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Introduction

QEMU is an application that emulates real machines and thus allows a machine
code targeted for one hardware platform to be executed and debugged on an-
other platform. This renders QEMU a very useful tool for the development of
any operating system. By facilitating QEMU to run on HelenOS, it will give He-
lenOS (with the already ported GNU C compiler) the ability to create a sufficient
environment to develop and test not only itself, but also other operating systems.

QEMU offers virtualization on Linux hosts. This thesis will examine the steps
necessary to implement virtualization in HelenOS and to prepare the ground for
using QEMU as a hypervisor on HelenOS in the future.

Through the process of porting, HelenOS’s support for the POSIX API will
be extended and thus the porting of different POSIX compliant applications will
be easier in the future. This thesis will also serve as a proof of the maturity and
practicality of HelenOS as an operating system.

Goals

The main goal of this thesis is to create a prototype of a port of QEMU to
HelenOS, thus allowing:

• emulation of PC platforms (x86 and x86-64) on HelenOS,

• testing of HelenOS inside HelenOS,

• interaction with systems running in QEMU,

• running of other operating systems inside HelenOS,

• extension of HelenOS and its support of the POSIX interface.

The thesis will discuss which features of QEMU are necessary to achieve the goals
outlined above and what would be necessary for supporting the rest of the features
of QEMU in the future. The prototype is focused on emulating PC platforms on
PC platforms (x86 and x86-64).
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1. Development context

This chapter describes HelenOS and the parts of it that are affected by this thesis.
It also describes QEMU and its architecture.

1.1 HelenOS

HelenOS [1] is an operating system implemented on top of a microkernel called
SPARTAN. It began as a project of the Faculty of Mathematics and Physics at
Charles University and it has been developed since then partly thanks to the
theses completed at the faculty and partly on a private basis by some of the
members of the HelenOS community. HelenOS is one of a few microkernel based
operating systems supporting a large variety of platforms – e.g. x86, x86-64,
IA-64, PowerPC, ARM and MIPS.

1.1.1 Microkernel

The aim of a general microkernel based operating system is to move the responsi-
bility for fulfilling low-level tasks to the user space part of the operating system,
thus keeping the kernel as small as possible. This helps to keep the kernel code
clean and lowers the probability of introducing bugs into the code. The features
supported by the HelenOS kernel can, therefore, be limited mainly to virtual
memory management, multitasking and inter process communication (IPC).

1.1.2 IPC and fibrils

One of the functionalities that user space applications need from the kernel is the
ability to communicate between each other while preserving the security of the
environment (tasks do not share their address spaces). As a means of communica-
tion between multiple processes, IPC is used on most of the modern microkernel
systems. The kernel of HelenOS offers syscalls specifically designed to implement
IPC. The C library (also called standard library) in the user space of HelenOS
takes advantage of these syscalls to offer a well designed API to be used to com-
municate between user space tasks.

To achieve lighter parallelism compared to the kernel threads, and to optimize
performance when IPC calls are used, fibrils were introduced in the C library of
HelenOS. Every kernel thread executes one fibril. Whereas kernel threads are
scheduled by the kernel in a pre-emptive way, fibrils are scheduled cooperatively
and the kernel does not participate in their scheduling. Fibrils are switched on
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the occasion of: “calling fibril_yield function, waiting for an IPC reply that
has not yet arrived, requesting an IPC operation that results in blocking the
underlying kernel thread, underlying kernel thread being scheduled [2]”.

1.1.3 Synchronization primitives

With parallelism there comes a need to have synchronization primitives. HelenOS
user space offers different synchronization primitives. For the synchronization of
kernel threads HelenOS provides futex (fast mutex). Fibrils can be synchronized
using fibril_ synchronization primitives – e.g. mutex, condvar, rwlock. The
fibril synchronization primitives use one futex to protect their structures and can
therefore be used in an environment where fibrils are scheduled among multiple
kernel threads.

1.1.4 Virtual File System

One of the user space services provided in HelenOS is the Virtual File System
(VFS) service. The VFS serves as a proxy between the functions manipulating
file descriptors in the C library and specific file system drivers. HelenOS supports
numerous file systems – e.g. fat, ext, udf, tmpfs and locfs. Not every file system
on HelenOS is used to store actual data. An example of such a file system
is locfs which is designed to create something similar to a UNIX pipe between
applications and services in HelenOS. Writing to (or reading from) stdout (or
stdin respectively) when the console is used for a standard input/output (I/O)
of an application actually results in writing to (or reading from) a file node
dedicated to the console service in the locfs file system. More details about
HelenOS’s VFS service can be found in [3].

1.1.5 Coastline

The official repository of the HelenOS source code [4] contains the microkernel
and essential user space applications and libraries. Prior to this thesis, there had
already been successful attempts to port applications from platforms compliant
with the POSIX specification [5] to HelenOS. These applications are not part of
HelenOS, yet it is desirable to store the procedures of their cross compilation and
to create a friendly POSIX compliant environment where new applications can
be ported. This task is the responsibility of HelenOS Coastline.

HelenOS Coastline consists of packages, each of which contains a HARBOUR

script that is used for the compilation, packaging and installation of the appli-
cation to HelenOS. The packages can depend on one another and their sources
can be downloaded from the Internet. The compilation, packaging and installa-
tion process is controlled by the hsct.sh script that executes functions in the
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HARBOUR scripts of the manipulated packages. Each HARBOUR script can take
advantage of the shell interpreter and standard utilities such as patch. The
whole idea is inspired by the makepkg utility from the ArchLinux distribution.
At the end of the implementation of this thesis every application and library
which has been ported will have its own package in the HelenOS Coastline.

1.1.6 POSIX support

To create a POSIX environment for the ported applications the libposix li-
brary was created. This library holds functionalities typical for POSIX which
were not desirable to be part of the C library. Some of the functions in the C
library of HelenOS collide with functions from the POSIX specification – they
have the same names, but different API and sometimes their functionality differs
as well.

To be able to use these functions in the POSIX library, all the conflicting
functions in the POSIX library are prefixed with text posix_. After linking of
the POSIX library three libraries are created – libposix, libposixaslibc
and libc4posix. The libraries libposixaslibc and libc4posix are used
to link applications in Coastline and their symbols are redefined in such a way
that the posix_ prefix is removed from the symbols in the libposix and
a prefix __helenos_libc is added in front of the symbols in the C library.
In this way, it is ensured that applications in Coastline use the POSIX version
of the C library, but the HelenOS C library can be independent of the POSIX
specification.

The proof of independence of the C library on the POSIX layer can, for
example, be observed on the error codes. The C library in HelenOS makes use
of signed returned value types. Usually, only positive values are returned when
a function finishes gracefully, that is why negative values are used for the error
codes. Error codes used by the POSIX specification are assigned positive values
and the functions, therefore, use multiple ways of indicating an error, depending
on their arguments and their standard return value. This is also one of the
obstacles that needs to be resolved when porting POSIX compliant applications
to HelenOS.

1.1.7 Plain C Unit Testing framework (PCUT)

The PCUT framework is a unit testing framework created by Vojtech Horky to
facilitate the testing of applications written in the C language. It can be found
at [6]. This framework is used in HelenOS to test applications and libraries in
user space. One executable file is created for each library or application, this
executable file contains multiple test suites, each test suite contains multiple
tests. When the executable file is run in HelenOS, all the suites with all their
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tests are executed. The number of failed tests for each suite is reported. Timeout
can be set for each test to discover deadlocks or major performance issues in the
code. It is desirable that this thesis will make use of this framework to test the
newly implemented functionalities.

1.2 QEMU

As described in the Introduction chapter, QEMU is an application that gives users
the ability to create an emulated or virtualized machine. Dynamic translation
is used to achieve a good performance of QEMU in the emulation mode. There
is no official documentation of the source code or overall architecture of QEMU.
Therefore, a description of the architecture has to be based on exploring the code
and reading the notes of the developers of QEMU, which usually refer to the older
versions of QEMU.

QEMU offers additional features to help with the debugging of the guest code,
one of which is the QEMU monitor. The QEMU monitor is a communication
port, usually in the form of a window with a prompt, giving users the ability to
retrieve information about the emulated machine – e.g. retrieve the actual values
of the CPU registers, or to send special commands manipulating the emulated
hardware – e.g. pause or stop the emulation.

Another feature QEMU provides to facilitate the debugging of the guest code
is the in-built GNU Project Debugger (GDB) server. This server listens on the
specified TCP port for a connection from GDB. GDB can then be used to connect
to QEMU and to step the code that is currently being executed in QEMU or to
print the values of the variables used in the executed code.

1.2.1 Supported platforms

QEMU can be used on two different platforms. With the usage of the MinGW
compiler chain QEMU can be compiled and run on Windows. However, its main
targets are Linux distributions. This is also demonstrated, for example, by the
fact that the virtualization mode is supported only on Linux hosts through the
usage of the Kernel-based Virtual Machine (KVM) kernel module. QEMU’s
main dependency is the GLib library that supports both of the platforms. The
functionality provided by this library is used to create a platform independent
code in some parts of the source code of QEMU.
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1.2.2 Architecture

QEMU needs to be responsive to react to user input, process emulated timers or
to respond to commands in the monitor. On the other hand, the execution of a
guest code should not be interrupted too often, in order to achieve the highest
possible performance. To achieve this, QEMU combines two architectures that
are used to implement responsive applications – parallel execution and event loop.

There are further reasons for this approach which are mentioned in [7] – “An
event loop cannot take advantage of multiple cores since it only has a single thread
of execution. In addition, sometimes it is simpler to write a dedicated thread to
offload one specific task rather than integrate it into an event-driven architecture.
Nevertheless, the core of QEMU is event-driven and most code executes in that
environment.”

QEMU’s event loop

QEMU’s event loop lies in the function main_loop_wait and its responsibility
is to wait for file descriptors to become writeable or readable and to run event
handlers of expired timers and bottom-halves. “Bottom-halves are like timers
that expire immediately and are used to avoid reentrancy and overflowing the
call stack [7].”

It is not desirable to block for a long time in the event handlers. To avoid
this, worker threads are used, for example, in the implementation of asynchronous
I/O operations. “When core QEMU issues an aio request it is placed on a queue.
Worker threads take requests off the queue and execute them outside of core
QEMU. They may perform blocking operations since they execute in their own
threads and do not block the rest of QEMU [7].”

Executing guest code

QEMU has two mechanisms to execute guest code – Tiny Code Generator (TCG)
and KVM. “TCG emulates the guest using dynamic binary translation, also
known as Just-in-Time (JIT) compilation. KVM takes advantage of hardware
virtualization extensions present in modern Intel and AMD CPUs for safely exe-
cuting guest code directly on the host CPU [7].”

Both of these modes allow the control flow to jump into the guest code and
execute it. In both cases QEMU uses a different thread to execute the guest code
than the thread that executes the event loop. It is also interesting to note that
when TCG is used to emulate multiple cores, all of these cores are scheduled in
one thread. QEMU thus cannot make use of multiple cores on the host platform
unless it is running in the KVM mode.
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2. Analysis

In order to port QEMU to HelenOS it is necessary to support additional func-
tionalities required by the features of QEMU and the libraries on which it de-
pends. Each feature has its own requirements of the operating system, most of
the requirements are POSIX related, but some of them can affect other parts of
HelenOS such as the C library, the VFS service or the console service.

