
Masaryk University

Faculty of Informatics

}w��������
��������������� !"#$%&'()+,-./012345<yA|
Bachelor thesis

Improved VFS design for
HelenOS

Jiří Zárevúcky

Brno, 2013

Prohlášení

Prohlašuji, že tato bakalářská práce je mým původním autorským dílem,
které jsem vypracoval samostatně. Všechny zdroje, prameny a literaturu,
které jsem při vypracování používal nebo z nich čerpal, v práci řádně
cituji s uvedením úplného odkazu na příslušný zdroj.

Declaration

Hereby I declare, that this thesis is my original work, which I have cre-
ated by my own. All sources, references and literature used or excerpted
during the course of this work are properly cited and listed in complete
reference to the due source.

Acknowledgement

I would like to thank my supervisor Zdeněk Říha for his professional
advice and assistance during my work. Additionally, I would also like to
thank every present or past contributor to the HelenOS operating system,
especially the core development team, for creating an excellent platform
for testing new ideas, and a friendly environment for discussing them.

Abstract

The thesis analyzes the purpose and implementation of file systems in
modern operating systems descendant from UNIX, with focus on secu-
rity issues that emerge in modern computing, where the code executed
in a shared environment is rarely created (or even known) by the user
executing it. A new file system architecture is then proposed that focuses
on inter-process isolation as the means of ensuring security. This architec-
ture is demonstrated by creating a prototype implementation within the
HelenOS operating system, which is also described.

Keywords

operating system, file system, IPC, security, files, user accounts, UNIX,
sandboxing

Contents

Introduction ix

1 Preliminaries 1
1.1 Operating systems . 1

1.1.1 General overview . 1
1.1.2 Microkernel vs. Monolithic 2
1.1.3 File systems . 3
1.1.4 Existing systems . 4

1.1.4.1 Traditional UNIX / POSIX 5
1.1.4.2 GNU Hurd 6
1.1.4.3 Plan 9 from Bell Labs 7
1.1.4.4 4.4BSD-Lite 8

1.2 Summary . 9

2 The proposed design 13
2.1 Requirements . 13
2.2 Filesystems . 16
2.3 Files . 17

2.3.1 Storage files . 17
2.3.2 Stream files . 17
2.3.3 Directories . 18

2.4 File handles . 18
2.4.1 Access permissions . 19
2.4.2 Methods . 19

2.5 Bind operation . 22

3 Implementation 25
3.1 HelenOS . 26
3.2 IPC primitives . 26
3.3 Advanced IPC mechanisms 27

vii

viii CONTENTS

3.4 Original file system implementation 28
3.5 New file system implementation 29
3.6 Inbox . 30
3.7 Server . 31

3.7.1 Unions . 33
3.7.2 Restricted nodes . 33
3.7.3 Virtual pipes . 34
3.7.4 Unfinished work . 34

3.8 User shell changes . 36
3.8.1 Applications and Profiles 36

4 Conclusion 39

Bibliography 41

A C functions 43
A.1 Conventions . 43
A.2 Header files . 44
A.3 Function listing . 44

A.3.1 <vfs/file.h> . 44
A.3.2 <vfs/path.h> . 46
A.3.3 <vfs/dir.h> . 47
A.3.4 <vfs/inbox.h> . 47

B The Go language 49
B.1 Porting the runtime . 50
B.2 Fitness for the purpose . 51

Glossary 53

Introduction

Long term data storage is one of the key capabilities of modern computer
systems. It is a deeply integrated functionality of virtually every contem-
porary operating system. Mechanisms related to persistent storage are
present on almost every level, starting with basic drivers in the very core
of the system, and ending with consumer’s blu-ray movies and family
photographs. It is therefore no surprise that such mechanisms have many
expectations and even more potential problems, being some of the most
visible parts of the operating system.

The persistent storage has several different, conceptually very dis-
tinct uses. Most obviously, the system itself needs persistent memory for
its own components, data and configuration. For the most part, ordinary
users have no business accessing (even knowing existence of) such data,
and they should not be able to. Obviously, an exception to that is any
administration mode the system provides.

Another of these uses is a simple extension of main memory. Most
operating systems in use today are composed of transient and unreli-
able processes. To achieve an illusion of persistence and robustness, such
processes need to store pieces of information that are used by subse-
quent executions of the same program. This includes application settings,
data caches, work history, etc. There are two common factors in these ex-
amples. One is that the user does not need or want to manipulate with
such data outside of the program (or even be aware of it), although they
should be able to directly access it. The second is that such data is highly
application-specific and no other application should ever need to access
it, except in response to explicit user request.

Lastly, there is the data users themselves manage and use. This can
be anything from financial documents and cryptographic certificates, to
a music library and high-definition movies. Although this kind of data
is not a responsibility of any application, some applications are used to

ix

x INTRODUCTION

access, view or change it. However, even such applications only need
to access data they immediately work with. For example, a malicious
scripted document should not be able to access any other documents,
even if user commonly uses the same application to view them.

In chapter 1, I will first skim over several basic notions important
to understanding operating systems. Anyone familiar with the concepts
should be able to skip the early sections. After the basic notions are es-
tablished, I will introduce several existing operating systems. Knowing
the specifics of their respective approaches to data management will al-
low me to draw several conclusions regarding the suitability of current
operating system concepts to the scenarios I mentioned above.

After identifying and discussing flaws in contemporary operating
systems, chapter 2 will follow up by formulating a set of requirements
that should be met by the system. I will present arguments for those
requirements and explain how they help correct the identified flaws.

In the rest of the chapter, I will utilize those requirements by pre-
senting a variant of the traditional file system abstraction. I will argue
that this slight variation is sufficient to resolve problems in earlier sys-
tems, with very little negative impact in terms of (un)familiarity. I will
also propose a programming interface for this system, which meets all
the formulated requirements, yet is still close (at least conceptually) to
the traditional POSIX interfaces.

In chapter 3, I will describe the prototype implementation of my
proposed design. I will introduce my platform of choice and discuss not
only the internal details of the system, but also several of the practical
problems I have run into while implementing the design, some of which
forcing me to reconsider choices I will have made previously.

Finally, section 3.8 will briefly discuss how can user-level software
utilize the redesigned programming interface to form an environment
that is intuitive to work with, but also secure in face of rogue applications
and programming errors. A layout is proposed for system-wide, user-
specific and application-specific data, and a set of policies is described
that helps utilize all aspects of the new design the best way possible.

Chapter 1

Preliminaries

1.1 Operating systems

1.1.1 General overview

For the proper function of any reasonably complex computing environ-
ment, an operating system (shortly referred to as an OS, or plural OSs) is an
indispensable component. There is a multitude of definitions of what ex-
actly an operating system is. Rather than trying to select and explain any
single one of those definitions, what I will do in the following paragraphs
is to describe not the meaning of words, but rather what the operating
systems are intended for and what is their function.

At the most elementary level, OS is a software layer that facilitates —
in a very broad sense — the communication of user with the underlying
machine. Here user can mean not only the human operator of the com-
puter, but also an application intended for the human to use, or a service
that uses resources of the system to accomplish its own tasks. By not
being overly strict about what the user truly is, one is able to deal with
different levels of abstraction without affecting the idea of an OS itself.

To achieve and simplify such communication, OSs provide a vary-
ing degree of abstractions. It is easier to think of independent threads of
computation than it is to think about scheduling work among processors.
It is simpler to draw to a graphical display by issuing understandable
commands rather than by writing magic numbers to a prespecified area
of memory. It is easier to work with named files than with an ATA bus.

1

2 CHAPTER 1. PRELIMINARIES

The abstractions are stacked on top of each other, and usually the OS
is structured such that each abstraction is being provided by a mostly
independent (at least conceptually) piece of code. There is the sched-
uler and process manager that deal with executing user code; memory
manager that provides programs with the illusion of an isolated, private
memory space; there is the networking subsystem, device drivers with
their own abstractions of physical devices, and possibly many more.

All of those are outside of scope of this thesis, and e.g. [1] and [2]
provide an accessible study material for both theoretical and practical
aspects of OS development. Our interests lie in a very specific part of
this whole machinery that abstracts away the details of long-term data
storage, and provide us with a simple metaphor of files. Almost every
operating system ever created provides such an abstraction and we will
later see how some of them do so.

1.1.2 Microkernel vs. Monolithic

Since the basic services an OS provides have many different parts, a nat-
ural question is how to structure those services. Modern computer hard-
ware provides means for an operating system to control and restrict the
operations of user programs it supervises. Since the user code should
usually not be able to directly communicate with hardware devices, and
must only see the resources that belong to it, such code is usually run in
what is called a protected mode. But at least some parts of the system must
run with full privileges, as they need to interact with devices inaccessible
to anything but the core of the OS. This fully privileged core of the system
is usually a single non-terminating program called the kernel.

There are two basic directions an aspiring system architect can take.
One is to pack as much of the functionality as possible into the kernel.
This has the advantage that every part of the core system can directly ac-
cess the hardware, leading to a better overall performance. Unfortunately,
there are many disadvantages as well. Any bug in a fully privileged code
can cause immense damage to the entire system, while anywhere else it
could only affect the system in which the bug occurred.

Another problem comes from the fact that the lack of strict module
boundaries encourages dependencies on the internal details of largely in-
dependent parts. Unless a strict policy is adopted, unrelated modules can
quickly become interdependent in ways that could be very difficult to un-

1.1. OPERATING SYSTEMS 3

derstand or even notice. This further increases the impact a programming
mistake can have on the system as a whole.

This arrangement of a system is called monolithic, and is the most
prominent among contemporary mainstream OSs. The most interesting
particular example is probably the Linux kernel. While monolithic in na-
ture, a lot of effort has also been put into splitting the kernel into a lot
of separately compilable modules, and as such, it is sometimes not con-
sidered a pure monolithic kernel. However, with its millions of lines of
code running with full privileges, it still struggles with many problems
inherent in monolithic design.

The other path a system design can take is to separate as much of
the functionality as possible into isolated userland1 processes. This has
the obvious advantage that any failure — be it a bug or an adversarial
attack — is contained to the component in which it occurred by the same
means that isolate all user programs from each other. As all the parts
need to explicitly communicate via rigidly specified IPC2 protocols, this
also imposes a much stricter requirements on the specification of sub-
system interactions, leading to a more understandable and maintainable
structure. A significant drawback is that IPC communication comes at a
cost, and some consider the performance impact too large to be feasible.

