: Internet Control Message Protocol [on-line]. September 1
1981. [cited November 20 2009] Available on-line
<ftp://ftp.isi.edu/in-notes/rfc792.txt>.

POSTEL, J. RFC793: Transmission Control Protocol [on-line]. September 1
1981. [cited November 20 2009] Available on-line
<ftp://ftp.isi.edu/in-notes/rfc793.txt>.

PLUMMER, D.C. RFC 826: Ethernet Address Resolution Protocol: Or convert-
ing network protocol addresses to 48.bit Ethernet address for transmission on
Ethernet hardware [on-line]. November 1 1982. [cited November 20 2009] Avail-
able on—line

<ftp://ftp.isi.edu/in-notes/rfc826.txt>.

RIJSINGHANI, A. RFC 1624: Computation of the Internet Checksum via Incre-
mental Update [on-line]. May 1994. [cited November 20 2009] Available on-line
<ftp://ftp.isi.edu/in-notes/rfc1624.txt>.

RUBINI, A.; CORBET, J. Linuzx Device Drivers [on-line]. O’Reilly, June 2001,
Second edition. [cited July 26 2008]. ISBN 10: 0-596-00008-1. Available on the
World Wide Web:

<http://www.xml.com/1ldd/chapter/book/index.html>.

SRIVASTAVA, V.; MOTANI, M. Cross-layer design: a survey and the road
ahead. In Communications Magazine. IEEE, December 2005, vol. 12, no. 1,
112-119.

SUTTON, C. UCLA. [on-line magazine]. Document version of 2004-09-02. [cited
December 5 2009]. Internet Began 35 Years Ago at UCLA with First Message
Ever Sent Between Two Computers. Available on the World Wide Web
<http://www.engineer.ucla.edu/stories/2004/Internet35.htm>.

TANENBAUM, A.S. Computer Networks. Prentice Hall, 2002. [cited Novem-
ber 14 2009]. ISBN 10: 0130661023. Available on the World Wide Web
<http://books.google.cz/books?id=Pd-z64SJRBAC>.

TANENBAUM, A.S.; WOODHULL, A.S. Operating Systems Design
and Implementation, 3/F. Prentice Hall, April 1 2006, Third edition.
ISBN 13: 9780131429383.

WINSTON, I. RFC 948: Two methods for the transmission of IP datagrams over
IEEFE 802.3 networks [on-line]. June 1 1985. [cited November 20 2009] Available
on-line

<ftp://ftp.isi.edu/in-notes/rfc948.txt>.

83

ftp://ftp.isi.edu/in-notes/rfc791.txt
ftp://ftp.isi.edu/in-notes/rfc792.txt
ftp://ftp.isi.edu/in-notes/rfc793.txt
ftp://ftp.isi.edu/in-notes/rfc826.txt
ftp://ftp.isi.edu/in-notes/rfc1624.txt
http://www.xml.com/ldd/chapter/book/index.html
http://www.engineer.ucla.edu/stories/2004/Internet35.htm
http://books.google.cz/books?id=Pd-z64SJRBAC
ftp://ftp.isi.edu/in-notes/rfc948.txt

[29]

[30]

[31]

WONG, C.T. Miniz Networking Documentation. [on-line]. Document version of
2003-12-04. [cited December 6 2009]. Available on the World Wide Web
<http://www.nyx.net/~ctwong/minix/Minix_startpage.htm>.

ZAGHAL, R.Y.; KHAN, J.I. EFSM/SDL modeling of the original TCP standard
(RFC793) and the Congestion Control Mechanism of TCP Reno [on-line]. Kent
State University, July 22 2005. [cited November 20 2009] Available on the World
Wide Web:

<http://www.medianet.kent.edu/techreports/
TR2005-07-22-tcp-EFSM. pdf>.

ZIMMERMANN, H. OSI Reference Model — The ISO Model of Architecture
for Open Systems Interconnection. In Transactions on Communications. IEEE,
April 1980, vol. 28, no. 4, 425-432. [cited November 14 2009]. Available on the
World Wide Web

<http://www.comsoc.org/livepubs/50_journals/pdf/
RightsManagement_eid=136833.pdf>.

