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Introduction
WiFi networks have become an inseparable part of a common computer user’s
everyday life and a wireless Internet connection is nowadays available literally
on every street corner. WiFi provides a convenient way for connecting a user
to a computer network without the need for dealing with stringing cords
plugged into a wall.

In the beginning, the only possibility for securing a WiFi connection was to
use the WEP method introduced as a part of the IEEE 802.11 standard. How-
ever, it was soon discovered to have major security flaws and using wireless
networks became unsuitable for transferring sensitive data. A few years later,
this problem was solved by releasing a security amendment which included
protocols providing much better safety.

WiFi technology is used today either for interconnection of a user device
with an ISP’s end instrument or for bridging between a service provider and
an end user location. The upside for the user is mobility, but comes at the
cost of worse connection stability and lower data transfer rates compared to
wired connections.

Motivation and goals

This thesis has two main goals. The first is to design and implement an IEEE
802.11 framework providing generic wireless functionality to device drivers
and user applications. The second is to implement a wireless device driv-
er for a specific IEEE 802.11-compliant device which will also serves as an
exemplary implementation.

Before writing this thesis, HelenOS had only support for wired network
devices based on Ethernet technology. Our task is also to integrate the re-
sulting framework prototype implementation and driver into the existing He-
lenOS environment and providing the same functionality as wired devices.
Given the microkernel nature of HelenOS, the process is rather different from
any conventional operating system.

To provide a secure network access for users, we also have to implement a
library with cryptographic functions used for data encryption and decryption.
The library will contain many generic functions that are not IEEE 802.11-
specific and can be reused for other purposes.

The implementation should also be accompanied by a simple front-end
tool for scanning networks and managing wireless connections.

Contents

The thesis is divided into several sections. Chapter Context describes basic
concepts of the IEEE 802.11 technology and also includes an introduction into
the HelenOS system. Chapter Analysis comprises an evaluation of potential
suitable devices for driver development, an analysis of the selected device’s
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existing driver in Linux, a discussion about implementation decisions, de-
scription of development tools used during implementation and integration of
the device driver and wireless framework into HelenOS. Chapter Implementa-
tion documents implementation details during source code development and
enumerates a list of changes to existing HelenOS source code. Chapter Eval-
uation resumes the implemented functionality and compares performance of
the wireless framework to the wired one. Chapter Related work covers existing
implementations of IEEE 802.11 networking stack in other operating systems.
Finally chapter Conclusion sums up the results of the efforts.
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1. Context
This section begins with a short introduction into IEEE 802.11 fundamentals,
followed by a brief familiarization with the HelenOS operating system.

1.1 IEEE 802.11 concepts

The family of IEEE 802.11 standards (also referred to as WiFi) is a set of tech-
niques for implementing wireless local area network communication between
computers. Like other IEEE 802 standards, they focus on the two lowest lev-
els of the ISO/OSI model - physical and link layer (the media access control
part).

1.1.1 Different variants of standard

With the innovations in transmission infrastructure and modulation tech-
niques, new amendments to original IEEE 802.11 standard (dating back to
1997) were released. The first two, IEEE 802.11a and IEEE 802.11b, were rati-
fied in 1999.

The widely accepted 802.11b operates in 2.4GHz band with maximum data
rate of 11Mbit/s. Its adjacent channels overlap, which means that it needs to
leave several channels clear between the used channels to avoid interference.
It is capable of adaptive rate selection based on signal quality in order to
decrease the number of retransmitted packets.

IEEE 802.11a variant operates on 5GHz frequencies at maximum speed of
54Mbit/s, originally with non-overlapping channels. The idea of migrating
to different spectrum of frequencies is based on the observation that 2.4GHz
band is overcrowded. Hence, moving to the 5Ghz band gives the advantage
of less interference, but at the same time introduces transmission problems
which lower the range compared to the IEEE 802.11b variant. The 802.11a is
therefore not compatible with 802.11b/g networks.

In 2003, a third variant was announced under the 802.11g amendment. It
uses the 2.4GHz band, same as 802.11b, but allows for maximum data rate of
54Mbit/s at the cost of instability in the presence of interference. The standard
is backward compatible with 802.11b.

The IEEE 802.11n standard was ratified in October 2009. It uses the so-
called multiple-input multiple-output (MIMO) technique to increase data rates
up to 150Mbit/s, and a frame aggregation feature for packing multiple data
units together for reducing overheads associated with decoding MAC frame
fields..

Apart from these basic variants of IEEE 802.11, several other variants exist
as extensions or corrections to previous specifications.

Implementation in this thesis supports communication with devices which
implement the 802.11b and 802.11g variants.
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1.1.2 Operating modes

There are two basic modes of operation defined in IEEE 802.11: infrastructure
mode and ad-hoc mode.