1.1.3 File systems

An abstraction and organization of permanent memory is one of the im-
portant responsibilities of every operating system. Most contemporary
systems organize data in a structure known as a file system. The usual
understanding is that a file is a block of data accessible under a name.
To impose more structure than a flat naming, most modern file systems
also provide special files known as directories, which have no contents, but
contain references to other files, which are then accessible as being chil-
dren of the directory. This way, a hierarchical tree-like structure can be
used to manage many files. Regular files can have arbitrary length (sub-
ject to limitations of the physical storage), and can be created, destroyed,
read, written, renamed, etc. They can also have metadata associated with
them — for example access/modification times or user permissions.

1That is, not running entirely inside the kernel memory space.
2Inter-Process Communication.

4 CHAPTER 1. PRELIMINARIES

In practice, there are many ways that can be taken to deal with vari-
ous specific problems. For example, systems must deal with the fact that
there can be multiple physical storage devices, some of which may be in-
accessible or privileged, and other that may be replaceable media such as
floppy disks, optical disks or plug’n’play flash drives. Another source of
trouble is the fact that different operating systems have different expecta-
tions about what kind of metadata a file possesses. This is reflected in a
myriad of incompatible on-disk formats that are in everyday use.

Many modern systems deal with the variety by providing a piece of
software that abstracts away most of the differences and provides a single
consistent interface. The implementations differ in the exact mechanics
and features, but for the most part they tend to be similar enough to
provide a familiar environment. Unfortunately, this often leads to being
constrained by past designs. One of the goals of this thesis is therefore to
examine several related systems and provide an overview of their func-
tionality, identifying several areas which became of concern only recently
and which are not sufficiently addressed in any of the examined systems.

Because file system can mean both the operating system interface and
a particular on-disk format (or its implementation), a convention is used
in this document to call the former the file system and the latter a filesystem.

1.1.4 Existing systems

The following sections try to introduce several operating systems which
are in some ways interesting. The emphasis is put on their interface to files
and the way they manage process namespaces. These brief introductions
are by no means complete or even sufficient, but I made an effort to
highlight the most relevant aspects. Further references are provided for
readers who wish to get more familiar with any of the discussed systems.

All of the discussed systems are at least conceptually descendant
from UNIX and thus fairly similar in regards to their basic file operations.
There are several interesting systems based on capabilities, whose design
in one way or another approaches or even solves problems encountered
in UNIX-like systems (for example, see [3] or [4]). I have decided not to
include them in this document because they are too foreign to provide
a meaningful comparison, even though I borrow some concepts from ca-
pability based systems.

1.1. OPERATING SYSTEMS 5

1.1.4.1 Traditional UNIX / POSIX

Traditional UNIX file system interface, along with its permission model, is
still widespread among systems descendant from UNIX, including most
Linux distributions, BSD and Darwin. Although incremental improve-
ments have accumulated over the years to reduce the effects of some of
the original problems, the basic principles remain largely the same.

The original implementation uses a single global hierarchical name-
space for all processes. The namespace has a root directory named simply
“/” and all files are descendants of the root. Because only one namespace
is present, a mechanism is provided to attach contents of devices (for ex-
ample, memory media such as floppy disks, or more recently flash drives
and DVDs). This mechanism is called mounting and makes it possible to
access an entire namespace as if its root was just a directory in the global
namespace, complete with a proper parent.

In order to limit access to files belonging to different users, a per-
mission model is used that assigns to every file an owner, a group, and
a set of permissions for owner, group and everyone else. Those permis-
sions consist of three bits: read, write and execute. Same three bits are
set for directories, where read allows listing the directory, write allows
modification (i.e. adding, removing and renaming entries) and execute
allows the user to access files descendant from the directory and to use
the directory as the current working directory.

Neil Brown has criticized several drawbacks of this model in [5]. As
he puts it, the model is both too complex (users tend to fail in managing
their files’ permissions thanks to the scope of micromanagement, among
other things) and too simple (simple things are indeed simple, but com-
plex things are often impossible). Thanks to the limitations imposed on
the permission description, the seeming flexibility only makes it difficult
to understand the model and, in fact, often jeopardizes security.

The POSIX standard also specifies a programming interface for ac-
cessing files, used in virtually every UNIX-like operating system. The
interface uses a concept of file descriptor, which is a capability-like object
that represents an open file. It also has the current position in the file
associated with it. Although later extensions make it possible to use de-
scriptors directly as first-class handles, this is rather an afterthought, and
the original API is designed to represent files open for reading/writing
in a global namespace, where every file can be named by a unique string.

6 CHAPTER 1. PRELIMINARIES

1.1.4.2 GNU Hurd

“The Hurd is the GNU project’s replacement for UNIX, a popular
operating system kernel.” [6]

The GNU project has long aimed to provide a fully functional free
software replacement for traditional UNIX. GNU Hurd is an effort to
provide a fully functional core to the GNU system, with reliability and
extensibility in mind. A decision was made to build the system on top
of the Mach microkernel, and because of this, the Hurd is essentially a
collection of protocols specifying how to put various parts together, all
designed to work with services provided by Mach.

This has led to a file system quite unlike any other UNIX implemen-
tation. Multiple user-space processes can implement parts of the proto-
col, which led to Hurd’s file system becoming distributed, with no cen-
tral VFS server. File handles in Hurd are implemented using capabilities3,
which can be used to access files and passed between processes using the
Mach’s message passing interface.

Because there is no central server, every operation on files must be
done relative to an existing handle. Each process holds a handle specify-
ing the root directory, and because this handle is usually inherited (except
possibly for chroot()ed processes), this leads to a single global name-
space, mimicking the traditional UNIX behavior. File systems in Hurd
are provided by translators. A translator is a user process that implements
part of the protocol and provides a file hierarchy to other processes. In
order for other processes to be able to access the translator’s tree, the root
node is attached to another node, using a call file_set_translator().
The result is very similar to traditional UNIX mounts, replacing a file in
the hierarchy with another file, but the mechanism is different.

Hurd complies with the POSIX standard in resolution of the .. direc-
tory entry (dot-dot4). Hurd achieves this by providing a file_reparent()
mechanism, which allows to create a new node, which behaves like a copy
of the original, except that its .. entry resolves to a provided parent. This
is also used to implement an equivalent of bind mounts, which can mount
any file or directory (not just a filesystem root). This is sometimes called
a firm link, and behaves similar to a hard link, the main difference being
that it works across different filesystems.

3An unforgeable token that carries authority to work with an object.
4A special file name reserved to mean a parent directory.

1.1. OPERATING SYSTEMS 7

Walfield and Brinkmann [7] provide a thorough explanation of the
Hurd’s mechanisms and policies. They also criticize some aspects of the
system, e.g. the behavior of dot-dot, whose POSIX semantics are usually
detrimental to the user’s experience. They also mention the inability to
protect user’s resources from processes executed by them.

These and some other observed weaknesses can be attributed to the
focus on reimplementing UNIX. Keeping in mind that the Hurd project
started over 20 years ago, it is natural that some of the original goals may
no longer be valid. Strict adherence to an outdated standard that may be
unsuitable for most modern systems is one of such goals. However, it is
my opinion that the technical solution is valuable in its own right, and
can serve as a foundation for a great innovative system, if the directions
of the project are reconsidered.

1.1.4.3 Plan 9 from Bell Labs

Plan 9 is unique among operating systems discussed in this document as
it is a distributed system, designed to run across many physical machines.
While a general overview of the system can be found e.g. in [8], it is the
mechanism used to deal with filesystems that is the most interesting and
important aspect of the system.

The requirement to reasonably present user’s resources uniformly in
a heterogeneous environment is elegantly solved by making it possible
for any process to export a file hierarchy using a common protocol called
9P. Every process then possesses the ability of combining hierarchies im-
ported from other processes into a private namespace.

This is achieved using a per-process mount table, which contains a
mapping of mount points (identified as references to filesystem nodes, or
channels) and their destination nodes (also channels). Multiple directories
can be mounted at a single location in the namespace. Their contents is
then concatenated to form a union directory. However, the union only
applies to a single level of the hierarchy — only the first match is used
when walking down the directory tree. This is different from e.g. 4.4BSD-
Lite, where an entire hierarchy is overlaid.

This mechanism is further generalized by allowing to mount not just
a root of a filesystem, but also an arbitrary file, to arbitrary location.
This is called binding and is somewhat similar to Linux’s bind mounts.

8 CHAPTER 1. PRELIMINARIES

In essence, binding and mounting are the same mechanism, the only dif-
ference being in the origin of the node that is being bound.

The mechanism itself is exceedingly important aspect of Plan 9, as
it is used quite heavily to provide each process with a predictable name-
space. For example, there is no $PATH environment variable. Instead, all
directories containing binaries usable by the current process are bound
to the standard location /bin. Similar conventions are used for other re-
sources, e.g. console as /dev/cons, graphical display interface, devices
providing time, system information, debugging capabilities and many
more. The process does not need to know how exactly is each conven-
tional device implemented — it just opens a file with a known name.

This makes it possible to run applications across multiple machines
just as simply as it is to run them locally. The relevant devices are just im-
plemented using a remote connection. At the same time, some seemingly
dissimilar services are implemented as file servers, a prime example being
the graphics server. All communication with the server is done using a
file oriented interface and the server essentially just acts as a multiplexer,
using files it found in its own namespace to implement commands issued
to files it has provided its clients with.

Yet another important aspect of Plan 9 is the way it deals with dot-
dot path component. The system processes it lexically, meaning that e.g.
the path /a/b/../c is always equivalent to /a/c (the component preced-
ing dot-dot is lexically removed). This solves a number of problem with
processing paths in user shell, which is thoroughly explained in [9].

1.1.4.4 4.4BSD-Lite

This is a UNIX derivative, and a predecessor of modern *BSD systems.
As such, most things said about UNIX/POSIX also apply here. However,
of significant interest are union mounts, which were introduced in this
version of BSD.

In classical UNIX, mounting requires an empty directory to be cho-
sen as the mount point. The filesystem then completely replaces the con-
tents of the directory, acting as its subtree. Union mounts make it possible
to stack multiple file hierarchies on top of each other to a single overlaid
hierarchy. This differs from Plan 9, which only concatenates a single level
of the hierarchy. Here, all levels of the directory hierarchy are combined.

1.2. SUMMARY 9

This presents new challenges in order to make the combined hierar-
chy behave in an expected manner. Only the topmost layer of the stack is
writable, all the other parts of the union being read-only. The benefits of
this arrangement are immediately obvious — attaching a new layer on top
of a file system makes it possible to preserve the current state while en-
abling further modifications (which are stored in a different filesystem).
Alternatively, one could combine an inherently read-only hierarchy (say,
a CD-ROM image) with a temporary memory-backed storage, allowing
transparent modifications without needing to copy an entire hierarchy in
advance, consuming both time and memory.