84

http://www.nyx.net/~ctwong/minix/Minix_startpage.htm
http://www.medianet.kent.edu/techreports/TR2005-07-22-tcp-EFSM.pdf
http://www.medianet.kent.edu/techreports/TR2005-07-22-tcp-EFSM.pdf
http://www.comsoc.org/livepubs/50_journals/pdf/RightsManagement_eid=136833.pdf
http://www.comsoc.org/livepubs/50_journals/pdf/RightsManagement_eid=136833.pdf

Appendix A

Test results

Nettestl 10 sockets * 10 packets * 1024 bytes to lo-
calhost

Run Modular Modular - 1 message
150 | 3838 | 3816 | 3815 | ~ 3823 | 3759 | 3722 | 3653 | ~ 3711
2nd | 3583 | 3557 | 3571 | ~ 3570 | 3379 | 3415 | 3346 | ~ 3380
Run Monolithic Monolithic - 1 message
15t | 1878 | 1869 | 1871 | ~ 1873 | 1878 | 1875 | 1876 | ~ 1876
2nd | 1791 | 1781 | 1777 | ~ 1783 | 1800 | 1785 | 1777 | ~ 1787

(times in miliseconds

Nettestl 10 sockets * 10 packets * 38 bytes to local-
host

Run Modular Modular - 1 message
150 | 3781 | 3852 | 3885 | ~ 3839 | 3649 | 3619 | 3626 | ~ 3631
2nd 13493 | 3583 | 3585 | ~ 3554 | 3358 | 3324 | 3325 | ~ 3336
Run Monolithic Monolithic - 1 message
15t | 1850 | 1844 | 1839 | ~ 1844 | 1839 | 1837 | 1860 | ~ 1845
2nd | 1755 | 1748 | 1746 | ~ 1750 | 1741 | 1751 | 1758 | ~ 1750

(times in miliseconds

85

Nettest2 1socket * 100 packets * 1024 bytes to lo-
calhost

Run Mode Modular Modular - 1 message
15t | ST + RF | 1303 | 1314 | 1306 | ~ 1308 | 1254 | 1241 | 1247 | ~ 1247
15t SR 1662 | 1686 | 1671 | ~ 1673 | 1638 | 1617 | 1626 | ~ 1627

27d | ST + RF | 1358 | 1361 | 1354 | ~ 1358 | 1300 | 1284 | 1281 | ~ 1288
ond SR 1269 | 1268 | 1276 | ~ 1271 | 1215 | 1188 | 1193 | ~ 1199

Run Mode Monolithic Monolithic - 1 message
15t | ST + RF | 655 | 634 | 633 | ~ 641 | 639 | 675 | 630 | ~ 648
15t SR 671 | 665 | 664 | ~ 667 | 668 | 693 | 657 | ~ 673

2nd | ST + RF | 680 | 675 | 669 | ~ 675 | 672 | 682 | 670 | ~ 675
2nd SR 602 | 608 | 604 | ~ 605 | 598 | 606 | 605 | ~ 603
(times in miliseconds)

Nettest2 1socket * 100 packets * 33 bytes to local-
host

Run Mode Modular Modular - 1 message
15t | ST + RF | 1298 | 1323 | 1301 | ~ 1307 | 1229 | 1235 | 1214 | ~ 1226
15t SR 1667 | 1705 | 1677 | ~ 1683 | 1596 | 1602 | 1581 | ~ 1593

27d | ST + RF | 1347 | 1372 | 1349 | ~ 1356 | 1271 | 1280 | 1256 | ~ 1269
ond SR 1261 | 1278 | 1265 | ~ 1268 | 1168 | 1180 | 1163 | ~ 1170

Run Mode Monolithic Monolithic - 1 message
158 | ST + RF | 620 | 622 | 625 | ~ 622 | 660 | 643 | 631 | ~ 645
15t SR 649 | 660 | 652 | ~ 654 | 759 | 664 | 659 | ~ 694

2m | ST + RF | 663 | 663 | 664 | ~ 663 | 684 | 667 | 661 | ~ 671
2nd SR 082 | 584 | 591 | ~ 586 | 608 | 591 | 592 | ~ 597
(times in miliseconds)

86

Nettest2 10 sockets * 10 packets * 1024 bytes to lo-
calhost

Run Mode Modular Modular - 1 message
150 | ST + RF | 1359 | 1334 | 1334 | ~ 1342 | 1268 | 1278 | 1293 | ~ 1280
15 SR 1746 | 1714 | 1715 | ~ 1715 | 1644 | 1655 | 1674 | ~ 1658

27d | ST + RF | 1412 | 1391 | 1387 | ~ 1397 | 1325 | 1333 | 1337 | ~ 1332
2nd SR 1330 | 1324 | 1307 | >~ 1320 | 1230 | 1246 | 1251 | ~ 1242