The resulting implementation of this thesis should be easy to integrate in
the mainline of HelenOS. As HelenOS uses a microkernel, changes to the kernel
should be kept to a minimum. The patches for the ported applications should be
suitable for merging back to their official repositories. POSIX applications that
are ported in the future should make use of the extensions created by this thesis.
These requirements when combined imply that the implementation should meet
the following criteria:

• extend the POSIX support in HelenOS as much as possible,

• lower the amount of changes in the HelenOS C library to a minimum,

• lower the amount of changes in the HelenOS services to a minimum,

• lower the amount of changes in the HelenOS kernel to a minimum,

• avoid changes in the code being ported.

The same criteria are therefore used to select the best solution from the options
proposed in this chapter to implement the requirements imposed by QEMU.

2.1 Discovering the requirements of the features

The source code of a ported application can present three kinds of dependen-
cies. A compile-time dependency creates a restriction on what types, macros and
functions must be defined in order to compile the application. A run-time depen-
dency is a dependency of the ported application on the ability to access a certain
function or variable. A dependency on functionality is set out by the application,
when it depends on a certain functionality provided by a set of functions and
variables.

Let us assume that there is a universal tool that decides whether a function
gets executed when sending a specific input to an application, without making any
assumptions about the source code of the application. Without loss of generality
it can be assumed that every application must call a function exit to end its
execution. This tool could be used to find out whether the exit would be called
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when the specific input is provided to the application, thus determining whether
the application would halt or not and thus solving the halting problem. This
contradicts the supposition that the halting problem cannot be solved.

This means that the only way to find out whether QEMU will require a
function that is referred to from its source code, when using a specific set of
features, is to execute the application and wait until the function is actually
called or to do a comprehensive analysis that would rule out the calling of the
function given the specific set of inputs. As a result of this, it is hard to estimate
the time needed to port a limited subset of features of an application or library.

To identify different kinds of dependencies, appropriate mock-ups can be used.
A compile-time mock-up is a definition of a type, macro, variable or function
without its implementation. The task is simply to pass the compilation process.
A run-time mock-up is an implementation without any functionality – e.g. empty
functions, variables that are never initialized etc. A functionality mock-up skips
the parts of the functionality that the ported application does not need – e.g.
parameters of a function that are not expected to be used.

The important parts of creating these mock-ups are effectiveness and visibility.
The distribution of the mock-ups is going to change rapidly, so it must be easy
to place, move or remove them. To be able to remove the mock-ups their usage
must be visible, especially if they are used somewhere where a mock-up will not
be enough to support the feature. This is achieved using error codes and logging
in the mock-ups of functions.

2.2 Core features

This chapter describes those features necessary for running QEMU and allowing
emulation of basic hardware, and outlines how HelenOS is going to be extended
in order to support them.

2.2.1 Configuration dependencies of QEMU

In order to get past the configuration process of a ported application its depen-
dencies must be satisfied first. This is applied recursively for every library the
ported application depends on. Using this method it is possible to create a de-
pendency tree of the ported application. Figure 2.1 shows a dependency tree of
QEMU. The dashed line is used to mark optional dependencies mentioned in this
thesis. The grey background is used to mark dependencies that can be part of
other packages.
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QEMU

GLib

gettext

fdlibm

libiconv

libffi

zlib

pixman

libfdt

libbind

ncurses

SDL

GTK

Figure 2.1: Dependencies of QEMU

Some of the libraries required by QEMU were already ported in HelenOS
Coastline (see section 1.1.5) at the beginning of this project. The libraries that
will have to be ported to pass the configuration process of QEMU are GLib,
gettext, libiconv, libffi and libbind.

The source code of QEMU makes use of a functionality provided by the pix-
man and libfdt libraries. These libraries are not listed as official dependencies
because the configuration script is able to compile them with the source code
of QEMU. As there were problems with cross-compilation of the pixman library
when compiled as a part of QEMU’s source code, a separate package was cre-
ated in Coastline and here cross-compilation was successful. The libfdt library
does not offer a configuration script, and therefore cross-compilation in a separate
package would be unnecessarily difficult. However, its compilation as a part of
QEMU was straightforward.

The pixman library “is a low-level software library for pixel manipulation,
providing features such as image compositing and trapezoid rasterization. Im-
portant users of pixman are the cairo graphics library and the X server [8]”. The
libfdt library is designed to manipulate binary files produced by the Device Tree
Compiler (dtc) toolchain [9]. It is the author’s opinion that libfdt has a very spe-
cific usage compared to the pixman library, which is another reason why pixman
has its package in Coastline and libfdt does not.

Libbind is not officially requested by GLib, but serves as a provider of func-
tionality to resolve DNS names through the usage of POSIX sockets. The POSIX
networking is not supported in the prototype of QEMU proposed in this thesis,
so this library is actually a run-time mock-up of functions needed by GLib. This
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helped to keep the amount of run-time mock-ups connected with POSIX sup-
port for networking in HelenOS as small as possible. See section 2.4.1 for further
information about QEMU and networking.

The libraries ncurses, SDL and GTK are optional requirements of QEMU
which support features such as the VGA text buffer output and full VGA output.
These features and their dependencies are discussed later in the text.

2.2.2 Threads and synchronization primitives

With usage of run-time and functionality mock-ups it was discovered that QEMU
depends on threading support obtained from GLib. Different threads are used in
QEMU to run the event loop and emulation of the CPU. GLib provides threading
support built on top of WINAPI calls – e.g. CreateThread, CreateMutex
etc. or on top of POSIX threads also known as pthread. GLib library is written
in a way that does not support mixing WINAPI with POSIX functions. This,
along with the fact that HelenOS does not support WINAPI, are the reasons why
the implementation of pthread was selected as the right solution for providing
threading support for QEMU.

The pthread library defines an interface to work with threads, synchronization
primitives and thread specific values. The operations with threads include exit,
join, detach and support for return value. The synchronization primitives defined
by pthread include mutex, condition variable, sempahore and rwlock. The API
connected with thread specific values is designed to allow creating, setting and
retrieving values that are stored under a certain key, specific for the currently
executed thread.

As mentioned in section 1.1.2, HelenOS provides two different ways of achiev-
ing parallel execution in user space. The first is through the usage of kernel
threads and syscalls behind the API offered in the C library. The second option
is to use fibrils implemented independently on top of the kernel threads in the
C library, to provide light-weight threading support for user space applications.
The main difference between these two approaches is that the latter one does not
support pre-emptivness; instead fibrils are switched in cases of blocking, when
another fibril dies or upon calling fibril_yield.

Both fibrils and threads in the C library lack the support of operations like
detach and join. Despite the fact that fibrils support the concept of return value,
the inability to wait for the fibril’s execution to finish renders this feature useless.
Fibrils, on the other hand, provide a variety of synchronization primitives such
as condition variable, mutex and rwlock. In addition, most of the user space
code in HelenOS (including all PCUT tests) uses fibrils, and the usage of fibrils
and threads together is very limited (see section 2.2.4). These were the two main
reasons why fibrils were selected as the foundation of the phtread implementation.
Furthermore, this solution does not involve any changes in the kernel of HelenOS.

12



Thread internal structure

Each pthread will be provided with an internal structure to store its return value
when it has exited. For simplicity, an instance of this structure with the under-
lying fibril functionality will hereinafter be referred to as a pthread thread. This
structure must be stored in a space private to each thread.

HelenOS gives the user space applications an option to store values to the
thread local storage. A statically allocated variable can be marked thread specif-
ic using the __thread modifier in front of its type. This functionality is available
for threads and fibrils. The starting mechanism of fibrils in the C library then
takes care of allocating the storage for each fibril and the values are initialized
using the values in designated sections of the ELF file prepared during the com-
pilation of the application. Variables in the thread local storage are accessible
only from the current thread, but functions such as pthread_join need to
access the internal structure from a different thread and, therefore, the internal
structure cannot be stored in the thread local storage.

The internal structure of phtread threads could be stored in the pthread_t
type that is used to refer to a pthread thread in the POSIX API. However, this is
not a desirable solution because variables of this type are allowed to be statically
allocated and the size of the internal structure would have to be deducible for
applications using pthread functionality. This would expose the implementation
details and possibly create problems whereby the internal structure would need
to be changed in the future development of the POSIX layer in HelenOS. Using
a C pointer to the structure would allow the internal structure to be hidden, but
it would cause problems with reclaiming the memory addressed by the pointer.

The chosen solution is based on creating a global hash-map containing the
internal structure for each thread created by pthread_create, where each
structure would be retrievable using its ID. This ID will be used as a value for
variables with the pthread_t type.

Initializing the synchronization primitives

One of the pthread functionalities used by GLib and QEMU is static initializers of
synchronization primitives. Pthread specification [5] describes static initializers
of some of the synchronization primitives. Fibril synchronization primitives are
also provided with static initializers, but there is a slight difference between these
two kinds of static initializers. The difference is shown in figure 2.2.

pthread_mutex_t mutex_p = PHTREAD_MUTEX_INITIALIZER;

fibril_mutex_t mutex_f = FIBRIL_MUTEX_INITIALIZER(mutex_f);

Figure 2.2: Illustration of the difference between fibril and pthread static initial-
izers.
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The fibril initializer needs the name of the variable being initialized as its
parameter. Every synchronization primitive in fibril has a list of fibrils waiting
for the primitive to be released. The name of the variable is used to initialize the
head of this list, so its prev and next pointers point to the head itself, thus
forming an empty list. Without the name of the variable, the initializing macro
is not able to get the addresses of the parts of the structure being initialized. Let
us refer to the static initialization, where the name of the variable is passed as
an argument of the initialization macro, as initialization with context.

In order to be able to initialize fibril synchronization primitives without con-
text, the list structure would have to be changed in a way that it could be
initialized with plain constants, without the need to compute the addresses of its
parts. A generic double-linked list implementation from the C library is used to
implement the waiter list in synchronization primitives. The same structure is
used all over HelenOS’s user space. Changing it in such a way that it would sup-
port context free initialization would impose new checks in the structure to detect
whether or not the right pointers had been prepared in the head element. This
would endanger the performance of the present applications using the list struc-
ture. Implementation of a separate list to be used only for fibril synchronization
would increase redundancy of the source code.

It is possible to initialize a pthread synchronization primitive which is wrap-
ping a fibril synchronization primitive statically without context, and letting the
fibril primitive be initialized later using a call to appropriate initialization func-
tion. The way to do this is based on keeping a flag inside the pthread structure of
the primitive, marking whether or not the primitive has been initialized. When-
ever a function manipulating such a primitive is called, the initialization flag is
checked. If the primitive has not yet been initialized, its initialization function
will be called. By using this method, the check that would be used to look for
initialization of the waiters list is moved from the C library to the POSIX layer
library.