It may happen that a file that is only present in a read-only layer is
opened for write. In such case, it is copied to the writable layer and further
modified there (copy-up). It is also possible to make it look as if a file in
a read-only layer has been removed. This is achieved using a whiteout,
which requires special support from the top-level filesystem. Whiteout
simply tells the system that any file by that name is removed, and further
layers should not be searched. In case a new directory is created later
with the same name, it is marked as opaque, meaning that it should not
be united with any directories in further layers, effectively still treating
them as if they did not exist.

An in-depth description of design and implementation of the union
mounts, including information not strictly relevant to this work, can be
found in [10].

1.2 Summary

There are many problems with the original UNIX file system design,
some of which have been discussed in [5][11][12].

One of those problems is the fact UNIX, as well as many other com-
monly used operating systems, has a single global namespace. What this
means is that, essentially, a pathname uniquely determines a file in the
file system. A program can access a file just by virtue of knowing its path,
provided it has authority to do so. However, authority in UNIX file sys-
tem is determined per-file and per-user, in a very limited way already
described. Storing access permissions per-file is an error-prone mecha-
nism, which many newcomers to the system fail to understand or use
reliably. An example can be seen in [5].

10 CHAPTER 1. PRELIMINARIES

Determining authority per-user, on the other hand, exposes an en-
tirely orthogonal problem. Since user’s processes are executed with full
authority of the user launching it, that means the user must be completely
confident that the programs always act strictly on behalf of the user. This
was a reasonable assumption back when UNIX was created. Users were
mostly programmers who were creating the programs to be run, and as
such, the problem of process “loyalty” was not yet as pressing as it is
today. But even then, bugs would happen, and data would be lost. Data
the program would never actually need for its proper function.

The inability to only provide processes with the resources they need
(principle of least privilege) has become even more limiting with the ex-
plosive development of home computing, where users are usually com-
pletely oblivious to the technical details of the system; applications are
imported in a binary form from an untrusted, even unknown, third party;
and the users themselves have little or no education in regards to security,
storing their most sensitive data (ranging from bank account information
to collections of private photographs) in a profoundly insecure way.

Later versions of UNIX, as well as its later derivatives, provide the
chroot() operation that can partially solve this problem. It allows to set a
different root directory for a running process, making the process believe
the new root has no parent. However, this mechanism is so awkward to
use that it has been mostly ignored, except for the most security critical
areas and few other special purposes.

Apart from these most obvious problems, the UNIX design is also
limiting. One of the core principles of UNIX’s philosophy was that most
resources are accessed as files, reusing a single abstraction to solve possi-
bly many problems. However, it fell short of providing applications with
means to expose their own services as files. More specifically, it did not
provide any way for endpoint filesystems to be implemented by user-
space processes. All filesystems must be implemented in the kernel and
it is difficult to even allow ordinary users to utilize those services, even if
they have access to the storage. For example, if the user possesses a disk
image containing a FAT filesystem, there is no easy way to mount this
image into the namespace, without requiring administrative permissions.

This limitation has been quite successfully removed in Plan 9 and
GNU Hurd. Plan 9, with its ubiquitous 9P protocol, makes heavy use
of user-space processes providing services as exported file hierarchies.
GNU Hurd, on the other hand, makes it possible for file owner to set a
translator, effectively equaling an unprivileged mount mechanism.

1.2. SUMMARY 11

However, both systems leave some things to be desired. GNU Hurd
suffers from the goal of being POSIX compatible, effectively reducing ev-
ery technical advantage to mere means of implementing outdated con-
cepts. Plan 9, while not suffering from the desire to be compatible (in-
deed, even though it can be seen as a direct descendant of UNIX, most
of the system has been redesigned and reimplemented from scratch), did
not go all the way to isolate processes from each other.

12 CHAPTER 1. PRELIMINARIES

Chapter 2

The proposed design

It seems that UNIX-like systems are becoming increasingly outdated and
unprepared for the requirements of modern computing environments.
There have been experimental system with completely redesigned file
system abstraction from the ground up, but they tend to be very unfamil-
iar and it is difficult to adapt existing environments to them.

In this chapter, I will attempt to propose a file system design that is
suitable for modern systems, providing security from malicious software
authors even in face of non-professional users, but retaining enough fa-
miliarity so that it is

1. Easy to understand and use for users with prior UNIX experience.

2. Similar enough, so that legacy applications can work with it.

2.1 Requirements

As a step towards designing a better system, let us consider some require-
ments the implementation should abide by:

1. Each process has its own namespace, independent of each other.

• This means every process has its own root and freedom to at-
tach more file hierarchies to its namespace, without affecting
other processes.

13

14 CHAPTER 2. THE PROPOSED DESIGN

• A path in one process can refer to an entirely different file in
another one, or no file at all. It must therefore be easily possible
to pass files from one process to another, not just by a name.

• All operations on files (including directories) must be doable
on file handles directly (where file handles must be able to
refer to unopened files).

2. File handles must behave as capabilities, granting access by posses-
sion and being unforgeable.

• Isolated namespaces are important for security, it would there-
fore be undesirable if a file which is not a part of the name-
space, or received from another process, could be accessed.

3. Files themselves do not have access permissions.

• Permissions on files are remarkably difficult to use correctly.
Instead, access rights should be a property of the reference.

• If a process is not supposed to be granted access to a file, the file
must not be accessible in its namespace — the permissions for
a user is then the collection of files their login shell is granted
access to when the user logs in.

4. To guard against the confused deputy problem, any process should
start with access to no files at all. Access to all files must be explic-
itly granted by the parent (keeping in mind that granting access to
a directory implicitly grants access to all its children). Any applica-
tion that requires access to file its parent cannot access, must do so
through authorizing with a dedicated service that has said access.

5. Any process should be able to provide a file hierarchy to other pro-
cesses.

• This allows a filesystem to be implemented as an unprivileged
user process, only requiring special permissions if a physical
device needs to be accessed.

Some systems access distinct filesystems as completely independent hier-
archies, while UNIX derivatives provide a single joint tree to every pro-
cess. If secure file handles can be used for any action on files, this distinc-
tion is no longer relevant. Any file handle represents a namespace of its
own, and selecting a single one of them to mean a “root” directory is just
a matter of interpretation.

2.1. REQUIREMENTS 15

However, if there was no way to join multiple hierarchies into one,
explicitly managing unnamed handles would be inconvenient in most
cases. Especially since the parent-child relationships of files are usually
restricted to a single memory device, i.e. a file from one device can not be
a parent of a file from a different device. A mechanism is thus needed for
joining different filesystem trees into a single structure (which may and
may not be a tree).

In UNIX and most of its derivatives, mounting replaces an empty di-
rectory with the root of a foreign tree. In GNU Hurd, translators provide
a more general mechanism of attaching a hierarchy provided by some
service to a file provided by another service. Both of these approaches
are unusable because their effect is always global. For every process, the
attached filesystem replaces the original node.

Plan 9 took a different approach. Instead of mounts being global,
every process has its own namespace and private mount table. In this
arrangement, the mount does not influence the target file in any way.
Internally, the mount table is a list of bindings between files. When the
namespace is navigated, the procedure checks whether the current file
matches any in the from column of the mount table, and if it does, replaces
the reference with a corresponding to file. Note that this allows generic
binds — the destination need not be a filesystem root.

With this mechanism, an issue arises of how to resolve conflicts be-
tween the mounted directory, and a possibly non-empty mount point.
Plan 9 deals with this problem using a simplistic variant of union filesys-
tem. When a child is looked up, the bound destinations are looked up
in sequence, and the first match is returned. Thus it is possible to bind
multiple files to the same location. This version of uniting directories is
easy to implement with a simple mount table, but is limiting in that only
a single level of hierarchy is overlaid.

These simplified unions are very useful for the task Plan 9 needs
them for — single level directories, such as /bin, can be combined easily
from multiple sources. This has many benefits, such as making the $PATH
environment variable unnecessary. There are, however, several scenarios
in which this is not enough. For example, it would be beneficial in some
cases to provide an application with a set of writable data files, but with
read-only defaults as a fallback. With Plan 9, the writable versions would
need to be copied beforehand in entirety. This is the basic problem all
full-blown unioning file systems were created to solve.

16 CHAPTER 2. THE PROPOSED DESIGN

Another slight inconvenience of per-process mount tables is that di-
rectories cannot be simply passed to another process. If the directory is
handed over, any mounts to its children remain local to the source pro-
cess, so the receiving process cannot see them. Alternatively, it is not
possible to have two versions of a single directory, one with mounts and
one without, in a single process.

Yet another problem with simple mount tables is that the “deep”
overlaying mentioned above is impossible to implement with them. A
directory inside such an overlay does not belong to any of the underly-
ing trees, but instead refers to all of them. One would need that every
directory, in a sense, contains its own table of mount points.

2.2 Filesystems

Historically, the specific on-disk data formats have had a large impact
on the design and usage of the entire virtual file system. To avoid this
idiosyncrasy, I completely disregard the differences of available features
of various existing formats.

Every filesystem consists of a single rooted file tree. Internal nodes in
the tree are always directories. There is no implicit limitation on the num-
ber of entries of any given directory, and every filesystem with writable
directories should support UTF-8 encoded file names with length of at
least 255 bytes. The filesystem is supposed to be a rooted tree — neither
hard links, nor symbolic links are supported. If a filesystem created with
another operating system contains hard links, they are interpreted as sep-
arate files. If a filesystem contains relative symbolic links, they may be
interpreted inside the filesystem, but absolute symbolic links are always
treated as broken. It is left to the implementation to decide how to treat
broken links — ideally, the file is treated as a read-only explanatory text.

The only metadata a filesystem needs to support is file size. It also
needs a distinction between directories and regular files. Additionally,
the system can meaningfully use and manage creation, modification and
access times, if supported. Named pipes are supported, but they are not
required to be implemented. Thus, the system should be perfectly capable
of running securely even with the legacy FAT filesystem.

2.3. FILES 17

2.3 Files

As with most file systems, a file is the basic named unit of storage. Every
file has metadata, basic information about the file itself. This includes,
among other things, the file’s type, access/modify times, size, etc.

Different file types differ in what operations are valid on the file and
what they mean. There are three basic file types.

2.3.1 Storage files

Files of type storage represent the most ordinary kind of file. They are
basically the same as regular files and block devices in UNIX terminology.
The difference is that here, the type does not specify what the file is, but
rather how it is expected to behave.

The storage file has a size, and represents an array of records. The
records are usually bytes, but not necessarily. Making the interface explic-
itly byte-specific does not bring any discernible benefits, and it is imag-
inable that special-purpose filesystems can benefit from this genericity.
read() and write() operations accept a position and a record written at
a particular position should be read by a subsequent read at the same
position. Thus, a storage file represents a real memory area.