Run Mode Monolithic Monolithic - 1 message
15t | ST + RF | 691 | 649 | 658 | ~ 666 | 658 | 646 | 695 | ~ 666
15 SR 705 | 684 | 695 | ~ 695 | 700 | 687 | 711 | ~ 600

2nd | ST + RF | 694 | 697 | 706 | ~ 699 | 692 | 698 | 699 | ~ 696
2nd SR 608 | 613 | 624 | ~ 615 | 609 | 619 | 615 | ~ 614
(times in miliseconds)

Ping 20 times localhost

Modular 280719167 7 |7|9(7|7
6 | 719|777 |819]|8|7|~T7.05

Modular - 1message |28 |7 |8 |7 |8 |10 (7|7 |7|7
1007|7879 |7|7]7|8]|x~T721

Monolithic 1814 (41414 4 |1414(4]3
4 131414143 |3(4]3|4]|~353

Monolithic - 1message | 16 |4 |3 |33 | 3 43|33
4 13134143 3333 x~3.11

(times in miliseconds)
Ping 20 times 10.0.2.2

Modular - 11| 8|8|8]9|7| 8 |7|8
91919888 |8|11]9|8|~8.05

Modular - 1 message - 1111919888 8 8|8
11 8 88|87 |8|10|8]|8|~8.05

Monolithic -4 1413|6(3[4] 4|34
4 15 (3414 (3]4] 3 |4]4]~363

Monolithic - 1message | - | 6 |3 |4 |4 |44 4 |44
4 |5 44144144 |4]4]~389

(times in miliseconds)

87

Appendix B
UML diagrams

B.1 Networking stack overview

Networking stack directories

I;';net - Networking stack
—E;hl - Inter-network layer
— 1 Jarp

— ip

net - Central networking module
netstart

—E;netif - Network interface drivers

— Jlo

— 1dp8390

—§;|nil - Network interface layer
—|=__| nildummy
—|=__|eth

—]socket - Socket API, libsocket

—E;hl - Transport layer

—1_ Jicmp
— 1 Judp
— Jtep

88

Networking stack module overview

Application

libsocket

eth

Responsibilities

-- Physcal addressing
-- Sending frames

-- Receiving frames

nildummy

AN

Responsibilities
-- Sending frames
-- Receiving frames

AN

B.2 Module parts interaction

Standalone module

ARP as a standalone module - main()

| arp_remote.c |

| module.c |

start_module() N

l
p module initialization
arp_initialize()

p async_manager() |

I
|
|

p async_set_client_connection(client_connection)

ARP as a standalone module - interface calls

arp_remote.c | | module.c | | arp_module.c | | arp.c
T T T T
] I I I
I I I
—L I I
IPC message N | |
I I
. . I I
p client_connection() | |
module_message() D_ :
arp_message()
message processing
return
return |
I
return T |
Asynchronous manager termination -> main()
arp_remote.c module.c arp_module.c arp.c
| | |
] |
|
cleanup

90

Bundle module

ARP in a bundle module net - main()

]|
I
|
|

start_module() N

|
modaule initializatian
ip_initialize()

I
I
I
I
I

. | . . 1.

p async_set_client_cqnnection(client_connecgion)
I
I
I
I
I
I
I

arp_initialize()

T
I
|
I
I
I
I
T
I
p async_manager() :
I

ARP in a bundle module - interface calls

| module.c | |net_bund|e.c| | ip.c | | arp.c

T T
| | | | |
Remoté call : : : :
| | | |
e 1 1 1
IPC message 5 | 1 1
| | |
l l l
p client_connection()! 1 1
o 1 1
|_module_message() | I
| |
. | |
) switch(IPC messagg) |
arp melksaqe()
|
: message processing
return
|
return : X
return T | |
—— T | ! !
| | ! : |
| | : X)
Direct ¢al| J : | | |
1 1 ! !
1
| | :
: : | interface functionQ) ,
l l !
| | !
| | !
T T T
| | !
l l !
|

91

B.3 Network interface initialization

Network interface driver

Network interface initialization

| networking | | network interface driver | | network interface layer | | inter—network layer
T T T T
™ | | |
| | |
—L | |
IPC_M_CONNECT_ME_TO M | |
| |
EOK | |
| |
NET_NETIF_PROBE(id, irq, i0) : :
NER_NET_GET_DEVICE_CONF(id, nares|) : :
| |
values | |
| |
EOK ! !
| |
nn T ! !
' I I
Network interface layer
Registering a network interface at a network interface layer
T T T T
™ | | |
| | |
| —L |
IPC_M_CONNECT_ME_TO M |
| |
EOK 1
| |
NET_NIL DEVICE(id, driver) N |
4 NET_NET_GET_DEVI(EE_CONF(id, names) :
| |
values |
| |
4 IPC_CONNECT_TO_ME(id) :
EOK :
|
EOK |
! |
T ! |