As the functions manipulating the primitive are most likely to be called from
different threads, the process of checking the initialization flag and the initializing
itself is a critical section. The first idea was to protect the section using the
compare and swap (CAS) function to set an atomic variable denoting whether the
section had been entered or not. That caused a race condition when the atomic
variable was set, but the initialization process was not yet finished, as shown
in figure 2.3. A condition variable could be used to wait for the initialization
process. Mutex offers the same functionality as both the CAS function and
condition variable, and for this reason one mutex per each kind of synchronization
primitive was used.
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if(CAS(&initialized,0,1)){

initialize();

}

/* Here we need to ensure that the

* function initialize has finished. */

Figure 2.3: Demonstration of the problem with the initialization check

The critical section is only among the threads trying to manipulate the same
primitive. If the mutex was stored in the structure of the pthread primitive, it
would need to be initialized statically, but there is no such mutex. If there was
such a mutex, it would not be necessary to do this kind of check in the first place.
For this reason, one mutex must be used to protect the critical sections of all
the primitives amongst all the threads. This reduces the amount of parallelism
that may be achieved. On the other hand, the critical section consists only of
operations to compare and set values of the fibril synchronization primitives, and
as such the probability of being blocked in this section is quite low. This solution
was chosen in the end because it provided a way to implement the functionality
whilst avoiding major changes in the C library of HelenOS.

Recursive mutex

The API and the functionality offered by fibril synchronization primitives are very
close to the API and the functionality requested by the specification of pthread.
The functionality that was requested by QEMU and is not supported by fibril
synchronization primitives is a recursive mutex. A recursive mutex is a mutex
that can be locked more times by the thread that has acquired it. The POSIX
specification [5] also states that a recursive mutex must be unlocked as many
times as it was locked before another thread can acquire the mutex.

Implementation of fibril_mutex does not provide a recursive mode. One
possible solution is to extend the implementation of fibril_mutex with a re-
cursive mode. However, the problem with this solution is that it involves changes
in a very exposed part of the C library of HelenOS.

Another solution would be to develop a recursive mutex separately in the
POSIX layer library of HelenOS. In order to be able to work with the list of
fibrils ready for execution as the other fibril synchronization primitives do, this
list would have to be accessible from outside the C library. That would make
the POSIX layer library and the C library in HelenOS very tightly coupled, thus
decreasing the quality of the design of HelenOS user space. This solution would
also create significant code redundancy in the functions locking and unlocking the
mutex. Due to these drawbacks, the solution whereby fibril_mutex would be
extended to support a recursive mode was selected.
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Thread specific values

Another feature of pthread that GLib, and by extension QEMU, depend on is
called thread specific values. As mentioned previously, this feature offers an
application the ability to store different values for different threads identified by
the same key. The application will first create a key that identifies what a thread
specific value will represent, for example this could be a name of the thread. Then,
each thread will be able to store and retrieve its specific value associated with
this key. When a thread exits, its specific values are destroyed. A user of the API
can also specify a destructor for each key. This destructor will be called before
the storage of the values of the exiting thread are destroyed, with the value as its
argument. Figure 2.4 shows an example of the usage of thread specific values to
create independent IDs for threads entering the thread_entry function.

static pthread_key_t id_key;

static atomic_t id_counter;

static uint32_t get_my_thread_id(){

return (uint32_t)pthread_get_specific(id_key);

}

static void *thread_entry(void *parm)

{

phtread_set_specific(id_key,(void*)atomic_inc(&id_counter));

...

uint32_t my_id = get_my_thread_id();

}

void main(int args, char** argv){

pthread_key_create(&id_key, NULL);

...

}

Figure 2.4: Example of the usage of thread specific values

To support this feature, the POSIX layer of HelenOS will need to be aware
of the created keys and of the mapping between the keys, threads and the values
set. A global hash-map of the keys and one hash-map per thread to store the
key-value mapping will be sufficient to provide this functionality.

The second hash-map will need to be stored in a place that is private to each
thread. The thread local storage presented in section 2.2.2 appears to be a good
candidate. The pointer to the hash-map can be stored to a variable allocated
in the thread local storage. However, pthread threads already have a private
storage provided by their internal structure. To loosen the dependency on the C
library and to facilitate debugging of pthread functionality the internal structure
of pthread was chosen as the place to store the hash-map containing the thread
specific values.

16



2.2.3 The event loop and timing

As well as pthread, QEMU uses another POSIX feature through its calls, and
through GLib as well, that is not present in HelenOS. Functions pipe and
select together form a functionality that is easier to describe using the equiv-
alent functions from WINAPI called CreateEvent and WaitForMultiple-

Objects.

As the name suggests CreateEvent (pipe in POSIX) is used to create an
event object that can be fired in any thread at any time. Function WaitFor-

MultipleObjects (select) is used to wait for the event to be fired. The
difference between this functionality and the functionality offered by condition
variable is that WaitForMultipleObjects (select) can be used to wait for
multiple events and will block until at least one of those events is fired.

This functionality is used in the event loop of QEMU (see section 1.2.2) to wait
for events from various emulated hardware. When an event is fired, a callback
attached to the event is called to handle it. If there are no pending events,
QEMU’s event loop is blocked for the time given to the select function as
timeout. Emulated hardware timers in QEMU have their time set when the next
interrupt should be delivered to the emulated CPU. The soonest of these times
is used to specify the timeout of select function called in the event loop [7]. In
this way it is ensured that QEMU does not block the event loop for too long, but
that it does block for some time. Further details about the importance of event
loop blocking timeout can be found in section 2.2.4.

The ambiguity created by the usage of POSIX functions lies in the fact that
the operations to create, fire, reset or wait for an event are done using a file
descriptor as an ID of the event. For example, to fire an event in POSIX created
by pipe or eventfd, function write is used. The very same function is used
to write data in a file. This originates in POSIX describing a UNIX-like operating
system. In UNIX, file descriptors are not used only for files, but also to identify
other stream-like structures – e.g. network connection, pipe etc. In the opinion
of the author of this thesis, and of the HelenOS community, implementing this
functionality in HelenOS’s VFS service would pollute its API.

Another option would be to implement the WINAPI functions CreateEvent
and WaitForMultipleObjects instead of the POSIX functionality. The
biggest problem with this approach is the way in which the code of QEMU and
GLib is forked to support WINAPI and POSIX. Especially in the case of GLib,
where these two parts could almost qualify as two different libraries with the
same API. Many more functions from WINAPI would have to be implemented in
HelenOS, and in many cases these would be functionalites that already exist in
POSIX. Also, WINAPI suffers with a similar problem as POSIX, but in this case
instead of file descriptors, IDs known as handles are abused to identify structures
of different type and usage.

There is a way of restricting the API pollution just to the POSIX layer of
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HelenOS. The first step is to distinguish what structure is identified by the ob-
tained file descriptor. This could be done by special marks in the top left bits
of the file descriptor. This should not create any additional constraints on the
real file descriptors, as applications already have a constraint on how many real
file descriptors they can use. This limit is set in macro MAX_OPEN_FILES in
VFS and it was 128 at the time of implementing this thesis. Please note that
a similar trick would have to be used when implementing WINAPI functions to
distinguish different kinds of handles.

With the ability to distinguish different kinds of file descriptors the different
versions of write can be called to serve the request appropriately to the kind
of file descriptor received. The same approach can be used to implement other
POSIX functions like read or close. As this is the most straightforward so-
lution that does not pollute the API of non-POSIX parts of HelenOS, it is the
solution that was chosen to implement this functionality.

2.2.4 Concurrency level and yield

QEMU uses an endless loop in the thread responsible for the emulation of CPU.
If the last block of instructions is not waiting for an I/O event, this loop does
not block at any synchronization primitive. As fibrils do not offer a pre-emptive
way of switching the currently executed fibril it can occur that code executed in
the emulated machine gets stuck. One of the ways this can happen is that the
executed kernel is actively waiting for some memory to be changed due to an
interrupt coming from a timer. As explained in section 2.2.3 expired timers are
handled in QEMU’s event loop. This event loop is usually blocked for a specified
timeout. Due to the fact that the emulated code is technically not waiting for an
I/O event, and because fibrils do not offer pre-emtpivness, the event loop will be
blocked forever and the emulated machine will be stuck in an endless loop.

When discussing with the HelenOS community the limitations of usage of
threads and fibrils together, it was discovered that there could be an option to
use kernel threads as execution containers for fibrils. This would still mean that
pthread is implemented using fibrils, but during the process of initialization of a
pthread thread, or on demand, there would be a possibility to run more kernel
threads and these threads could participate in the execution of the created fibrils.
This would create a kind of thread pool, where fibrils become tasks distributed
among the threads in the thread pool, and where tasks can enforce a change in the
list of tasks currently being executed by blocking at synchronization primitives.
The level of concurrency would be derived from the amount of kernel threads
executed. The true concurrency would be achieved once every fibril had its own
kernel thread.

Two threads are sufficient to run QEMU. As mentioned at the start of this
section, QEMU uses a busy loop that can stop blocking and yet the code exe-
cuted in the busy loop expects that the memory of the emulated machine will
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be changed. Other threads started by QEMU are blocked when they are waiting
for an external event. Therefore, one thread is needed for the fibril executing the
busy loop, while another thread will execute all the other fibrils.

The true concurrency can be substituted by manually switching the currently
executed fibril through usage of the function fibril_yield in the busy loop.
In this way the busy loop will be interrupted and other fibrils will be given a
chance to run. It is hard to determine the best place to put a call to the function
fibril_yield. It is not desirable to interrupt the loop too often when there
is nothing else that other fibrils could work on. On the other hand, it is also not
desirable to place a call to the function fibril_yield too low in the callstack
of the busy loop, because other loops inside the busy loop can, under specific
circumstances, also become busy.

Both of these approaches have been tried, but both have failed. There were
problems with both of the functionalities needed. The fibril version of yield op-
eration did not properly wake up those fibrils waiting for timeout imposed by the
timed version of the API of synchronization primitives, primarily those waiting
for a condition variable. This problem was discovered and fixed as part of this
thesis. It was attempted to resolve the problems with using threads as execution
containers with the HelenOS community at the end of the implementation of
this thesis. As a result, two bugs in the HelenOS kernel and a race condition in
function fibril_switch were reproduced and then fixed later by the HelenOS
community. The first bug in the kernel had been reported two years before this
thesis was finished and is described here [11].

The second bug was discovered during the implementation of this thesis, when
a thread crashed whilst another thread was waiting for a futex held by the crashed
thread. The application taskdump was called to printout the stack trace and
other debug information of the crashed task using the udebug module in the
kernel of HelenOS. However, the thread waiting for the futex was not stoppable
and therefore the taskdump and the crashed task ended up in a deadlock. An
attempt to kill the crashed task caused a kernel panic, as the udebug structures
of the blocked thread were found in an unexpected state. This bug was resolved
by marking the thread waiting for a futex as stoppable in the udebug module.