This is the only type of file that can be resize()d. If a file is resized
to a larger size than it was originally, it behaves as if the newly acquired
span is filled with zeros. If a write() is made at a position beyond the
current size, the file is first resized accordingly (just like in POSIX).

2.3.2 Stream files

Files of type stream are different from storage in that they do not have a
well-defined size or persistent records. This kind of file does not need to
represent any real memory, and there is no prespecified relation between
reads and writes. In UNIX terminology, this can be a pipe, a socket, or a
character device (e.g. a console input/output).

The meaning of read() and write() is subject to a particular filesys-
tem’s intentions, and the position argument is meaningless for them.

18 CHAPTER 2. THE PROPOSED DESIGN

2.3.3 Directories

Files of type directory are quite ordinary directories. They do not hold
any data, and instead contain named references to other files. Their size
is equal to the number of entries they contain. The write() call is mean-
ingless for them. Instead, create(), rename() and unlink() are used. The
read() call works similar to the storage type, except that in this case, en-
tire entry names are the records. When more than one entry is returned
in a single call, they are separated by binary zeros.

A reference to any descendant of a directory can be accessed by call-
ing the walk() method.

2.4 File handles

File handles are a central concept to the design of the programming inter-
face, since several of the requirements mean that a file need not have any
name or path from the application’s point of view. A handle is thus the
only valid way of accessing a file. A handle is a capability — it conveys an
authority to act upon a file, and it cannot be forged.

There are only three ways to obtain a handle to a file:

1. A handle referring to the root of a filesystem is given to the process
that implements it.

2. A handle can be passed from one process to another (through IPC).

3. A handle can be received by calling methods on another handle.

A range of methods is provided for use with file handles. Some of the
terminology has been inspired by the 9P protocol, which is used as the
standard file access protocol on Plan 9 systems. The set of methods has
changed significantly since the early versions of the implementation. For
example, handles were originally designed to use reference counting for
management, the bind() operation affected and entire namespace (which
was explicit), etc. It has turned out that some interfaces are much easier
to implement and use than others.

There is one special handle, here called the nil handle. The nil handle
does not point to any file.

2.4. FILE HANDLES 19

2.4.1 Access permissions

Since handles possess the authority to act upon a file, it is necessary to
provide a set of access rights and a way to restrict them if needed. Cur-
rently, there are only three flags that determine the handle’s authority:
read, append, and write.

Even without any permissions, anyone can query the metadata of
any file they have access to. Additionally, if the file is a directory, they
can walk() it to access children. However, it is not possible to read() or
write() the file, or list/change directory entries.

read is the authority to read() the file and access all its information.
write is the authority to write() to an arbitrary position in the file, and
create(), move() and unlink() directory entries.

append is a special authority. It allows user to write() into the file,
but only at the end. It is not possible to change any contents already writ-
ten, or resize() the file. For directories, append allows creating new en-
tries using create(), but not renaming them or removing with unlink().
Also, append-only directory cannot be a target of the move() call, due
to security concerns. Note that append is a reduced variant of write, so
write implies append.

Although currently both regular files and directories use the same set
of permissions, it is possible that the permission set will be split to allow
separate permissions for directories and their children. So far, however,
this has not been implemented.

It may be surprising that an “execution” permission is not included.
However, in a decentralized multi-server system, such a permission is
completely pointless. Because program loader is a child task like any
other, it always and only needs read permission to execute a file. There is
no reasonable way to distinguish between reads intended for executing a
program and reads intended for anything else.

2.4.2 Methods

This section describes the set of basic operations proposed for file handles.
Note that the description here is conceptual. The specific implementation
is free to choose how to handle in/out parameters and error signaling.

20 CHAPTER 2. THE PROPOSED DESIGN

All methods implicitly return an error/success code. On error, return val-
ues/handles are invalid. All methods fail when provided with nil handle
as an argument, unless the parameter is marked by a question mark, in
which case nil is a valid argument.

Several methods available in the current implementation are not de-
scribed here. For example, methods that provide debugging features are
not included. Similarly, methods for reading and writing metadata are
unspecified here.

Clone(handle?): out_handle

The Clone() method returns a new handle which points to the
same file as the provided handle. If the provided handle is a nil
handle, the method succeeds and result is again a nil handle.

Put(handle?): nothing

The Put() method destroys a handle. It does not affect the file
the handle points to. Its meaning is that it states the handle is no
longer used. Using a handle after it has been put is an error. If the
handle has been previously used to Open() the file for IO, Put()
is equivalent to the standard close() function.

Walk(handle, name): out_handle

Walk() returns a new handle pointing to a child named by name. If
no such child exists, an error is indicated. Walk() does not require
any permission.

Bind(handle?, path, bind_handle, flags): out_handle

Bind() method binds a new descendant to the provided handle.
For details, see section 2.5.

Unbind(handle, path, unbind_handle?, flags): out_handle(?)

Unbind() method removes a descendant previously bound using
the Bind() method. For details, see section 2.5.

Select(handle, index): out_handle

Select() method is provided as a way to access components of a
union. For details, see section 2.5.

2.4. FILE HANDLES 21

Restrict(handle, permissions): out_handle

Restrict() creates a new handle with reduced authority. The new
handle points to the same file, but has limited permissions. The
handle’s authority can only be reduced, never increased.

Open(handle, mode): nothing

Open() method marks the handle as open for I/O and prepares
the underlying file (if appropriate). If the file cannot be read/
written or the handle does not posses the required authority, the
method fails. Once open, methods Read() and Write() can be
used on the handle. To close it, Put() must be called. If a Clone()
method is called on an open handle, the resulting cloned handle
is not open. mode can be one of read, write and append, or any
bitwise inclusive sum of those. Calling Open() on an already open
handle results in adding the specified privileges, if possible.

Read(handle, position, array): bytes, entries, version

Read() method reads contents of the file at position into array.
Only as many entries as can be stored in array are read. On suc-
cess, bytes is returned as the number of bytes written into array,
entries is the number of completely read entries, and version is
the numerical indicator of changes to the file. Every change to the
file changes the version number, including directory changes.

Write(handle, position, array):
bytes, entries, newsize, version

Write() method writes the contents of array to the file at
position. It is possible that not the entire contents of array is
written without error. An error is returned only when the write is
completely failed. bytes is set to the number of bytes successfully
used for writing, and entries is the number of written entries.
newsize is the new size in entries of the file, and version is the
version number the file has immediately after the write.

Resize(handle, newsize): nothing

The Resize() method changes the size of a file. The file must be
open for write. If the new size is less than the current size, the
file is truncated. If the new size is greater, the contents beyond the
original end of file are implementation-defined.

22 CHAPTER 2. THE PROPOSED DESIGN

Create(handle, name, kind): out_handle

Create() creates a new file as a child of the file pointed to by
handle. kind can be directory, storage or stream. The meaning
of stream kind is specific to the backend filesystem, and may be
unsupported. storage kind usually creates an ordinary file. After
successful call, out_handle points to the newly created file. Oth-
erwise, nil handle is returned and an error is indicated.

Unlink(phandle, name, uhandle): out_handle

Unlink() removes a child identified by name from the directory
pointed to by phandle. Additionally, if uhandle is not a nil handle
(which it can be), it must point to the file that is to be removed, oth-
erwise the operation fails. After successful call, out_handle points
to the file that has been removed, and uhandle is invalid (as if
Put() has been called on it). On failure, all handles remain un-
changed.

Move(source_handle, source_name,
dest_handle, dest_name, expect_handle?): nothing

Move() atomically removes a child of desc_handle, and at the
same time attaches it to the source_handle. Both handles must
be in the same filesystem. If the operation cannot be executed in
full, neither directory is changed. This should hold even in face
of transient failures (e.g. power outage), unless such guarantee is
impossible to implement for the given filesystem.

2.5 Bind operation

The endpoint filesystem servers only provide simple file trees. In order
to present user (or an application) with a single consistent namespace,
an operation is needed that joins multiple independent directories into a
single structure. For this purpose, the bind() operation has been created.

Compared to the standard mount() operation, bind() does not affect
the constituent directories in any way, so the binding has a purely local
effect. This is reflected in the fact that the operation actually creates a new
virtual directory, and returns a handle to this directory. It is not possible
for the bind() operation to affect other processes.

2.5. BIND OPERATION 23

It is also a method for creating union directories. It is possible to bind
multiple directories at the same location, or to bind a directory on top of
an existing non-empty directory. In such a case, the resulting directory
acts as a union of the components, as is explained bellow.

The bind() method has four parameters. First is the handle to the
file that serves as the base for the resulting union. Second is the path at
which a new file is bound (bindpath). Third is a handle to the file that is
to be bound (target). The last is one of TOP, BOTTOM and REPLACE.

To understand the operation, it is important to understand that it
affects not just the base directory, but the entire tree of which base is the
root. What it does is that it attaches the target into this tree at bindpath.

There are two possibilities. There may or may not exist a file at this
path already. If such a file does not exist, and no prefix of the bindpath
is a non-directory file, then the target will act simply as a descendant
of base at bindpath. Every previously unknown name along the path is
considered to be a directory with part of the path as a single entry.

If the file already exists, and the flag is set to REPLACE, then the re-
sulting tree behaves as if the file originally at bindpath has been replaced
with the target. In any other case, a union is created, by virtue of mul-
tiple files occupying the same path (we will call this as being stacked).
When a non-directory is stacked with a non-directory, and the flag is set
to TOP, then the file from target is used. Otherwise, the file from base is
used. When two directories are stacked, their entries are concatenated,
but any changes are reflected only in the topmost directory in the stack.
If a change would require changing more directories in a stack (for ex-
ample, unlink()ing an entry that is present in more layers), the changing
operation fails without modifying any file.

Finally, it is possible that a directory is stacked with a non-directory.
In such a case, the type of this file is reported as MIXED and most opera-
tions simply fail unconditionally. In order to use any of the stacked files,
the Select() method must be used.

Select() method expects a union as an argument, along with a nu-
merical index. It then returns a handle to a single layer of the stack, as
denoted by the numerical index. The topmost (writable) layer of the union
has index 0, with bottom-most layer having the largest index.

It is possible for the writable layer to not contain a file that is present
in one of the lower layers. If such a file is written to, it is transparently

24 CHAPTER 2. THE PROPOSED DESIGN

copied to the topmost layer, including creation of any ancestor directories.
This is called copy-up. There is one special case in which base is a nil
handle. What happens in such a case is that the nil handle acts as an
empty, unwritable directory. Everything else, however, works as usual.

An important part of this mechanism is that paths to the bound tar-
gets are considered to be directories for the purpose of returning direc-
tory entries and indicating MIXED nodes, but until the target file itself is
reached, they are not considered to be part of the stack. Thus, if a TOP
bind with a non-empty bindpath is made, the base is still the topmost
layer until the bindpath is walked in its entirety.