92

Inter—network layer

Registering a network interface at the inter-network layer

R . . . i —
]]]]

] | | |
| | |
| | —
1 IPC_M_CONNECT_ME_TO 1 M
| |
| EOK |
| |
: NET_IL_DEVICE(id, nil) : N

< I\IET_NET_GET_DEVICE_CONF(id, namgl_s)

| |
| values |
| |
: 4 IPC_M_CONNECT_TO_ME(id)
: EOK
|
1 EOK "
|

T | : T

Network interface start
Network interface start
| networking | | network interf; river | | network interface layer | | inter-network layer

NETIF_START(id) :

ET_NIL_DEVICE_STATE(id, activ

I

I

|

|

|

|

|
ET_IL_DEVICE_STATE(id, active QD

93

B.4 Data transfers

Data transfer from the application

Data transfer from the application

*ET_IP_G ET_ROU]

nettest?

IPC_M_DATA_WRITE(aq

HOK(device_id, hea

NET_[L :&ACKET_SPACE(d

ev

BEOK(dimension

T NET_PA
|
|
|
|
|

NET]IL|SEND(device_id,

CK

ess)

ce_id)

ET_CREATE_4(dj

EOK(packet)

ip udp net

| | |

| | |

| | |

| | |

| | |

| 1 |

| 4 NET_SOCKET_SENDTO

| |

: IPC_M_DATA_\)IVRITE(address)
B

ehsions)

IPC_M_DATA! WRITE(data)

cket)

I
|
|
|
EQK
|
|
|
|
I

p sendto(data)

94

One way data transfer

One way data transfer

lo

NET_

1
I
I
I
I
I
E

nil

mm

NET

TJE_SEND(device_id,

NIL_RECEIVED(padiil)
h

udp

echo

IL_RECEIVED(pa

cyet

)

NIL_SEND(device_id,|packet)

@acket)

TL_RECEIVED(pag|

Y

|<e_'1

NET_ﬁ{SJ KET_RECEIVED(Dt_id)

Data transfer to the application

Data transfer to the application

udp

NET

net

nettest?2

ecno

I

I

I
.

p recvfrom()

<

NET_SOCKER_RECVFROM(packet_id)
I I

IPC_M_DATA_READ(data)

IPC_IM_DATA_READ(add:ress)

| PA

CKET_RELEASE(

acket)

EOK

EOK

95

	1 Introduction
	1.1 Motivation
	1.1.1 History
	1.1.2 Implementation

	1.2 Goals
	1.3 Structure of the thesis
	1.3.1 Style conventions

	2 Context of the thesis
	2.1 Networking stack models
	2.2 HelenOS specific design
	2.2.1 Kernel code
	2.2.2 Modularity
	2.2.3 Inter--process communication

	2.3 Qemu emulator
	2.4 N. E. T.

	3 Networking stack design
	3.1 New networking stack
	3.1.1 Extent of the implementation
	3.1.2 Architecture
	3.1.3 Modular architecture
	3.1.4 Packet management system

	3.2 Networking stack modules
	3.2.1 Central configuration module - net
	3.2.2 Network interface drivers
	3.2.3 Network interface layer
	3.2.4 Inter--network layer
	3.2.5 Transport layer
	3.2.6 Application programming interface - libsocket
	3.2.7 Applications

	4 Discussion
	4.1 Implementation
	4.1.1 HelenOS internals
	4.1.2 Support structures
	4.1.3 Modules
	4.1.4 Startup module - netstart
	4.1.5 Extending the networking stack
	4.1.6 Qemu network
	4.1.7 N.E.T. user protocols

	4.2 Running and testing
	4.2.1 Applications
	4.2.2 Software prerequisites

	5 Evaluation
	5.1 Nettest2 -- data transfer performance
	5.2 Nettest1 -- the overall performance
	5.3 Ping -- ICMP echo performance
	5.4 Conclusion

	6 Other architectures
	6.1 BSD
	6.2 Linux
	6.3 Windows
	6.4 Minix

	7 Conclusion
	8 Terms and abbreviations
	Bibliography
	A Test results
	B UML diagrams
	B.1 Networking stack overview
	B.2 Module parts interaction
	B.3 Network interface initialization
	B.4 Data transfers