The race condition discovered in the function fibril_switch was caused
by unprotected critical sections when shutting down a fibril and not holding the
async_futex. This proves that the implementation of fibrils could not have
been used effectively within an environment running more kernel threads, prior
to the implementation of this thesis. This race condition was fixed by protecting
the identified critical sections. However, there remains a race condition in either
the POSIX layer of HelenOS or in the implementation of fibrils. For the sake
of the prototype implemented in this thesis, the solution with the usage of fixed
fibril_yield seems to be sufficient.
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2.2.5 Modules

Another feature used directly by QEMU but missing in HelenOS is not a POSIX
feature, but rather a feature of the GNU C compiler (known as GCC) and the
C library of the target system. QEMU uses a constructor attribute to mark
functions that are in charge of the initialization of different kinds of modules
of QEMU. This attribute specifies that the functions marked with it are called
in the process of executing an application, just before calling its main function.
Thanks to this, the code of QEMU’s module does not need to be referenced in
the rest of the application and thus it does not have to be linked with it. If the
module is linked with the application, the initialization function is called before
the main function and the module can, for example, register its parts in the lists
of devices QEMU offers to emulate [10]. That is why this missing functionality
manifested in the fact that QEMU did not offer any hardware to emulate.

The GNU C compiler stores the pointers to the functions marked by the con-
structor attribute (or destructor attribute) to a special section of an ELF file
produced in the compilation process. This section is called .init_array (or
.fini_array respectively). Please note that C constructors do not receive any
parameters and do not have any return values, thus their execution is different
to the execution of the main function. Also, an endless loop created in a con-
structor function (or destructor function respectively) can cause the application
to get stuck before calling the main function (or after returning from the main
function respectively). Calling exit in a constructor function can result in the
main function never being executed. That is why it is not desirable to use this
functionality outside the POSIX layer of HelenOS. To implement this function-
ality, the linker script and the C library in the HelenOS user space would have
to be changed.

A way of avoiding changes in the linker script used to compile applications into
the user space of HelenOS would be to change the source code of QEMU in such
a way that it would not rely on the constructor attribute. These changes would
prevent the possibility of linking QEMU’s modules optionally. The reintegration
of the altered code of QEMU back to the official repository of QEMU would be
almost impossible. For this reason, the first solution outlined was selected as the
one to be implemented. Another benefit of implementing this feature in the C li-
brary is not connected with this thesis, and it is that support for C++ in HelenOS
will be extended as a by-product. The function pointers in .init_array (or
.fini_array respectively) are used in C++ to call a constructor (or destructor
respectively) corresponding to the class of a statically allocated instance.

2.3 Key features

This chapter describes the features of QEMU that are not necessary to run QE-
MU, but are necessary to meet the goals of the thesis, which means allowing for
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the testing of an operating system on HelenOS.

2.3.1 Input and output

QEMU offers minimalistic input and output connected to the emulated ma-
chine through an emulated serial port. This feature is enabled by the option
-nographic and uses stdout to print characters written by the emulated ma-
chine to the serial port and stdin to wait for input that would be passed to
the machine through the serial port. To wait for the input to be accessible, QE-
MU uses select in a similar manner as when it waits for the events on pipes
described in section 2.2.3. The file descriptor of stdin is mixed up with file
descriptors of pipes in the event loop.

As mentioned in section 2.2.3 the VFS service in HelenOS does not offer
select functionality and the same section also describes why it is not desirable
to implement this functionality in the VFS service. To allow input to be processed
by QEMU it is necessary for the source code of QEMU to be able to wait for events
on the terminal along with the events connected with the emulated hardware.
GLib solves this problem on Windows, where waiting for events on files is also
not supported, by creating a special thread that is blocked in the read operation;
when the read operation gets unblocked the data read is stored in a special buffer
belonging to this thread and the read event is fired. Thus, select will unblock
marking stdin in a way that shows an event is pending and the application can
read from it without blocking.

Similar arguments as in section 2.2.3 were used to select this as a solution
instead of implementing support for select in HelenOS’s VFS service. stdin
in HelenOS uses locfs – a special file system that supports communication with
HelenOS’s services. Locfs does not support parallel reads and writes, which means
that while a task is reading from a service it cannot write to the same service. In
this solution, there is going to be a thread that is blocked in the read operation of
the console service most of the time. Any attempt to write to the console service
will block until a key is pressed. This, however, is not a desirable functionality.
There also exists another way to access the console service directly without using
locfs as a proxy. The function console_get_event was used and the events
were translated to characters stored by the polling thread.

2.3.2 Block devices

In order to be able to debug HelenOS in QEMU, its image has to be loaded in
QEMU’s emulated CD-ROM drive. To support emulation of block devices QEMU
uses functions pwrite and pread in addition to the functions provided by the
VFS service of HelenOS. As POSIX specification states, the difference between
these functions and standard write and read is that pwrite and pread use
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a position in the file specified by the caller and do not alter the position used and
updated by write and read functions [5].

There are two ways to implement these functions. The first is to implement
pwrite and pread with the usage of lseek. lseek would first retrieve the
position associated with the file descriptor, then the new position would be set
again by lseek. The standard version of write or read would be used to
do the actual writing (or reading) and when they return, the previous position
would be restored using lseek once again. Expensive syscalls are not used to
communicate with the VFS service on HelenOS, but IPC calls can be quite costly
as well. There are three IPC calls on top of a call to write or read to simulate
the functionality of pwrite and pread using lseek.

Another solution would be to implement pwrite and pread directly in the
VFS service of HelenOS. Although this solution will affect the source code of
HelenOS’s service and the C library, it was the solution that was implemented,
due to the increased performance of QEMU and the fact that the changes will be
relatively small and non-invasive.

2.3.3 VGA text buffer

When testing Linux kernels in QEMU, a serial port was sufficient to support
output (or input) from (or to) the user space. Unlike Linux, HelenOS does not
provide a user space console using a serial port to print the output and retrieve the
input from the user. To allow output and input from and to the HelenOS console,
the VGA text buffer will have to be supported at least. To configure HelenOS to
use this buffer for I/O of the user space applications, option CONFIG_EGA must
be set to ‘y’ and option CONFIG_FB must be set to ‘n’.

QEMU allows the VGA text buffer to be displayed using the curses library
when run with -curses option. The curses library then also captures the in-
put using select function in a similar way that QEMU does when the serial
port is used. Running QEMU with the -curses option in comparison with the
-nographic option also gives the ability to switch between three QEMU win-
dows. The first displays the VGA text buffer, the second allows the use of the
QEMU monitor that can manipulate the emulated machine and display various
information about it. The third window displays the output from the serial port.

To make this feature a part of the prototype presented by this thesis, library
ncurses will need to be ported to HelenOS. The curses library uses ANSI ter-
minal commands – e.g. move cursor to position, clear screen, scroll screen etc.
These commands need to manipulate an instance of the chargrid_t structure
corresponding to the service providing the output for the task currently being
run.

In HelenOS two services are used to provide console output, depending on
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what graphical mode HelenOS is running in. Service vterm is created every
time an instance of the application vterm is started in the GUI mode of HelenOS
(HelenOS is configured to use framebuffer). When HelenOS is configured to avoid
using framebuffer, it uses VGA text buffer instead. In this case, one instance of
the console service is started, delegating the output to multiple instances of
the chargrid_t structure, based on which console is actually selected.

There is already quite a high code redundancy between these two services.
This is why the HelenOS community is planning to re-factor the console subsys-
tem of HelenOS, and that means that any solution proposed by this thesis will
have to be re-implemented in the near future. Therefore, the source code of these
services will be altered in a non-invasive way.

2.4 Possible extensions of the feature set

Some of the features offered by QEMU were not selected for the prototype, as
their implementation would have been difficult and the goals of this thesis were
achievable without them. This chapter describes the most interesting of these
features and how they could be implemented in the future.

2.4.1 Network

As mentioned in section 2.2.1 QEMU’s emulation of network devices is not sup-
ported in the prototype presented by this thesis. At the start of the implementa-
tion of this thesis, networking was implemented in the C library of HelenOS in a
similar fashion to POSIX networking. That version of networking was considered
as insufficient by the HelenOS community and was re-factored at the time that
this thesis was almost completed. The API of the HelenOS networking changed
completely, therefore any work that would be done to support networking in the
POSIX layer of HelenOS would be proved redundant.

To be able to support the emulation of network devices, support for the POSIX
networking API would need to be brought back to life, this time solely in the
POSIX layer of HelenOS with the usage of the new networking API offered by
the C library. The libbind would have to be tested, and if the libbind would not
be portable, then the API it offers would also have to be implemented in the
POSIX layer.

Once HelenOS supports the networking API and functionality required by
QEMU, it will allow the emulation of network devices and the usage of the GDB
server that QEMU provides. In this way, the code running in QEMU could be
debugged on HelenOS once the GDB was ported to HelenOS, or in the host of
HelenOS if HelenOS was being run in a virtualized or emulated machine, using
TCP port redirection.
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2.4.2 Full VGA support

To support full graphical output, QEMU offers integration with the libraries GTK
and SDL. HelenOS Coastline is not prepared to offer the Graphical User Input
(GUI) to the ported applications. To give the ported applications the ability
to access the compositor subsystem that is used in HelenOS to create GUI, the
gui and draw libraries would need to be accessible in HelenOS Coastline. As
Coastline uses the POSIX version of the C library, includes of these libraries will
have to be fixed in a similar way to the includes of the original C library, in order
to support their usage in Coastline.

The GTK library depends on the functionality offered by the X server. The
SDL library offers the creation of separate rendering drivers to support rendering
on different platforms. This is the reason why the SDL library would be more
suitable to port in order to support the full VGA output of the machine emulated
by QEMU. Although the full VGA support is not implemented in the prototype
created by this thesis, it will most probably take place after the completion of
this thesis as it is a feature requested by the HelenOS community.

2.5 QEMU as a hypervisor for HelenOS

One of the goals of this thesis is to inspect the possibility of using QEMU as a
hypervisor for HelenOS. QEMU only offers a virtualization mode on the Linux
hosts. The reason for this is the tightly coupled source code of QEMU to the
functionality offered by Linux KVM. That is also why virtualization in QEMU is
called KVM mode. KVM in Linux is itself a hypervisor, which allows the creation
of new virtual machines and the emulation of the guest code in an virtualized
environment.

As mentioned in the documentation of the KVM API [12], the API is central-
ized around file descriptors. The communication between a user space program
and the KVM module on Linux is built on sending commands to the KVM mod-
ule using the ioctl function on file /dev/kvm that is present on Linux when
the KVM module is loaded properly. A KVM_CREATE_VM ioctl command on
this handle will create a virtual machine file descriptor which can be used to issue
ioctl commands to the virtual machine. A KVM_CREATE_VCPU ioctl com-
mand on a virtual machine file descriptor will create a virtual CPU and return
a file descriptor pointing to it. Finally, ioctl commands on a virtual CPU file
descriptor can be used to control the virtual CPU, including the important task
of actually running the guest code.
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KVM_CREATE_VCPU,

KVM_RUN,

KVM_CREATE_DEVICE,

KVM_INTERRUPT,

KVM_GET_DIRTY_LOG,

KVM_REGISTER_COALESCED_MMIO,

KVM_SET_USER_MEMORY_REGION,

KVM_UNREGISTER_COALESCED_MMIO,

KVM_SET_REGS,

KVM_GET_REGS,

KVM_SET_ONE_REG,

KVM_GET_ONE_REG,

KVM_GET_FPU,

Figure 2.5: Some of the KVM ioctl commands used by QEMU

To be able to port QEMU’s KVM mode to HelenOS, a special hypervisor
service would have to be created in HelenOS. This service would be able to create
virtual machines in a similar way that KVM does on Linux. Calls to ioctl in
the source code of QEMU would have to be substituted with IPC calls directed
to this service. File descriptors would have to be substituted with other means
of identification. Some of the ioctl commands used by QEMU are presented in
figure 2.5. Their semantics are explained in [12].