As has already been stated, the operation returns a new handle. The
original handles passed to the operation are unaffected, and their respec-
tive files have no knowledge of any bind() having been called. The result-
ing directory can later be used as an argument to the unbind() operation.
The operation takes the same path that has been used for the original
bind, and returns a new handle that behaves as if the original bind has
been undone.

Chapter 3

Implementation

In order to verify and evaluate various decisions made in the design pro-
cess, it was helpful to start implementing the ideas early on. As a results,
many areas of the implementation have been rethought and changed
(sometimes significantly). Several instances of such departures from the
original intention will be documented further on.

It was necessary to select a suitable platform for this implementa-
tion. Thanks to many interesting aspects of the system, HelenOS[13] was
selected. Even though this document reflects the latest iteration of the de-
sign, it is probable that it is not final and will further change, especially
based on feedback from the community. However, I do not expect any
significant changes in existing mechanisms to occur.

As a more debatable decision, I have chosen not to implement the
server itself using the traditional C programming language. Instead, the
Go language has been used. Although it required me to expend signif-
icant effort in order to use Go within HelenOS (which is out of scope
of this thesis), the safety and expressivity of the language has made
the actual prototype implementation easier, allowing me to disregard
many problems specific to the C language. It also allowed me to evaluate
the benefits and drawbacks associated with implementing critical system
components in a higher-level memory-safe programming language.

25

26 CHAPTER 3. IMPLEMENTATION

3.1 HelenOS

HelenOS is a relatively young open-source system which began as a stu-
dent project of Jakub Jermář on Faculty of Mathematics and Physics at
Charles University in Prague. It has since evolved into fairly usable, yet
still simple and incomplete system. It is a friendly platform for explor-
ing new ideas, and prides itself on being the most portable and modular
micro-kernel multi-server operating system currently being developed.
Being developed mostly through student projects and theses, the purpose
of the system is not to serve as an alternative to mainstream operating
systems, but rather to be a good platform for implementing new ideas
and experimenting with them, which has made it perfectly suitable as a
platform for this very thesis.

The core of the system is formed by a microkernel called Spartan,
which provides only the very basic services such as task management
(task being the resident name for processes), thread scheduling and syn-
chronization, virtual memory management, access to hardware, and fi-
nally, inter-task communication (commonly known as IPC). Most of the
abstractions that are usually the kernel’s responsibility are implemented
by separate isolated tasks, some of which are provided with extra privi-
leges by the kernel, in order to access hardware resources.

3.2 IPC primitives

Contrary to the past development in the area, which has come to favor
synchronous communication, recent Spartan versions only support asyn-
chronous IPC natively. The terminology of the system uses a phone call
metaphor, with a phone on one end and an answerbox on the other end.
In practice, the initiating task creates a phone connected to the destination
task’s answerbox. It can then send arbitrary number of calls. The initiat-
ing task can then continue with other work or wait for the reply. The calls
are stored in the destination answerbox until the task retrieves them. The
receiving task will process the call and send an answer, which is again
stored in the initiating task’s answerbox.

Normally, such a complicated protocol would create an undue bur-
den on the programmer, requiring a complex body of callbacks in all
places IPC is used. To eliminate this problem, there exist two mecha-

3.3. ADVANCED IPC MECHANISMS 27

nisms in the C library. The first is a concept of fibrils. A fibril is a unit
of execution that is scheduled cooperatively in userspace, with no inter-
vention or even knowledge from the kernel. Fibrils simply run in their
thread’s context and yield to other fibrils when they need to block for
some reason. Thus, there is M:N relationship between fibrils and thread.
There can be arbitrary number of fibrils with their own stacks and con-
texts, but usually only a single thread is created, and it is never useful
to create much more threads than there are processors (interestingly, the
Go programming language uses the exact same concept, except that it is
called Goroutines instead of fibrils).

The other piece of software that provides an efficient abstraction of
the IPC mechanisms is called the asynchronous framework. Because the
kernel does not understand the concept of fibrils, there is no natural way
to route IPC calls to them. The job of the async framework is to solve this
problem by employing dedicated manager fibrils. Manager fibrils are the
only ones that access the task’s answerbox, and it is their responsibility to
route the calls to their correct destination, be it a newly spawned handler
or a fibril waiting for answers. It is the async framework that manages all
the complex magic involved in asynchronous communication. It remem-
bers which fibril waits for which message and takes care of registering
relevant callbacks.

3.3 Advanced IPC mechanisms

Simple calls explained above would by themselves not be sufficient to
efficiently handle the requirements of real inter-task communication. For
this reason, there are several special kernel-known IPC methods which
encode a task’s intention to

• create a new connection

• copy a larger block of memory
(the standard call only allows sending several words of data)

• sharing a segment of memory

• negotiate a change of data maintained by a third party

These methods are predefined and kernel is aware of their meaning.
When the tasks successfully negotiate one of the above actions, kernel
automatically executes it. Additionally, calls can be forwarded to another

28 CHAPTER 3. IMPLEMENTATION

task, and as such it is possible to pass e.g. a data copy request across
several tasks, with only the endpoints participating in the actual copy.

Of much interest to us is that the last mentioned action, negotiat-
ing a third-party change, can be used to implement passing opaque and
unforgeable handles (maintained by a third-party server) between tasks.
Indeed, that is the exact use case for which the mechanism has been de-
signed. Note that the resulting mechanism can behave very much like
the generic concept of capabilities, except that neither the kernel, nor any
other task, need to enforce security. The server, as the only party that has
the means to execute a method on any handle, has all the authority it
needs to enforce secure access to resources it manages.

3.4 Original file system implementation

Similar to most of the system, HelenOS’s file system support is rather
spartan. It has a single central VFS server which acts as a switchboard for
filesystem implementations exposing specific storage devices. Thus, most
of the logic is encapsulated in a service specific to a filesystem type, and
every such service announces its availability to the VFS server, which in
turn makes the services available to all clients in the system.

The entire file subsystem is composed of three basic parts:

1. the VFS server itself

2. file system backends (endpoints) aided by the libfs library

3. client-side support implemented in the common C library

Being as it is now, HelenOS has no concept of users or user-level
protection. As such, all processes in the system share a single global
namespace and there is no support for file permissions of any kind —
every process has unlimited access to any file. Additional filesystems are
mounted into this global namespace in a manner mostly identical to that
of traditional UNIX — filesystem root simply replaces an empty direc-
tory. It is also possible for a single instance of a filesystem driver to han-
dle translation of many devices or for every device to have a dedicated
driver. VFS server itself keeps tabs on all the drivers and manages them
according to user’s wishes.

3.5. NEW FILE SYSTEM IMPLEMENTATION 29

3.5 New file system implementation

The separation into parts has been kept essentially the same. While it
was suggested that it might be interesting to spawn a server per name-
space, distributing the subsystem, I have not pursued this direction be-
cause of the inherent difficulties associated with completely decentraliz-
ing the core support. Interestingly, having VFS server explicitly handle
namespaces has recently proven to be unnecessary and even restrictive.

The endpoint filesystems have been purposefully changed to the least
extent possible. But because filesystems are no longer being registered
globally with the VFS server (one of the requirement being that any task
should be able to provide a file hierarchy without interfering with global
resources) some changes were necessary. Most of the modifications, how-
ever, were limited to the supporting libfs library.

As filesystems are no longer registered with a global service, it was
necessary to create a way to manage them on a per-instance basis. In
order to do so, a communication channel needs to be established between
the spawning task and the filesystem task. Standard IPC has shown to be
very inflexible for this purpose. Without further extensions to the API, it
is not possible for the filesystem task to be a server to another protocol
besides the FS protocol it implements, and creating IPC connection in
the other direction would require the parent to be a server, which would
counterintuitively cause several other problems. Instead, implementing
and using virtual pipes as the control connection was found to be the
best solution, given the currently available interfaces.

However, for receiving handles to devices for mounting, and con-
versely, sending back handles to the root directory, pipes normally can-
not be used. To work around this problem, two VFS methods have been
added to allow sending file handles across pipes. Although this solution
seems somewhat forced, it works well and so far no better solution has
been invented. As to how the control pipe is handed to the spawned task,
seeing how a filesystem driver has by itself no use for a file system, it
would be efficient to simply hand over the pipe at the task’s root “di-
rectory”. However, the actual implementation uses a more generic inbox
mechanism, which is explained in the next section.

Besides the server-side changes, the client-side support from the C
library also required some changes. The original design simply built the
VFS IPC interface to reflect standard POSIX file descriptors and meth-

30 CHAPTER 3. IMPLEMENTATION

ods. Since the redesigned VFS server does not follow POSIX conventions,
there is no longer a one-to-one correspondence between available meth-
ods and standard POSIX functions. To address this, an entirely new set of
functions has been introduced. Most of the functions directly reflect the
methods provided by the server, and several provide higher-level func-
tionality, but they are not intended to be used by end-user programs.
Instead, these functions are used to implement standard interfaces such
as the Standard IO Library, which is supposed to be used in most cases.
A thorough breakdown of available functions in provided as appendix A.

3.6 Inbox

There are several parts of the library that do not reflect any interface
but instead implement a mechanisms of their own. One such part is
the inbox. Most traditional systems have three special predefined files that
are present in every process. Those are the standard input, the standard
output and the standard error output. On POSIX-compatible systems,
these files even have fixed predefined file descriptor numbers of 0, 1, and
2, respectively. Additionally, POSIX allows the parent to specify a file to
be opened for a particular (arbitrary) descriptor number.

Here, inbox instead contains a map with arbitrary strings as keys
and file handles as values. The parent can set these named files in inbox
while setting up a new task to run. A number of predefined names exist
to accommodate for standard streams and other common files.

__stdin, __stdout, __stderr
The standard streams.

__root
The root directory.

__elf
The program binary that is running (mainly for debugging).

Applications can use any names not prefixed by two underscores, which
are reserved for use by system libraries. It is intended for shell to provide
means to easily put files in inbox, allowing to pass programs their re-
quired data without giving them access to any part of user’s namespace.
Note that sometimes it is not desirable to bind the files into the task’s
own private namespace, which would otherwise also be suitable.

3.7. SERVER 31

3.7 Server

That leaves us with the centerpiece of the entire subsystem — the server
itself. The entire server is rather small, consisting of about 3600 lines of
code, about 500 of which could be automatically generated (IPC boiler-
plate). The largest part is the support for union directories, accounting for
almost 1000 lines. As has already been stated, the entire server is written
in the Go programming language.

The code is separated in several files and an attempt was made to
make the implementation as modular as possible, making it easy to un-
derstand its structure and extend it. The core part takes care of registering
the server with the system and handling IPC messages.

vfs.go contains the basic initialization and part of the low-level IPC
handlers, while client_ipc.go holds the bulk of method handlers. The
handlers just decode parameters, call the appropriate methods and re-
turn answers. Most of the code in this file is highly repetitive and could
be replaced with declarative description, for automatic code generation.
However, no such tool has yet been designed for HelenOS’s IPC.

The methods doing the actual work are present in the client.go
file, and match the names of methods in client_ipc.go. The naming
scheme is that the real methods are named the same way their IPC proto-
col counterparts are (except that they do not possess the VFS_ prefix, and
are written in CamelCase, as per Go language conventions). IPC handlers
for each method are named the same, with the addition of a Call suffix.

Thus, for example, the IPC handler for the VFS_READ method would
be named ReadCall(), and the method called by this handler with proper
decoded arguments would be simply Read().

Both are methods of the ClientContext type, which contains all in-
formation specific to a particular client. Note that the management of
per-client data (in this case, pointer to the ClientContext object) is part
of the native async framework and is therefore not a concern for the server
implementation. Bindings for the async framework API are part of the Go
language port to the HelenOS system.

Each client has its numerical ID (exclusively used for debugging),
a channel for incoming file handles from other clients, and most impor-
tantly, a private table of live handles, which is protected by a mutex. The
table is a simple array of references to nodes, which is the server’s internal

32 CHAPTER 3. IMPLEMENTATION

representation of files. Each reference also stores the mode in which that
particular handle has been opened for IO, if it has been. The client-side
file handles are simply indices to this private array, and in order to access
any file, its node needs to be added to the client’s table. Since all IPC
methods only work with these numerical handles, it is not possible to
access any other files (except by circumventing the server altogether).

The nodes themselves are implemented as instances of the Node in-
terface (node.go). There can be (and are) multiple types implementing
this interface, making it possible to have several backends directly in the
server itself. This is used in the server to implement pseudo-files that
cannot or should not be implemented by endpoint filesystem drivers.

The most important implementation is the FSNode type (node_fs.go).
It represents a file provided by an endpoint file server (simply called
endpoint). Each node holds a reference to its backing FileSystem object,
which represents a connection to the endpoint and provides methods
to communicate with it. It also holds the numerical index of the repre-
sented file. Methods of the FSNode type are implemented by communi-
cating with the endpoint server. Each FSNode also contains a read-write
lock, which protects all operations on the file, which allows the endpoint
to have multi-threaded design without having to deal with synchroniza-
tion in most cases. This is supported by the requirement (enforced by the
VFS server) that every file is represented by at most one FSNode.

There is no global table of connected filesystems, since it is not nec-
essary. By registering with the server, the client providing the filesystem
receives a handle to the root node. Once all FSNodes belonging to this
filesystem cease to exist, the callback connection is terminated. On the
other hand, if the connection is terminated unexpectedly, for example
by the endpoint crashing, the nodes will simply respond with error to
any method call. However, there is no built-in way to detach a filesystem
which is still in use and running — if such an action is required (e.g. to
forcefully unmount a physical drive without risking data loss) this must
be done through the control connection of the endpoint server in ques-
tion, if such exists.

3.7. SERVER 33

3.7.1 Unions

Another type of nodes, besides FSNode, is the UnionNode (node_union.go).
As the largest part of the server, this node type implements stacked files.
Because file handles in this VFS design correspond directly to unopened
files and all operations are relative, it was necessary to create pseudo-
files that reflect the entire structure of a (sub-)namespace. In this manner,
UnionNode not only contains references to all files it immediately unites,
but also any unresolved binds that lexically belong to the subtree defined
by the node.

The important part is that all components of the union, including
the parts not yet reached, must honor the semantic defined by the spec-
ification. This is achieved by designing the node as an ordered list of all
its components, in order of binding. Every time a new file is bound, it
is prepended to the list of components as a tuple of relative bind path
and the target node. On every walk action, any nonempty bind paths are
walked if matching (or removed). Empty bind paths denote nodes that
are already part of the union. A special case is an opaque bind, which,
when resolved, removes all the binds that follow it in the list. When the
nodes need to be accounted for in order, the list is first traversed from top
to bottom, collecting top binds, then it is traversed in reverse, collecting
bottom binds. This ensures that opaque binds work as intended.

This implementation is fairly simple, and it is easy to see that it works
as expected. The only drawback is that it is fairly inefficient when many
files are individually bound at the same location with the same long path.
A more efficient representation (in both performance and memory use)
is possible in such case, but simplicity and obvious correctness of the
current implementation would be jeopardized by such optimizations. It is
possible to avoid this inefficiency by first constructing a virtual directory
immediately containing binds as children, and then binding the resulting
file at the long path.

3.7.2 Restricted nodes

The server provides means to create a restricted version of a handle al-
ready possessed by the client. This handle only gives its holder limited
authority. For example, it is possible to restrict a handle such that the
result is only usable for appending data, and every other action fails.

34 CHAPTER 3. IMPLEMENTATION

Although this restriction is conceptually a property of the handle, it
must not be possible to lift this restriction by using the node in a client-
agnostic context. For example, if the handle is used as a bind target, every
handle that results by walking the resulting union must be restricted the
same way. For this reason, the restriction may not be represented simply
in the client-local handle table. Instead, a special very simple node type
exists for this purpose.

This type is called RestrictNode (node_restrict.go). It is very sim-
ple, and wraps any other node object. It overrides several methods (specif-
ically, CREATE, OPEN, UNLINK, RESIZE, and MODE) to do an additional per-
mission check against a modifier stored in the wrapper. The RESTRICT
method simply wraps the node in this wrapper, and since there is no
way to “unwrap” the node, it is not possible to circumvent this restriction
when only holding such wrapped node, regardless of the context.

3.7.3 Virtual pipes

Finally, the server provides a special node type that implements virtual
pipes. Any pipe created by the MKPIPE method is an instance of PipeNode
(node_pipe.go). Also, FSNodes that represent named pipes internally use
PipeNode for IO, instead of passing data through the endpoint server.
However, this is only done when the endpoint explicitly requests the
server to do so. Stream files other than ordinary pipes are still imple-
mented by the endpoint itself.

3.7.4 Unfinished work

There are several problems that have not been satisfiably resolved, and
several intended features that I have not been able to implement, yet.

One of the unresolved problems is directory unlinking. In traditional
UNIX systems, directories are removed recursively, and only an empty
directory can be unlinked. This works well as long as you expect every
file to have a well-defined path inside a file system. However, with en-
tire directories being accessible as opaque handles, instead of names, it
is natural to expect that any any process already working with a direc-
tory should retain it even if it is no longer part of the filesystem’s root
namespace. If this expectation is to be uphold, a problem arises of how

3.7. SERVER 35

to deal with garbage collection, and how to implement this correctly in
every filesystem.

Also related to unlinking, but in a different area, is removing read-
only files in writable unions. In the prior description, this has been stated
to be impossible, but in a writable stacked directory, it is often useful to
allow this. In existing implementations of stacked filesystems, a concept
called whiteout is used. In its most sophisticated variant, it requires the
writable layer to support special attributes for directory entries. Some en-
tries can then be marked as explicitly “removed”, instructing the system
to hide that entry in any further layer. Whether and how to support this
in HelenOS is an open question.

Then there are several technical challenges. One of the potentially
very useful, but yet unsupported features, is explicit file locking. So far,
file is locked only implicitly on some operations. For some applications,
it would be very convenient to be able to synchonize work on a file ex-
plicitly, across multiple calls.

Another important feature is an ability to map files into the virtual
address space. Among other things, this can be used to efficiently and
easily share the program binaries and libraries, reducing memory con-
sumption. However, in order to implement this in a multi-server system
such as HelenOS, a support from the kernel is necessary, and this support
is not present at the moment.

Perhaps the most important issue is the way various other parts of
the system work with IPC. Specifically, there are global services for reg-
istering IPC servers, which makes it difficult to enable per-user services
without reworking these parts of the system first. Also, currently every
task has access to every registered service, making it conceptually pos-
sible to bypass the VFS server in access to physical storage. Not only
that, but also some other mechanisms can be used unhindered by any
task, regardless of relationships (for example, kill() call). This must be
addressed before any security can be considered.

Last but not least, while the VFS server to endpoint protocol has
been left almost unchanged during this work, for the sake of limiting the
effect of changes on specific filesystem implementations, some changes in
this protocol will eventually need to be made to enable new features and
remove no longer needed logic.

36 CHAPTER 3. IMPLEMENTATION

3.8 User shell changes

As with any change whose goal is to improve an important part of a
system, care must be taken to make sure other component work with
it correctly and utilize the full potential. In this case, the structure of
the system itself must account for the new mechanisms, otherwise the
implementation itself would become almost meaningless.

Without further experience with running the system, it is difficult to
speak about specific changes to the environment, since every change will
be tested and eventually improved based on that experience. However,
I will try to present several concepts that can serve as a foundation for
future work.

Most obviously, several commands for mounting and binding filesys-
tems need to be implemented. Not so obviously, since the management
of available filesystem drivers has been removed from the VFS server, a
framework for this use needs to be designed and implemented.

3.8.1 Applications and Profiles

One of the original goals of this work was to provide a mechanism that
could “mimic” traditional user accounts (at least in the area of data pro-
tection) without the inherently limiting concept of per-file access control.
Another, closely related goal, was to allow a per-application, per-task re-
strictions on accessible files.

In most situations, the system should work as follows: The most priv-
ileged parts of the system see all the files accessible to it. Let us call this
collection of files the root namespace. When a user logs in, the user’s shell
that acts on behalf of users direct input has access to the user namespace,
which is a strict subset of the root namespace. Then, every application ex-
ecuted by said user has its own application namespace, which is composed
of a strict subset of the user namespace.

Application namespace itself has two parts. One is the resources ev-
ery instance of the application implicitly acquires. This can be configu-
ration files, external resource files, everything the application needs to
function. Additionally, a task as a specific instance of the application can
be granted access to additional files. For example, a document for a docu-
ment reader, an image, a movie, etc. Application should not have implicit

3.8. USER SHELL CHANGES 37

access to all the files it can work with, but instead, the access should be
granted by the shell in response to user’s request.

Given the discussed capability-like nature of handles-as-designed, it
is easy to restrict any task to a limited set of files. In the extreme case,
task can have access to no files at all. Therefore the question is, how to
provide the access to files that the task is supposed to access. The simplest
answer to this question is text-based configuration. By enumerating all
the resources a user/application/service needs in a text file, the login
program and application execution are suddenly reduced to interpreting
text files, making them extremely simple. For each agent, a text file would
simply define the relationship between the parent namespace and the
child namespace.