One of the ways to substitute file descriptors would be to start a different
service wherever a file descriptor is returned when using KVM. When an equiva-
lent of a KVM_CREATE_VM command is issued to the hypervisor service a virtual
machine service would be started and service_id would be returned to allow
the client to issue commands to this service. A similar approach would be used
to run a virtual CPU.

If this hypervisor service is implemented in HelenOS, QEMU could make use
of its API to start and create virtual machines. QEMU could also be used to
emulate hardware and process input and output of the virtual machines. To be
able to port QEMU without too much difficulty, quite strong constraints on the
API of the proposed HelenOS hypervisor will be imposed by QEMU.

Problems with concurrency may occur again during the eventual porting of
QEMU whilst using the proposed hypervisor in HelenOS. QEMU runs code in
KVM in a separate thread. This thread is similar to the thread executing emu-
lated code described in section 2.2.4. The difference is that when using the TCG
emulator instead of KVM, control flow returns to QEMU’s code periodically. This
introduces a possibility to insert a call to fibril_yield. When KVM is used,
the control is returned only when there is an I/O operation pending or when an
interrupt was not processed by the guest code. This may be insufficient to switch
fibrils and to let expired timeouts be processed.
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3. Implementation

This chapter describes the implementation of those solutions proposed in the
Analysis chapter as the preferred solutions to achieve the goals of this thesis.
This includes changes and extensions of the POSIX layer in HelenOS, the C
library in HelenOS, the Virtual File System service and the ported applications
and libraries.

3.1 Changes in the ported code

During the porting of QEMU to HelenOS there were changes that needed to be
implemented in the source code of QEMU and the libraries on which it depends
(see figure 2.1). A Git source code repository (see attachment A) was used to
store the history of the changes in the source code of the ported QEMU. As an
initial point for the source code of QEMU the branch containing release 2.2.0 was
used.

The configuration script of QEMU was extended to support HelenOS as a
target system. Thanks to this, the macro CONFIG_HELENOS was exposed to the
source code of QEMU. This allowed non-invasive changes in the code that should
not harm the stability of the changed code when it is compiled on other targets.
Therefore, the source code of the ported QEMU should be suitable for merging
back to its official repository.

When porting GLib library modules, gmodule and gio were skipped as QE-
MU does not need their functionality and they also depend on dynamic loading
of shared libraries, which is still considered as an experimental feature in He-
lenOS and only works on x86 platforms. After finding the right options for the
configuration, the libraries gettext, libiconv and libffi were compiled successfully.
Their code has been patched and run-time mock-ups were used to identify the
missing functionalities in the POSIX layer when the specific features of QEMU
were tested.

As a part of this thesis, packages qemu, pixman, libffi, glib, gettext,
bind, iconv and ncurses were created in HelenOS Coastline. These packages
contain source code patches and options for the configuration script allowing the
cross-compilation of the applications or libraries which they represent.

To support the configuration script of QEMU the script hsct.sh in HelenOS
Coastline was extended to provide the applications being built with a version
of pkg-config script suitable for cross-compilation. Other commands were
introduced in the script such as clean-tree and reinstall-tree to work
with the dependency tree of the package that was already built.
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3.2 Implementing pthread in the POSIX layer

The functionality offered by the pthread library is necessary to support threading
in GLib and QEMU. This functionality was implemented in the POSIX layer of
HelenOS on top of existing fibril functionality from the C library of HelenOS, as
proposed in section 2.2.2.

Fibrils in the C library lack a direct equivalent of the functionality specific for
functions pthread_join and pthread_detach. The POSIX specification [5]
of these functions suggests that a thread created by pthread_create can be
found in four different states. A thread that is running and can be joined is join-
able. A thread that was running when function pthread_detach was called on
it becomes detached. A thread that exited while not being detached is exited. A
thread that exited and its return value has been retrieved using pthread_join
or discarded using pthread_detach is terminated. Please note that a thread
can be created in the detached state using the PTHREAD_CREATE_DETACHED

attribute or in the joinable state using the PTHREAD_CREATE_JOINABLE at-
tribute. If the attribute is not specified a thread is created in the joinable state.

Taking these states into account, the implementation of the pthread_join
function can be described in the following way. The function blocks the caller
until the thread specified as an argument of the function changes its state from
joinable to exited. When the thread switches to the exited state its return value
is retrieved and its state is changed to terminated. If the thread is not joinable,
the error code EINVAL should be returned as stated by the POSIX specification
[5].

Similarly, pthread_detach can be implemented through manipulation of
the state of the specified thread. When pthread_detach is called on a thread
that is in the joinable state, its state must be changed to detached. In the case
that the thread is exited its state will be changed to terminated. If the thread
is already detached the error code EINVAL will be returned as requested by the
POSIX specification [5].

Thread internal structure

To implement these operations as described, the state of a thread will need to
be stored. An ability to wait for a change in the state will need to be pro-
vided. A return value also needs to be stored, in order that it can be re-
trieved later upon calling pthread_join. To achieve this, every fibril cre-
ated with pthread_create was provided with an internal structure called
pthread_internal_t as discussed in section 2.2.2.

The internal structure must be retrievable by the ID of a pthread thread in or-
der to allow funtions pthread_detach, pthread_join and pthread_exit
to access its state. That is why the hash-map pthread_threads_hash_ta-
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ble was used to hold internal structures using ID as their key. When a thread
is created using pthread_create its internal structure is allocated and ini-
tialized. The underlying fibril is created using the fibril_create function
and the returned ID of the created fibril is used to return the ID of the created
pthread thread, and to insert the internal structure to the hash-map.

Starting and termination

In order to confirm with the POSIX API and to be able to store the return value,
every fibril started by pthread_create uses pthread_internal_entry as
an entry point. This function takes as an argument a structure holding a pointer
to the start routine passed to pthread_create as an argument. When the
start routine returns, this function also ensures that pthread_exit is called
to avoid redundancy of the source code that is responsible for shutting down the
thread.

As the POSIX specification states: “The pthread_join or pthread_de-
tach functions should eventually be called for every thread that is created so
that storage associated with the thread may be reclaimed [5].” The reason for
this is that if a pthread thread was not joined or detached its return value must
be preserved even after the thread has finished its task. This is implemented
using a terminated state introduced in the aforementioned text. The function
pthread_exit blocks the fibril until the state changes to terminated, only then
it is safe to reclaim the memory taken by the pthread internal structure and the
underlying fibril.

Thread specific values

The discussion in section 2.2.2 proposes a way to implement the functionality
required by internals of GLib library. This functionality depends on creating a
key that is later used to store and retrieve different values for different threads.
As proposed in the analysis, two kinds of hash-maps were used to implement this
functionality.

The function pthread_key_create takes two arguments, the first is a C
pointer used to return a key created when the function finishes, and the second is
a C pointer to a destructor function. As per POSIX specification [5], a destructor
function is called on every non-null value associated with the created key. The
function first allocates the ID for the newly created key, which is done by incre-
menting an atomic variable last_key. The structure of the key is allocated
afterwards to store both the ID and the destructor. This structure is then stored
to a statically allocated pkey_hash_table hash-map. The ID of the stored
keys is used as a key of this hash-map.

The function pthread_setspecific takes as its arguments the ID of the
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key under which the value should be stored, and the value to be stored for the
currently executed pthread thread. Due to the fact that the values for one key
may not be shared amongst the pthread threads, they have to be stored in a space
private to each thread. The aforementioned phtread thread’s internal structure
fits this purpose. Thus, another hash-map is allocated in the internal structure
of each pthread thread. This hash-map is used to store structures carrying the
specified key ID, the specified value and a copy of the destructor pointer associated
with the key. The function pthread_getspecific can later retrieve the value
from this hash-map using the ID of the specified key.

The POSIX specification states: “At thread exit, if a key value has a non-
NULL destructor pointer, and the thread has a non-NULL value associated with
that key, the value of the key is set to NULL, and then the function pointed to
is called with the previously associated value as its sole argument [5].” This is
the reason it is necessary to store the pointer to a destructor function within the
structure holding the value. The key could be deleted sooner than the thread
exits by a call to function pthread_key_delete and the information about
which function should be called, when the values ought to be reclaimed, would
be lost.

The POSIX specification also requires that: “If, after all the destructors have
been called for all non-NULL values with associated destructors, there are still
some non-NULL values with associated destructors, then the process is repeated.
If, after at least PTHREAD_DESTRUCTOR_ITERATIONS iterations of destructor
calls for outstanding non-NULL values, there are still some non-NULL values
with associated destructors, implementations may stop calling destructors, or
they may continue calling destructors until no non-NULL values with associated
destructors exist, even though this might result in an infinite loop [5].” This
requirement was omitted in the implementation of this thesis, although it may be
seen as POSIX compliant where PTHREAD_DESTRUCTOR_ITERATIONS is set
to one.

Combination of pthread threads and plain fibrils

The two kinds of hash-maps used for the thread specific values need to be ini-
tialized. The static hash-map pkey_hash_table is initialized with a first call
to function pthread_key_create. The second kind of hash-map needs to
be initialized in the process of initialization of each thread. For this reason the
initialization is done in function pthread_create.

It was discovered that GLib also uses functions pthread_setspecific and
pthread_getspecific in the fibril that enters the main function of the appli-
cation. This fibril is created by the C library that is not (and should not be) aware
of the internal structures created for pthread threads by the POSIX layer in He-
lenOS. Therefore, the storage for thread specific values is not accessible. In order
to overcome this issue, one internal structure that is allocated statically was creat-
ed. This internal structure is inserted in the pthread_threads_hash_table
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hash-map when the function pthread_create or pthread_setspecific is
called for a first time.

This imposes a limitation on the usage of pthread threads and plain fibrils
together. If thread specific values are used there can be only one plain fibril using
functions pthread_setspecific and pthread_getspecific.

3.2.1 Synchronization primitives

As discussed in section 2.2.2 the implementation of synchronization primitives
offered by pthread specification is a straightforward redirection of pthread API
to the API of the fibril synchronization primitives, with a few exceptions.

The first exception is a problem with static initializers, as discussed in sec-
tion 2.2.2. Every synchronization primitive that needs to be initialized statically
was provided with a field called initialized on top of a fibril structure that
it wraps. This field is set to false when the pthread synchronization primitive
is initialized using a static initializer. A call to every function from the API
of these primitives checks whether the primitive has been initialized. If not, its
initialization process is started.