Of course, there are programs that do not usually need a name-
space. Most command-line interface utilities only access files explicitly
mentioned in the command line, and can be regarded as shell subrou-
tines rather than full-blown applications. It would therefore be beneficial
to distinguish the two types of programs, separately working with com-
mands and applications. Commands do not have a namespace, instead they
share the namespace of the parent shell. They do not have any data of
their own, and they are accessible from within applications (for exam-
ple, using the system() C-language call). On the other hand, applications
have their own namespace, populated only with application-specific data
and shared files, such as command binaries. Of course, commands can be
complex programs and should not always be allowed access to the name-
space, if it can be avoided. However, it should be very easy to enforce
such restrictions using shell script wrappers.

By properly designing a directory structure, it is possible (and easy)
to have a version of everything at every level of the hierarchy. For exam-
ple, the root namespace can have a default configuration for every appli-
cation available to all users, and a set of commands available to all users
and application. Every user can have a configuration for every application
(including possibly private applications), and a set of commands private
to the user and his applications. Finally, every application can have its
own private commands in addition to that provided by the system and
the user. Thus, the system follows a kind of a recursive structure.

38 CHAPTER 3. IMPLEMENTATION

Chapter 4

Conclusion

There have been several goals for this thesis. One was to evaluate and
improve upon file system abstraction implementations derived from the
traditional UNIX file system. I have explained that there are serious flaws
in UNIX-like systems, and that although some more recent systems ex-
pended significant effort to improve technical realization of the file sys-
tem, none of them reflect the security requirements of now ubiquitous
consumer-grade systems on the file system level.

I have proposed a way to address the perceived deficiencies by re-
designing the programming interface for accessing files and introducing
several new operations. The changes to the already existing operations
reflect the move from traditional file descriptors towards the concept of
file handles as nameless “pseudo-capabilities”1. Thanks to this change,
files do not have any implicit name, and any naming is a local informa-
tion. It is natural to set one such handle as the root directory, and doing
so implicitly creates process-specific namespaces, allowing every process
to have a distinct set of accessible files.

The bind() operation has been proposed, as a way to combine multi-
ple filesystem hierarchies into a single tree, but without making any glob-
ally visible changes to the constituent trees. This operation is presented
not only as a replacement for the unsuitable UNIX mount() operation,
but also as a tool for constructing and customizing user and application
namespaces. The combination of the proposed concepts then allows a
natural implementation of the principle of the least privilege, simply by
providing a text-based manifest of files available to the user/application.

1The underlying system does not need to support the general concept of capabilities.

39

40 CHAPTER 4. CONCLUSION

Based on this proposed design, I then created a prototype implemen-
tation of the concept. Apart from demonstrating the practical usefulness
of the proposal, the implementation also serves as an experimental at-
tempt at using a high-level language for implementing a critical system
component. Although it was not a focus of this thesis, the implementation
has shown both benefits and drawbacks of using the Go programming
language in the context of core system programming, and shows that
although replacing C in this area comes at a cost, this cost may be small
enough to be offset by the gains in terms of reliability and maintainability.

For the purposes of the stated goals of this work, I have achieved ev-
erything I intended to. However, the work is very far from being finished.
While the basic protocol and the server are present, only rudimentary
support has so far been added to the user shell itself. In order to fully
utilize the implemented mechanisms, it will be necessary to implement
proper tools and policies.

Because the proposed framework removes certain useful possibilities
available in the traditional UNIX system, such as controlled file sharing
among users, it is also likely that additional services will be created to
provide the missing functionality. Although the need for additional ser-
vices in this case may seem like a setback, it has an objective benefit in
that it is possible to provide much more features without cluttering core
subsystem with rarely used features.

Eventually, after HelenOS’s flaws in inter-process isolation are fixed,
the implemented services can be used to provide full-featured and secure
user accounts, and also a secure environment to run every application in
its own limited “sandbox”, both using the same mechanism. This will of
course mean a lot more experimenting with various ways to achieve this,
but the basic tools have been introduced, so it will probably not take long
until the first proofs-of-concept are released.

Bibliography

[1] TANENBAUM, Andrew S.; WOODHULL, Albert S. Operating sys-
tems: design and implementation. 3rd ed. Upper Saddle River, N.J.;
Pearson Prentice Hall, c2006, xvii, 1054 s. ISBN 0131429388.

[2] TANENBAUM, Andrew S. Modern operating systems. Englewood
Cliffs, NJ: Prentice-Hall, 1992.

[3] SHAPIRO, Jonathan S.; SMITH, Jonathan M.; FARBER, David J.
EROS: a fast capability system. ACM, 1999. Available at http://
eros-os.org

[4] GENODE: Operating System Framework [online]. 2013 [cit. 2013-05-11].
Available at http://genode.org/

[5] BROWN, Neil. Ghosts of Unix past, part 3: Unfixable designs. In:
LWN.net [online]. 2010-11-16 [cit. 2013-05-11]. Available at http:
//lwn.net/Articles/414618/

[6] What Is the GNU Hurd? [online]. 2013 [cit. 2013-05-11]. Avail-
able at http://gnu.org/software/hurd/hurd/what_is_the_gnu_
hurd.html

[7] WALFIELD, Neal H.; BRINKMANN, Marcus. A critique of the GNU
Hurd multi-server operating system. ACM SIGOPS Operating Systems
Review, 2007, 41.4: 30-39. Available at http://gnu.org/software/
hurd/hurd/critique.html

[8] PIKE, Rob, et al. Plan 9 From Bell Labs. In: Proceedings of the summer
1990 UKUUG Conference. 1990. p. 1-9. Available at http://plan9.
bell-labs.com/sys/doc/

[9] PIKE, Rob. Lexical file names in Plan 9 or getting dot-dot right. In: 2000
USENIX Annual Technical Conference. 2000. Available at http://
plan9.bell-labs.com/sys/doc/

41

http://eros-os.org
http://eros-os.org
http://genode.org/
http://lwn.net/Articles/414618/
http://lwn.net/Articles/414618/
http://gnu.org/software/hurd/hurd/what_is_the_gnu_hurd.html
http://gnu.org/software/hurd/hurd/what_is_the_gnu_hurd.html
http://gnu.org/software/hurd/hurd/critique.html
http://gnu.org/software/hurd/hurd/critique.html
http://plan9.bell-labs.com/sys/doc/
http://plan9.bell-labs.com/sys/doc/
http://plan9.bell-labs.com/sys/doc/
http://plan9.bell-labs.com/sys/doc/

42 BIBLIOGRAPHY

[10] PENDRY, Jan-Simon; SEQUENT, U. K.; MCKUSICK, Marshall Kirk.
Union mounts in 4.4 BSD-lite. AUUGN, 1997, 1.

[11] BROWN, Neil. Ghosts of Unix past, part 2: Conflated designs. In:
LWN.net [online]. 2010-11-04 [cit. 2013-05-11]. Available at http:
//lwn.net/Articles/412131/

[12] BROWN, Neil. Ghosts of Unix past, part 4: High-maintenance designs.
In: LWN.net [online]. 2010-11-23 [cit. 2013-05-11]. Available at http:
//lwn.net/Articles/416494/

[13] HelenOS project. Documentation. Available at http://helenos.org/
documentation

http://lwn.net/Articles/412131/
http://lwn.net/Articles/412131/
http://lwn.net/Articles/416494/
http://lwn.net/Articles/416494/
http://helenos.org/documentation
http://helenos.org/documentation

Appendix A

Provided C-language functions

In order to allow other programs access to services provided by the VFS
server, a number of functions is provided in the core C library. Because the
semantics of the operations do not match any standard API, most func-
tions are modelled to match the IPC interface directly. Other file-access
libraries, such as standard POSIX functions or the <stdio.h> library, are
implemented by calling these functions.

Apart from programs that need to use operations specific to the sys-
tem (bind shell command, for example), most applications should use the
standard IO library to access files. The POSIX API was previously the ba-
sic interface to VFS server’s functionality, but now that it is just another
wrapper for a lower-level interface, it is intended that its use is replaced
with the standard IO library and the functions will be eventually moved
to the POSIX compatibility library (libposix).

A.1 Conventions

There are two groups of functions — one group models the IPC calls made
to the server, the other group implements additional functionality (such
as path lookup relative to the current working directory, which is repre-
sented entirely in libc).

Functions of the first group are prefixed with file_. The others are
prefixed with path_. Functions of the first category follow a rigid form.
Except for a few exceptions, they return an integer return value which is

43

44 APPENDIX A. C FUNCTIONS

purely used for success/error code. Functions that return a new handle
do so by means of the last parameter, which is passed as a variable ad-
dress. The first parameter is always the handle on which the operation is
done, if applicable.

A.2 Header files

There are several header files, each containing prototypes for a part of the
API. They are all in the vfs directory.

<vfs/abi.h> Contains all the constants and types used in the code. May be moved
to a more conventional location.

<vfs/file.h> Mostly functions that map to the IPC method calls.

<vfs/path.h> Wrapping functions that use path parameters instead of handles.

<vfs/dir.h> Functions for reading directory entries (similar to, but more conve-
nient than <dirent.h>).

<vfs/inbox.h> Implementation of the inbox mechanism, as explained in section 3.6.

A.3 Function listing

A.3.1 <vfs/file.h>

file_t file_clone(file_t file);
int file_put(file_t file);

int file_walk(file_t base, const char *path, file_t *result);
int file_bind(file_t base, file_t file, const char *path,

file_bind_flags_t flags, file_t *result);
int file_unbind(file_t base, file_t file, const char *path,

file_unbind_flags_t flags, file_t *result);
int file_select(file_t base, int index, file_t *result);
int file_restrict(file_t base, file_mode_t mode,

file_t *result);

int file_open(file_t file, file_mode_t mode);

A.3. FUNCTION LISTING 45

int file_read(file_t file, uint64_t *entry, uint8_t *buffer,
size_t *bytes, unsigned *ver);

int file_read_all(file_t file, uint64_t *entry,
uint8_t *buffer, size_t *bytes);

int file_contents(file_t file, uint8_t **buffer,
size_t *bytes);

int file_write(file_t file, uint64_t *entry,
const uint8_t *buffer, size_t *bytes);

int file_write_all(file_t file, uint64_t *entry,
const uint8_t *buffer, size_t *bytes);

int file_resize(file_t file, uint64_t entries);
int file_sync(file_t file);

int file_create(file_t parent, const char *name,
file_type_t type, file_t *result);

int file_unlink(file_t parent, const char *name, file_t expect);
int file_move(file_t old_parent, const char *old_name,

file_t new_parent, const char *new_name);

int file_mkpipe(file_t *result);

int file_stat(file_t file, file_info_t *info);
int file_attr_get(file_t file, file_attr_t attr,

int64_t *result);
int file_attr_set(file_t file, file_attr_t attr, int64_t val);
int file_debug_string(file_t file, char *buffer,

size_t buffer_size);

/* Create an IPC connection to a service (/dev filesystem). */
int file_session(file_t file, exch_mgmt_t mgmt,

async_sess_t **session);

/* Registration for endpoints. */
void file_fs_set_handler(async_client_conn_t receiver);
int file_register(file_system_info_t *info, void *userdata,

file_t *result);

int file_pass_handle(file_t file, async_exch_t *exch);
int file_receive_handle(file_t *result);

46 APPENDIX A. C FUNCTIONS

A.3.2 <vfs/path.h>

typedef enum path_lookup_flags {
PATH_LOOKUP_CREATE_FILE = 1,
PATH_LOOKUP_CREATE_DIR = 2,
PATH_LOOKUP_MUST_CREATE = 4,
PATH_LOOKUP_CREATE_PARENT = 8,

} path_lookup_flags_t;

/* Creates a canonical absolute path
* from base and relative path.
*/

char *path_absolutize(const char *base, const char *path,
size_t *retlen);

/* Utility functions for working with paths. */
char *path_split_base(char *path);
char *path_fragment(char **path);

/* CWD management. */
const char *path_get_current(size_t *retlen);
int path_set_current(const char *path);

/* Task’s local root directory. */
file_t path_root(void);
void path_root_set(file_t file);

/* Path-based lookup function for files. Relative to CWD.
* Can create a new file, including directories.
*/

int path_lookup(const char *path,
path_lookup_flags_t flags, file_t *result);

/* Path-based bind function.
* Binds to the current root directory.
*/

int path_bind(const char *path, file_t file,
file_bind_flags_t flags);

A.3. FUNCTION LISTING 47

A.3.3 <vfs/dir.h>

typedef struct dir *dir_t;

int dir_open(file_t file, dir_t *d);
int dir_read(dir_t d, const char **entry);
int dir_rewind(dir_t d);
int dir_close(dir_t d);

A.3.4 <vfs/inbox.h>

enum {
INBOX_MAX_ENTRIES = 256,

};

file_t file_inbox_set(const char *name, file_t file);
file_t file_inbox_get(const char *name);

int file_inbox_list(const char **names, int capacity);

48 APPENDIX A. C FUNCTIONS

Appendix B

The Go programming language
and libraries

As has been stated in chapter 3, Go has been chosen as the implemen-
tation language. Given the prominence of C in the area of system pro-
gramming, this may be somewhat surprising. However, I believe that in
order to create reliable systems, C must be abandoned. C is dangerous.
There are many more hard-to-discover problems in C programs than in
any other widely used language. To name a few

• The results of integer operation are undefined when an overflow
would normally occur. In name of performance, these pathological
cases are left undetected.

• Manual memory management and pointer arithmetic makes it ex-
tremely easy to access invalid memory regions. Newcomers to the
language spend months or years understanding the mechanisms.
Invalid pointers can be easily left behind after an object has been
destroyed.

• No boundary checks on arrays. Buffer overflows are among the most
common sources of security weaknesses in C programs.

• No implicit memory initialization.

Apart from outright reliability problems, maintainability of C pro-
grams is also questionable. There is no support for modules or names-
paces. No methods. Some parts of the syntax have long been known to
be badly designed (for example, type definitions). Preprocessing direc-
tives are badly integrated into the language and make any conditional

49

50 APPENDIX B. THE GO LANGUAGE

compilation difficult to understand.

To sum it up, C is a good fit for small pieces of very performance-
sensitive code. In a subsystem bounded by IPC overhead and hard drive
accesses, raw CPU performance is probably not an issue, and more care
should be taken to use reliable tools. Go language provides garbage-
collected environment with improved syntax, well-defined overflow con-
ditions, methods, interfaces, native support for concurrency, arrays with
bounds-checking and most importantly, it is impossible to produce mem-
ory faults in pure Go code, since there is no pointer arithmetic (which is
unnecessary in ordinary programs).

All information and resources about the language are located online
at http://golang.org/.

B.1 Porting the runtime

Since both implementations of the language are targeted at systems com-
patible with POSIX, it was necessary to first port the runtime library to
HelenOS. There are currently two production-quality implementations —
the gc compiler based on Plan 9 compiler toolchain, and a gcc frontend
called gccgo.

Both compile the source to the native binary code, and each has a
compiler-specific runtime library implementation. Because of the lim-
ited number of platforms supported by the gc implementation, I chose
to try porting the gccgo runtime. This is also because the gcc toolchain
is already integrated into the HelenOS build scripts. The largest problem
present was the amount of platform-specific code in the runtime.

The first area that was necessary to replace was the goroutine imple-
mentation. Goroutines are a concept similar to threads, except that they
are scheduled internally by the library in the context of much fewer real
threads. This means Go uses a M:N threading model, and the scheduler
implementation is quite complex and tightly related to the way Linux
system calls are called. Interestingly, HelenOS already has an exact same
concept of fibrils, which can be used as a near drop-in replacement for
the original implementation, allowing Go programs to call libc functions
(some of which internally depend on the fibril implementation) from Go
code. The original implementation uses platform-specific hacks to mimic

http://golang.org/

B.2. FITNESS FOR THE PURPOSE 51

asynchronous execution for blocking system calls. Since HelenOS IPC is
inherently asynchronous, it is unnecessary to make any such provisions.

Another platform-dependent part of the runtime is the memory heap
implementation, which depends on the ability to allocate a huge span
of virtual address space. When I started working on the port, HelenOS
did not support allocating spans of address space without committing
physical memory. Due to this, it was necessary to make the heap seg-
mented, making it more complicated and slower. Recently, support for
late-reserved memory areas was introduced to HelenOS, which means it
was possible to revert the implementation to its original form.

Unfortunately, there are still several parts of the runtime that I have
not had time to implement properly. For example, exception handling,
or function calls through reflection. Since the missing parts correspond
to functionality not necessary for most programs, it was still possible
to implement VFS server with it, which was the main goal. This single-
sightedness is a reason for ignoring several other problems until the thesis
is complete, which means the port is not yet ready to be widely used.

Apart from the runtime library itself, the Go standard library con-
tains a lot of mostly platform-agnostic packages. The packages using sys-
tem calls (“os” and “net”) were partly reimplemented to use correct calls,
but otherwise, most of the libraries work completely unchanged.

B.2 Fitness for the purpose

Objectively, Go is a superior implementation language thanks to its safety
guarantees and features not present in C, but there are several concerns
that need to be accounted for. It is a young language, with only two differ-
ent implementations, the main one only supporting three most common
processor architectures. This is a big difference from C, which can be
cross-compiled to virtually any platform.

Another problem is that, being as young as it is, the resulting bina-
ries are often inefficient. When speaking about raw performance and low-
level optimization, this problem does not affect the gccgo implementation
so much, but it is still very inefficient in its management of memory ob-
jects. Go does not explicitly discern heap memory from stack memory, so
allocation is subject to pointer escape analysis. Without advanced cross-
function analysis, many cases in which a C program would use stack

52 APPENDIX B. THE GO LANGUAGE

allocations are translated as heap allocations, increasing the pressure on
garbage collector. An example of this is the server itself, as it allocates
thousands of objects per second when in use, although most of the code
paths do not need any garbage-collected memory. It is also very difficult
to avoid this problem, even when the code is optimized with this specific
problem in mind.

Regardless, I expect that further improvements to the compilers and
runtimes will eventually remove the problems I encountered, while the
language semantics are a good fit for reliable system components.

Glossary

application A program, or a collection of programs, whose purpose is
providing a self-contained environment for a particular task. For
example, WWW browser, file manager, e-mail client, vim.

bind An operation whose purpose is to make a file accessible under a
new path.

chroot A UNIX operation that changes a perceived filesystem root for a
particular process.

command A program whose purpose is extending the functionality of
user interface, by executing a single action on behalf of the user. For
example, UNIX commands grep, cat, ls.

endpoint (filesystem) See translator.

file An operating system’s representation of a named fragment of persis-
tent memory.

file system (In this document.) A collection of services provided by the
operating system, whose primary purpose is presenting permanent
memory devices as collections of files.

filesystem (In this document.) A data format describing the way files are
represented on an addressable permanent memory device. Alterna-
tively, a service that implements access to some specific format.

IPC Inter-Process Communication. A mechanism used for sending mes-
sages among otherwise isolated processes. Always implemented by
the kernel.

kernel A non-terminating program that provides the core services with-
ing an operating system.

mount A traditional UNIX operation whose purpose is to interpret a

53

54 GLOSSARY

storage device as a filesystem and attach it to the system’s name-
space.

namespace A collection of files accessible by name in a process.

node The system’s representation of a file.

operating system A program, or a collection of programs, that provide
abstract computing interface on top of a physical digital system. See
section 1.1.

overlaying See union.

POSIX A standardization effort aiming at providing a solid common
ground for all UNIX implementations.

protected mode A processor mode with a restricted set of runnable in-
structions, provided to prevent program from manipulating sensi-
tive resources.

server (In the context of microkernel systems.) An independent program
that provides part of the operating system’s functionality. A micro-
kernel operating system can be seen as a collection of the kernel and
multiple separate servers.

translator A server that usually interprets a physical device and makes it
accessible as a file hierarchy. It “translates” between different levels
of abstraction.

union A way to present multiple separate file trees as a single combined
tree, by virtue of overlaying the directory structure on top of each
other.

UNIX An operating system originally developed in 1969 at Bell Labs,
which introduced many now ubiquitous concepts and has been
adapted into many different systems in use today.

VFS Virtual File-System. An abstraction layer that present many different
physical filesystem formats under a single uniform programming
interface. Part of an operating system.

	Introduction
	Preliminaries
	Operating systems
	General overview
	Microkernel vs. Monolithic
	File systems
	Existing systems
	Traditional UNIX / POSIX
	GNU Hurd
	Plan 9 from Bell Labs
	4.4BSD-Lite

	Summary

	The proposed design
	Requirements
	Filesystems
	Files
	Storage files
	Stream files
	Directories

	File handles
	Access permissions
	Methods

	Bind operation

	Implementation
	HelenOS
	IPC primitives
	Advanced IPC mechanisms
	Original file system implementation
	New file system implementation
	Inbox
	Server
	Unions
	Restricted nodes
	Virtual pipes
	Unfinished work

	User shell changes
	Applications and Profiles

	Conclusion
	Bibliography
	C functions
	Conventions
	Header files
	Function listing
	<vfs/file.h>
	<vfs/path.h>
	<vfs/dir.h>
	<vfs/inbox.h>

	The Go language
	Porting the runtime
	Fitness for the purpose

	Glossary