Section 2.2.2 describes the setting of initialized and initialization itself as
a critical section that needs to be protected by one mutex shared by all primitives.
To avoid a reduction of parallelism a fast path optimization was introduced. This
optimization is based on making initialized an atomic variable and testing
this variable outside the critical section protected by the mutex. This serves as
a hint – if the atomic variable is set, the initialization has finished and locking
the mutex can be avoided, otherwise the initialization may or may not have been
finished and it is necessary to enter the critical section and test the variable again.
This optimization is demonstrated in figure 3.1. The synchronization primitives
that are initialized using initialization functions (e.g. pthread_mutex_init)
have this variable set to true. This, along with the fast path optimization,
avoids the locking of the mutex in such cases.

if(!atomic_get(&st->initialized)){

lock(&mutex);

if(!atomic_get(&st->initialized)){

init(&st);

atomic_set(&st->initialized,true);

}

unlock(&mutex);

}

Figure 3.1: The optimization of initialization of synchronization primitives

Another difference between the pthread API specified in POSIX and the API
of fibril synchronization primitives is the way in which timeouts are specified. The
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API of fibril synchronization primitives uses relative timeouts, the POSIX API
on the other hand uses absolute timeouts. The reason for using absolute timeouts
is explained in the rationale of the POSIX specification: “First, a relative time
measure can be easily implemented on top of a function that specifies absolute
time, but there is a race condition associated with specifying an absolute timeout
on top of a function that specifies relative timeouts [5].” The race condition is
demonstrated in the small example shown in figure 3.2.

clock_gettime(CLOCK_REALTIME, &now);

reltime = sleep_til_this_absolute_time -now;

cond_relative_timed_wait(c, m, &reltime);

Figure 3.2: Example of the race condition when using relative timeouts

“If the thread is preempted between the first statement and the last statement,
the thread blocks for too long [5].” As the prototype proposed by this thesis does
not support pre-emptiveness, this is not a significant issue. In addition, one of
the secondary goals presented in the Analysis chapter is to avoid changes in the C
library. Nevertheless, this could be one of the changes in the C library of HelenOS
to be considered at a future time, when the pre-emptiveness of fibrils is officially
supported.

There is another problem potentially arising from the difference in these two
APIs. As the structure timespec is used to specify the absolute timeout, the
relative timeout as a result of the conversion may not fit in the timeout argument
of the fibril_condvar_wait_timeout function. To avoid this problem
SUSECONDS_T_MAX is used as a timeout if the value overflows. If this happens
and the call timeouts, it is restarted with an updated timeout based on the value
of the absolute timeout specified when calling pthread_cond_timedwait.

Semaphore

The functionality that fibril synchronization primitives miss completely, and
which is requested by QEMU, is the functionality of semaphore. This func-
tionality was implemented using fibril_mutex and fibril_condvar. The
structure for semaphore was created containing value, value protecting mutex
and a condition variable signalling to the waiters that the value has lifted from
zero.

The function sem_post was implemented in such a way that it increments
the value of the specified semaphore and wakes up one waiting thread using
fibril_condvar_signal, provided the value was zero before it was incre-
mented. If the value of the semaphore is greater than zero, function sem_wait

decrements the value. Otherwise it waits on the semaphore’s condition vari-
able until the thread holding the semaphore calls sem_post. The function
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sem_timedwait uses an absolute timeout, which could cause problems sim-
ilar to those described in the previous section. This is why a solution similar to
the one presented in the previous section was applied to it. The critical sections
when the value of the semaphore is tested and then altered are protected by the
semaphore’s mutex.

As described in the POSIX specification [5], semaphore can be created in a
shared mode by calling the function sem_init with the argument pshared
set to one. A semaphore in a shared mode can be used to synchronize multiple
processes. This feature is not implemented, and when the argument pshared is
set to a non-zero value an error code is returned to signal that. This is sufficient
for the prototype implemented in this thesis as QEMU does not require this
feature.

Recursive mutex

As per the discussion in section 2.2.2 a recursive mutex was implemented as an
additional mode of fibril_mutex. The POSIX specification [5] describes the
behaviour of the desired recursive mutex in the following way: “If the mutex type
is PTHREAD_MUTEX_RECURSIVE, then the mutex shall maintain the concept of
a lock count. When a thread successfully acquires a mutex for the first time, the
lock count shall be set to one. Every time a thread relocks this mutex, the lock
count shall be incremented by one. Each time the thread unlocks the mutex, the
lock count shall be decremented by one. When the lock count reaches zero, the
mutex shall become available for other threads to acquire [5].”

The actual implementation differs a little from the description, but it of-
fers the same functionality. The reason for this is that the original code of
fibril_mutex was meant to be extended in a non-invasive way. Therefore,
the fields flags and recursion_counter were added to the structure of
fibril_mutex. The field flags is used to set the mode of the mutex.

The behaviour of the fibril_mutex_lock was changed in such a way that
if a mutex that is already owned by the currently executed fibril is attempted
to be locked, the recursion_counter will be incremented. A similar change
was applied to the function fibril_mutex_trylock.

The implementation of the fibril_mutex_unlock was altered in the fol-
lowing way: if the recursion_counter of the specified mutex has a non-zero
value, the recursion_counter is decremented. These three changes are only
applied to a mutex that has the FIBRIL_MUTEX_RECURSIVE flag set in its
flags field.

The function fibril_mutex_init_flags can be used to initialize the
fibril_mutex with flags. This function was created to preserve the existing
API and it uses the function fibril_mutex_init to initialize the structure
of a mutex without initializing the flags field, to limit the code redundancy.
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3.2.2 Fix of the fibril_yield function

As mentioned in section 2.2.4 the function fibril_yield did not work as
expected. The problem manifested when the busy loop of the fibril emulating the
CPU in QEMU kept going without blocking at any synchronization primitive.
To ensure that other fibrils were going to get a chance to execute their code, the
function fibril_yield was put in the busy loop. This function is supposed
to enforce the currently executed fibril to switch to another fibril that is ready to
run, assuming that there is such a fibril.

It was discovered that even though there were fibrils ready to run because the
timeout they specified when calling the function fibril_condvar_wait_ti-

meout had expired, the function fibril_yield behaved as though there were
no fibrils ready to run. As a result, the event loop of QEMU stopped being
scheduled and the machine stopped reacting to events like interrupts coming from
timers or user input. After analysing the functionality of fibril_switch in
the C library of HelenOS it was observed that the expired timeouts were handled
in the async_manager fibril. The async_manager was scheduled only when
there were no other fibrils ready to run, which was not the case in this scenario.

To resolve this problem the fibril_yield function was modified in such
a way that it first schedules the async_manager fibril that will deal with the
expired timeouts. As a result of this, fibrils with expired timeouts are put in the
list of fibrils ready to run. As there are fibrils ready to run, the async_manager
skips waiting for IPC calls and switches back to the first fibril previously added
to the ready list due to expired timeouts.

3.3 Support for GLib event loop

The discussion in section 2.2.3 identifies the POSIX functions select and pipe
as necessary to support the event loop functionality provided by GLib. The
function pipe creates two file descriptors, the first one is supposed to be written
to, the second one is expected to be read from. Put simply, what is written to one
end can be read on the other. Despite the fact that the POSIX function pipe is
designed to pass data between a parent process and a child process on UNIX-like
systems, it is used in QEMU to serve as an event object.

QEMU creates a pipe and sets it to O_NONBLOCK using the ioctl func-
tion. If the select function is called on such a pipe it blocks until some-
thing is written to the pipe. In this usage it does not really matter what is
written to the pipe, it is merely the functionality to wait for this event that
is used. Implementing this functionality in HelenOS’s VFS service was ruled
out in section 2.2.3. The solution to use WINAPI functions CreateEvent and
WaitForMultipleObjects was presented because these functions are intend-
ed solely to create a functionality that QEMU needs and nothing else. However,

33



this solution was ruled out for other reasons as specified in section 2.2.3.

As mentioned in section 2.2.3 the difference between this functionality and a
simple condition variable is the ability to wait until one event of the many is sig-
nalled, as described in the name WaitForMultipleObjects. For this reason,
the library libevent was implemented to offer this functionality. This library
serves as a background of the pipe and select functions, but can be used in
the future to implement functions CreateEvent and WaitForMultipleObj-
ects, if a WINAPI layer is created for HelenOS.

The libevent library offers object event_t representing an event object
similar to objects created by the CreateEvent function. A part of the API of
this library is shown in figure 3.3.

int event_set(event_t event);

int event_reset(event_t event);

size_t event_is_set(event_t event);

int event_wait_first_mark(const event_t *events, size_t event_count,

fibril_mutex_t *mutex, const struct timeval *timeout, event_t *
revents);

int event_wait_all(const event_t *events, size_t event_count,

fibril_mutex_t *mutex, const struct timeval *timeout);

Figure 3.3: The API of the libevent library

The function event_set is used to set (or fire) the event. The function
event_reset is used to clear the event if it is pending. The function ev-

ent_is_set is used to determine whether the event is pending. The function
event_wait_first_mark is used to wait until the first event of the specified
events is fired. The function event_wait_all is used to wait until all the
specified events are fired.

The functions event_wait_first_mark and event_wait_all use op-
tional arguments such as mutex, timeout and revents. The mutex argu-
ment is used to specify a mutex that will be unlocked when the waiting starts
and locked again when the waiting finishes, thus providing a similar functionality
as condition variable does. The timeout argument is used to specify an abso-
lute timeout for the waiting time. The revents argument is used by function
event_wait_first_mark to mark the events that have been fired during the
waiting time.

As a condition variable is the only signalling primitive present in HelenOS it
was used as a constituent part of the libevent library. The implementation
of the event_wait_first_mark function was the biggest problem, because
HelenOS does not support anything like it. The problem is that the issuing fibril
has to be blocked at a single condition variable, yet the setting of any one of the
specified events has to result in the signalling of that variable. To resolve this
issue the subscription model described in [13] was used.
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The idea is that the fibril waiting for an event subscribes itself to the list
of the signallers and waits (goes out of the ready list and switches to another
fibril). When an event is fired, it traverses its list of signallers and signals all of
them, thus waking-up all the fibrils that have been waiting for that event. The
function event_wait_first_mark is implemented in such a way that it sets
the same signaller to multiple events and waits. When any of the events are set,
the signaller is set, and the fibril is woken-up. The libevent library uses only
the structures and the functionality provided by the C library in HelenOS and
is therefore suitable for being included in the C library. However, the decision
whether or not to include it in the C library was left to the HelenOS community.

As a result of the discussion in section 2.2.3 the pipe function was implement-
ed in such a way that it returns file descriptors which can be easily distinguished
from file descriptors corresponding to real files. The functions read and write

were forked so that a different behaviour is used for file descriptors created by
the pipe function. Pipe as an object is represented by a structure containing a
memory buffer and three events – a read event, a write event and an exception
event. The reason for this is to match the arguments readfds, writefds and
exceptfds of the select function as described in the POSIX specification [5].

When the read function is called on a pipe, part of its buffer is read and its
write event is set to signal that there is space to write to in the pipe. When the
write function is called on a pipe it checks whether there is space in the pipe,
and if so the data is written to its buffer and its read event is set to signal that
there is data to be read in the pipe. If there is no space in the pipe, it waits on the
write event until a fibril reads something from the pipe and thus releases a part
of its buffer. If the flag O_NONBLOCK is set on a pipe, read and write do not
block but return an error instead. Please note that the pipe function does not
support sharing the file descriptors among multiple tasks, as this functionality is
not requested by QEMU.

3.4 Support for C constructors in HelenOS

Section 2.2.5 describes the dependency of QEMU on the constructor attribute
used in the GNU C compiler. Functions which are marked with this attribute
are used by QEMU to initialize its modules before the main function of the
application is executed. Pointers to these functions are stored in the ELF section
named .init_array.

In order to implement this functionality, a linker script used to link the user
space applications had to be changed to allow the linker to store the .init_ar-
ray section in the resulting ELF file. A fragment of linker script designed for such
a task on a generic Linux platform was used. The source code in the elf_load
module in the C library is responsible for loading the ELF file. The section
.init_array has to be recognized by this module and its content has to be
stored to an appropriate location.
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The elf_load module was changed in such a way that the header of .in-
it_array is recognized in the section_header function and in the process
of loading an ELF file the content of this section is stored with its size in the
elf_info_t structure. The content of this section is then copied to the PCB
(Program Control Block) in the elf_create_pcb function. In this way it will
be accessible after the ELF file has been loaded and the execution has started in
the __main function in the libc module of the C library. This function receives
a pointer to the PCB as its argument.

The very same function is responsible for calling the main function of the
linked application. It is this function that was changed in a way that the functions
addressed by pointers in .init_array are called before the main function.
Similar changes were applied to support the .fini_array, with the difference
being that functions addressed by the pointers contained in this section are called
when the function exit is called. This function is guaranteed to be called when
an application is terminated gracefully (function abort is not called).

3.5 Monitoring stdin

It was discovered that the select function is used to wait not only for pipe
objects used as event objects, but also for events on stdin as well. As described
in section 2.3.1 one of the events QEMU waits for in the event loop is an event
triggered when data is available in the stdin data stream.

The solution chosen to implement this functionality is based on creating a new
fibril that is blocked and waits in the C library version of the read operation.
Each time the C library version of the read operation finishes and the fibril
gets unblocked, the read event is signalled so that the event loop can process
this event. Every file descriptor that is monitored in this way is provided with
a structure containing: a buffer and a mutex that protects it, flags set by the
ioctl function, information, how much data is requested to be read and three
events – a read event, a write event and an exception event, to support the generic
mechanism of the select function.

Data read after returning from the C library version of the read operation is
stored in the buffer of the structure associated with the monitored file descriptor.
The version of read from the POSIX layer of HelenOS uses a different source
code to read from file descriptors that are monitored in this way. If the buffer
associated with the monitored file descriptor has more data than requested, the
data is read and removed from the buffer. If not, the requested field is updated
by the amount of data requested when the read function is called and the code
waits for the read event of the monitored file descriptor.

As mentioned in section 2.3.1 the locfs file system in HelenOS does not support
parallel reads and writes, which is why instead of the C library version of the
read operation the function console_get_event was used for reading from
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the stdin in the end. The events returned by this function were represented as
characters pushed in the buffer of the monitoring structure.

3.6 Implementing pwrite and pread

QEMU block devices make use of the functions pwrite and pread. To im-
plement these functions in the C library of HelenOS this functionality must be
supported in the VFS service in HelenOS. Therefore, the function vfs_rdwr in
the VFS service has been extended to support a position specified by the caller
instead of using the position associated with a file descriptor.

As the function vfs_rdwr already served multiple purposes it was not de-
sirable to add another true/false argument and an enum rdwr_flags was
used to substitute the original and the newly added argument. Using this method
it is clear which functionality is desired from this function when looking at the
function calls, without the need to go through the description of its parameters.

3.7 ANSI terminal commands

In order to port the ncurses library ANSI terminal commands had to be imple-
mented. For the sake of the prototype the parsing of ANSI commands was done
by adding a new module in the console service and the gui library in HelenOS.
This ANSI module exports one function called ansi_try_parse. The function
ansi_try_parse is expected to be called before the processing of a character
which is to be written to the console, with this character as an argument. If the
character obtained is part of a potential terminal command this function signals
to the console that the character does not need any processing by returning a
one. In case of an error in the middle of the currently parsed command, a zero is
returned and the characters processed since the last successfully processed com-
mands are printed to the console, to make the debugging of terminal commands
easier.

The parsing itself is implemented using a simulator of a finite-state machine
(FSM) with the additional ability to parse numeric arguments automatically.
Macros are used to simplify the definition of the FSM and to achieve better
readability of the code. As this is an invasive solution in terms of the console
service and the gui library, it is considered as a temporary solution to support
the prototype implemented in this thesis. A new service to support the terminal
commands will be created in the future when the API of the console subsystem
in the C library of HelenOS undergoes the changes planned by the HelenOS
community.
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3.8 Integration of the source code

The port presented in this thesis is a part of the HelenOS project. HelenOS uses
the Bazaar version control system to track changes in the source code of HelenOS
and to allow branching of the source code. A special branch (see attachment A)
was created to implement the prototype presented by this thesis, to allow the
main branch of HelenOS to be developed by the HelenOS community at the
same time. To ensure that the changes in this branch are easily appliable to the
main branch, the changes from the main branch were merged to the branch of
the prototype at regular intervals.

A similar approach was taken with the source code of Coastline packages
and the source code of QEMU. The modified source code of QEMU is published
in a GitHub repository created for the sake of this thesis. The Coastline was
branched in a similar way as the main branch of HelenOS and its branch can
found on Launchpad in the HelenOS project.
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4. Evaluation

At the end of the development of this thesis, the libposix library in HelenOS
was extended and the libevent library was added to the system. The packages
qemu, pixman, libffi, glib, gettext, bind, iconv and ncurses were
created in HelenOS Coastline. This chapter describes the evaluation of the func-
tionality added to implement the prototype of QEMU with the features described
in the Analysis chapter.

4.1 PCUT tests

The PCUT framework proved to be very helpful when debugging and testing
the newly implemented functionalities. It allowed testing for correct behaviour,
finding deadlocks and the missing memory reclamation. The new test suites con-
nected with the pthread, pipe, select and sigjmp functions were added to
the libposix self test. A new test suite was created for the library libevent.
The C library self tests were extended with tests for the bug connected with
fibril_yield, tests for functions pread and pwrite and tests for the con-
structor and destructor attributes. Table 4.1 shows the exact numbers of tests
added to different libraries in the process of the implementation of this thesis.

Library The number of added PCUT tests
libposix – pthread 25
libposix – other 15
libevent 11
the C library 6

Table 4.1: The number of tests introduced to each library

The tests for the pthread functionality include stress tests creating over 100,000
threads in a row where each of them will be joined or detached before another
thread is allocated. This helped in looking for a memory that had not yet been
reclaimed.

4.2 Using GLib tests

Another way to test the pthread functionality and the pipe and select func-
tions was through the usage of GLib’s self tests. A part of the source code of the
GLib library contains tests designed to test the library itself. As the configuration
process is quite mature in the GLib library it is not hard to cross-compile these
tests as a part of the HARBOUR script in the Coastline’s GLib package.
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The tests helped to discover, for example, problems with thread specific values,
and the functionality offered by pthread discussed in section 3.2. The GLib test
named rec-mutex helped the HelenOS community to fix two bugs in the kernel
of HelenOS and one race condition in the C library of HelenOS, as mentioned
in section 2.2.4. Some of the tests could not be used as they were dependent on
the function fork typically used by POSIX compliant applications that is not
supported by HelenOS, or on the pre-emptiveness of pthread threads.

4.3 Testing QEMU

QEMU as an application was tested using different operating systems which were
given to QEMU to emulate. Different Linux kernels were used together with
images of HelenOS and QEMU disk images from QEMU’s wiki [14] which are
recommended for testing QEMU. Each operating system makes use of its re-
sources in a different way. This manifested in different problems connected with
different operating systems. The problem that was discovered most often was a
deadlock when QEMU was emulating instructions, but the emulated operating
system was stuck in a loop. This kind of deadlock was discovered, for example,
while emulating DOS 6.22. To resolve this deadlock another call to the function
firbil_yield had to be added higher in the call-stack of the loop emulating
the CPU, as explained in section 2.2.4.

Another problem that manifested during testing of the emulation of the MINIX
operating system (in version 2.0.4 which is one of the QEMU testing images) was
of a performance kind. It was discovered that the functions pread and pwrite

are used heavily during the boot process of MINIX, at the moment when the
file systems in the booted image are checked for corruption. These functions
were first implemented using lseek as described in the first proposed solution
in section 2.3.2. However, with this implementation MINIX was not able to boot
properly in less than 30 minutes. For this reason the second solution proposed in
section 2.3.2 was chosen. With this implementation MINIX was able to boot in
less than two minutes.

Table 4.2 shows how long it takes the prototype of QEMU implemented in
this thesis to boot different operating systems and comparison of these values
taken from different platforms. The values are merely illustrative as the mea-
surements were done using a stopwatch and the platforms used for testing were
not completely uniform. Unless otherwise stated, a CD-ROM is used for loading
the operating system, and the time measured is that between bootloader start-
ing and a first expected user input. Based on these values this prototype is on
average 8.7 times slower than QEMU when compiled for Linux or Windows.
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System HelenOS Linux Windows
HelenOS (VGA text buffer) 124,63 11,93 13,16
HelenOS (serial port) 1 107,18 10,97 11,02
Linux kernel (3.2.41-2) – log 2 49,04 5,73 5,5
Linux kernel (3.2.41-2) 3 52,67 8,27 8,58
Minix 2.0.4 4 68,22 3,24 3,98
Dos 6.22 5 4,71 4,51 4,57
Tiny-Core Linux 6.3 103,4 16,99 17,05
* all values are in seconds
1 values express the time until the first getterm task is spawned
2 booted using -kernel and -initrd options, time from Linux kernel

log used
3 booted using -kernel and -initrd options
4 booted from prepared hard drive image
5 booted from prepared floppy disk image

Table 4.2: Comparison of the boot times of different OSs in QEMU

As a result of a slower emulation and dependency of QEMU on precise timing,
the guest code often struggled with timers. The boot process of HelenOS ended
up with kernel panic unless the frequency of the host system timer was increased.
An image of Tiny-Core Linux starts printing a timeout error message when udev

is trying to kill one of its child processes. However, this message disappears a few
seconds after the bash shell is started.

As Tiny-Core Linux contains the time command, a utility intended to mea-
sure the wall-clock time of a started process, it was used to compare the speed of
the prototype implemented in this thesis, when the operating system is success-
fully booted. Table 4.3 shows the wall-clock time of different commands in Linux,
executed inside QEMU running on different platforms. These values should be
considered as merely illustrative, as the platforms used for testing were not com-
pletely uniform.

Command HelenOS Linux Windows
time find / 76.82 3.31 4.14
dd random to file_4M1 98.17 6.71 6.4
time md5sum file_4M 0.91 0.23 0.18
cpu and memory load 2 242.63 11.47 13.24
* all values are in seconds
1 dd if=/dev/urandom of=file_4M bs=4M count=1
2 time head -c 4m /dev/urandom | gzip > /dev/null

Table 4.3: Comparison of execution times of different Linux commands in QEMU

All the tests were run with the default settings of QEMU in emulation mode,
which means with one CPU core and 128 megabyte of RAM. HelenOS had an
advantage over the other two platforms because it was loading the files from its
ram disk.
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4.4 Supported platforms

As mentioned in the Introduction chapter, the prototype implemented in this
thesis should focus on supporting platforms x86 and x86-64. It is important to
distinguish two kinds of platforms – a guest plaform and a host platform. The
guest platform in the case of this thesis refers to a platform that is emulated by
QEMU. The host platform, on the other hand, is a platform on which HelenOS
is running. As HelenOS and QEMU support multiple platforms (e.g. x86, x86-
64, ARM, MIPS, SPARC and PowerPC) testing of all the combinations would
be very difficult. Table 4.4 shows the combinations of guest-host platforms that
have been tested during the evaluation of this thesis (guest platforms in rows,
host platforms in columns).

Guest x86 x86-64
x86 T T
x86-64 T T
ARM D NT
MIPS D NT
T tested
D deadlock
NT not tested

Table 4.4: Testing of combinations of guest-host platforms

Table 4.4 mentions deadlocks when emulating ARM and MIPS platforms. De-
bugging of the prototype of QEMU discovered that these deadlocks are probably
caused by the problems with pre-emptiveness explained in section 2.2.4. To test
platforms x86 and x86-64 the images mentioned in table 4.2 were used. Guest
platforms ARM and MIPS were not tested on the x86-64 host platform, however,
their compilation was successful. The same applies to guest platforms SPARC,
SPARC64 and PowerPC on either x86 or x86-64.
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5. Conclusion

The port of QEMU implemented in this thesis is by no means a stable equivalent
of QEMU built on Windows or Linux. Most importantly, it lacks the support of
full VGA emulation and it does not support networking. Only a subset of those
platforms emulated have been tested. These features were omitted because they
are not required by the goals of this thesis and because their implementation
would take a lot of time. It is, however, a prototype that is sufficient for testing
operating systems on top of HelenOS including HelenOS itself.

The port of QEMU presented in this thesis can emulate a code of the same or a
different platform to the platform of the host. The code of the emulated machine
can be loaded through an emulated CD-ROM or hard-drive. The output of the
emulated machine can be displayed to the user through the serial port or the
VGA text buffer. The input is provided through the serial port, or through an
emulated keyboard when the VGA text buffer is used as an output device.

This thesis also serves as a proof of the maturity of HelenOS. During the
implementation, two bugs in the kernel of HelenOS were fixed as parts of this
thesis were able to help the HelenOS community to reproduce these bugs. A bug
in the user space threads, known as fibrils, was fixed and a race condition in the
management of fibrils was discovered by the HelenOS community thanks to the
code implemented. At the end of this thesis it was clear that HelenOS is mature
enough to execute other operating systems on top of itself.

The primary goal of this thesis was to create a prototype of a port of QEMU
for HelenOS that would allow the running and testing of HelenOS inside HelenOS
itself. This was achieved as the port presented by this thesis can run HelenOS
together with other operating systems – e.g. DOS, MINIX and Linux.

The secondary goal was to extend the POSIX layer in HelenOS and thus
facilitate the porting of other POSIX compliant applications in the future. This
was proved at the end of the implementation of this thesis when it was attempted
to port the application bash to HelenOS. There were previous attempts to port
this application that had failed when bash tried to call the select function
on stdin. As this was one of the functionalities ported to HelenOS during the
implementation of this thesis, bash was successfully compiled in a few hours.
During the testing of bash it was discovered that some of the functionalities were
working, for example the echo command gave the expected output. However,
spawning new tasks did not work because it is dependent on the function fork,
which is not supported by HelenOS and was not required by QEMU.

The thesis meets the goals specified in the Introduction chapter. The missing
features of QEMU do not prevent the user from using the port to test different
operating systems including HelenOS.
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5.1 Possible extensions

The port presented in this thesis is a prototype and therefore, there are features
that could be ported in the future. When the networking is supported in the
POSIX layer it would allow the emulation of network cards and the usage of
the GDB server inside QEMU. The emulated network hardware is convenient for
testing the networking of the tested operating system. The GDB server allows
for debugging of the source code of the guest, using GDB.

Another feature with which the port could be extended is support for the full
VGA output. As discussed in section 2.4.2 a suitable solution would be to port the
SDL library to HelenOS. As graphical user input (GUI) has never been used when
porting POSIX applications or libraries to HelenOS this would require changes
in the HelenOS Coastline. The special rendering driver for the SDL library could
then be added to make use of the GUI in HelenOS.

A shared mode could be added to the function pipe that was implemented
in the POSIX layer of HelenOS as a part of this thesis. When the problem with
concurrent reads and writes to the locfs file system is fixed, each pipe could be
represented by a special service. This would allow usage of the real file descriptors
and for the source code of monitored stdin and created pipes to be joined.

The pthread functionality implemented in the POSIX layer of HelenOS can
be extended to support pre-emptiveness, once the problem with executing fibrils
in an environment with multiple kernel threads is fixed. The function pthre-

ad_setconcurrency could then be implemented to support controlling of the
desired level of concurrency by starting new threads or by shutting down the
already started threads.
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A. Source code

The HelenOS community uses the Bazaar version control system. The official
source code repository of the core of the operating system and the kernel can be
found at:

bzr://brz.helenos.org/mainline

The official repository of the Coastline containing the packages of the ported
applications can be found here:

bzr://helenos.org/coastline

QEMU uses the Git version control system and the repository containing its
source code can be found at:

https://github.com/qemu/qemu

The development branches of HelenOS are accessible on Launchpad, again
using the Bazaar version control system. This thesis respects this custom and
therefore, the source code of the core of HelenOS with the changes presented in
this thesis can be found in this repository:

lp:~maresja1/helenos/qemu_th

The Coastline repository containing the new packages can be found at:

lp:~maresja1/helenos/coastline_qemu_th

The source code of QEMU based on version 2.2.0 with changes applied during
porting can be found here:

https://github.com/maresja1/qemu-helenos

Branches of the core of HelenOS and HelenOS Coastline were regularly merged
with the official branches to facilitate the incorporation of the code of the devel-
opment branches into the official branches. The branches of the Coastline and
the core of HelenOS are in a feature freeze state to avoid problems whilst testing
this thesis. However, a fresh version is accessible in the following repositories:

lp:~maresja1/helenos/qemu_porting

lp:~maresja1/helenos/coastline_qemu_porting

The process of compilation of the sources and execution of the prototype is
described in chapter B.

46



B. Compilation and execution

To successfully compile the prototype implemented in this thesis, the source
code of HelenOS core and HelenOS Coastline must be compiled using a cross-
compilation tool-chain. The tool-chain is expected to be found in /usr/local

/cross/ia32/. The cross-compilation tool-chain is expected to consist of binu-
tils in version 2.23.1, GCC in version 4.8.1 and optionally GDB in version 7.6.1.
HelenOS core is provided with a script to facilitate the installation of the cross-
compilation toolchain. The script can be found at tools/toolchain.sh in
the root of the HelenOS core source code repository. To install the tool-chain for
x86 platform run:

tools/toolchain.sh ia32

The script will check the dependencies of the tool-chain, download the source
code of its parts from their official repositories, compile it and install it to the
aforementioned folder.

When the cross-compilation tool-chain is prepared the compilation of HelenOS
and the prototype of QEMU can take place. Let us assume that the repository of
HelenOS was downloaded to folder helen_os and the repository of Coastline to
folder coastline and these two folders have the same parent folder. In order
to compile Coastline, a new folder has to be created in the same parent folder, let
us call it coastline_build. The sources of HelenOS can be compiled using
Coastline and that is also the recommended method when packages from Coast-
line are going to be compiled. The following procedure should compile HelenOS,
QEMU and its dependencies.

cd coastline_build

../coastline/hsct.sh init ia32 build

../coastline/hsct.sh install qemu

../coastline/hsct.sh install ncurses

At this point everything should be compiled. To ensure that the applications
installed by Coastline into the helen_os folder are included in the CD-ROM
image of HelenOS it is advised to run make in this folder.

To start the image of HelenOS in QEMU, run the following command in the
helen_os folder:

qemu-system-i386 -cdrom image.iso -m 1G

The whole process of building, including the cross-compilation tool-chain,
is captured in the script build.sh on the attached CD-ROM, for details see
chapter C.
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C. Content of the attached CD

The CD-ROM attached with this thesis contains the following files and folders:

• thesis.pdf – the text of this thesis

• image.iso – pre-built image of HelenOS containing the prototype of QE-
MU created in this thesis

• build.sh – script designed to facilitate the compilation of the HelenOS
core and QEMU in HelenOS Coastline, the first argument of the script
specifies in which folder the compilation should take place

• run.sh – script designed to facilitate the execution of the image of He-
lenOS, the first argument specifies the folder used when calling build.sh
script, if it is omitted the pre-built image on the CD-ROM is used

• sources/helenos_core.patch – a patch containing the differences
between the branch of HelenOS core used to implement this thesis and the
trunk of HelenOS core

• sources/helenos_coastline.patch – a patch containing the dif-
ferences between the branch of HelenOS Coastline used to implement this
thesis and the trunk of HelenOS Coastline

• sources/qemu.patch – a patch containing the differences between the
branch of QEMU used to implement this thesis and the branch correspond-
ing to version 2.2.0 in its official repository

• sources/helenos_core – a content of the branch of HelenOS core used
to implement this thesis

• sources/helenos_coastline – a content of the branch of HelenOS
Coastline used to implement this thesis

• sources/qemu – a content of the branch of QEMU used to implement
this thesis

• data – scripts to facilitate the starting of different operating systems in
QEMU on HelenOS

• data/images – images of different operating systems used to demonstrate
the abilities of the prototype of QEMU implemented in this thesis

The scripts in the data folder are copied in the final image when using the
build.sh script or the pre-built image of HelenOS CD-ROM. The usage is sim-
ple, for example, to start an emulation of the attached image of HelenOS use:

batch data/start-helenos.bdsh

in the console of HelenOS.

48


	Introduction
	Development context
	HelenOS
	Microkernel
	IPC and fibrils
	Synchronization primitives
	Virtual File System
	Coastline
	POSIX support
	Plain C Unit Testing framework (PCUT)

	QEMU
	Supported platforms
	Architecture


	Analysis
	Discovering the requirements of the features
	Core features
	Configuration dependencies of QEMU
	Threads and synchronization primitives
	The event loop and timing
	Concurrency level and yield
	Modules

	Key features
	Input and output
	Block devices
	VGA text buffer

	Possible extensions of the feature set
	Network
	Full VGA support

	QEMU as a hypervisor for HelenOS

	Implementation
	Changes in the ported code
	Implementing pthread in the POSIX layer
	Synchronization primitives
	Fix of the fibril_yield function

	Support for GLib event loop
	Support for C constructors in HelenOS
	Monitoring stdin
	Implementing pwrite and pread
	ANSI terminal commands
	Integration of the source code

	Evaluation
	PCUT tests
	Using GLib tests
	Testing QEMU
	Supported platforms

	Conclusion
	Possible extensions

	Bibliography
	Source code
	Compilation and execution
	Content of the attached CD