In the infrastructure mode, nodes are organized in star topology, i.e. one
node operates as the access point and other nodes, called stations, communicate
solely through it. Conversely, an ad-hoc network consists of stations which
communicate with one another directly.

The smallest subset of a wireless network architecture is referred to as the
basic service set (BSS). It consists of two or more nodes that communicate
directly. A distribution system (DS) is used for BSS interconnection on link
layer. The resulting network is called the extended services set (ESS) and it
corresponds to wireless network (WLAN). Access points are parts of the DS
and they are assumed static (immobile) nodes. All access points in the same
ESS have identical identifier (SSID).

Station transitions between networks are possible. Migration between two
BSSs inside one ESS is done through a DS service called reassociation. Roaming
(transition between two ESSs) is not supported and it should be performed
by the station itself..

1.1.3 Access methods

Because in practice there are typically more candidates to transmit over a
transmission medium, the communication protocol must coordinate simulta-
neous attempts to access to the shared medium. The IEEE 802.11 standard
defines three basic ways of dealing with this issue.

The radio interface of communicating nodes is usually half-duplex, which
prevents the sender from recognizing communication interference. The so-
lution is to send packet acknowledgements to notify sender about successful
packet reception.

First method is Distributed coordination function employing Carrier sense
multiple access with collision avoidance (DCF CSMA/CA). Candidates mon-
itor the shared medium for ongoing communication and wait for random
time if somebody else is currently transmitting before trying again. Variable
waiting time is used to eliminate collisions that occur when multiple stations
sense the channel as busy and then simultaneously find that the channel has
been released.

DCF suffers from two problems called hidden and exposed terminal. The
hidden terminal problem occurs when a node is visible from an access point,
but not from other communicating nodes which then do not detect an ongo-
ing transmission. Exposed terminal is a similar problem when the medium is
unused but a candidate detects it as occupied because of signal interference
from a neighbouring node. These can be eliminated by using DCF together
with the Request-to-send and Clear-to-send (RTS+CTS) mechanism. A sender
first sends an RTS frame to inform the recipient’s neighbours about an upcom-
ing transmission. The recipient then replies with a CTS frame to the sender’s
neighbours.

Besides the mentioned distributed methods, the standard also specifies the
Point coordination function (PCF) centralized method. It requires existence
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of an access point which coordinates traffic in the network (not applicable in
ad-hoc mode).

1.2 IEEE 802.11 authentication

This section delves into the details of the process of how a station, a wireless
client device, connects to an access point.

1.2.1 Finding the network

The first thing a station needs to do before using a wireless network is to find
it. There are two ways how it can accomplish that.

First method is called passive scanning. The station iterates over the sup-
ported channels and waits for so-called beacon frames which contain informa-
tion about the BSS that sent them.

Second approach is called active scanning. Rather than passively listen-
ing for network announcements, the station construct a special management
frame called probe request and broadcasts it on every channel it wants to ex-
amine. BSSs reply with a probe response frame, similar to the beacon frame.

Both methods are used when searching for networks in this thesis imple-
mentation.

1.2.2 Basic authentication

After selecting the network, the station needs to authenticate against the cor-
responding access point. Even though this is referred to as authentication, this
process does not provide significant security guarantees to the network. It can
be seen as an initial step in the handshake process that identifies the station
to the network.

IEEE 802.11 defines two types of authentication methods: open system
authentication and shared key authentication.

In open system authentication, the station sends an authentication request
to the selected access point, containing the station’s MAC address, and waits
for an authentication response verification frame.

With the shared key authentication method, the access point verifies the
station’s knowledge of a shared secret (network password). Client initiating
authentication sends an authentication request to the access point. AP re-
sponds with an authentication response including a challenge text. The client
is expected to encrypt the challenge text using the shared secret and send it
back to the AP. If the result matches the AP’s local cipher text, the AP sends
back a positive confirmation.

The shared key authentication is the basis of the WEP security algorithm
considered deprecated since 2004. For that reason, it is not supported in this
thesis’ implementation..
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1.2.3 Association

To start using a network, a station needs to register itself with an access point.
This procedure allows a distributed system to keep track of the station’s lo-
cation so that frames are forwarded to the correct access point. When the
association request is granted, the client receives a unique Association iden-
tifier (AID). This can be seen as mapping between the client station and an
AP’s port. It replaces the physical link in a wired LAN.

The whole sequence of basic authentication process can be seen below in
Figure 1.1.

Figure 1.1: Station connection process sequence

1.2.4 High-layer authentication

About 15 years ago, the only link-level security option was using the WEP
algorithm introduced as part of the original IEEE 802.11 standard issued in
1997. A few years later it was proclaimed insecure as several successful at-
tacks against it emerged. In order to provide better security, IEEE designed
new security protocols issued under IEEE 802.11i amendment in 2004 [1].
The new protocols support strong cryptography key exchange and mutual
authentication possibility.

There are two different methods how high-layer authentication can be ac-
complished which differ in the way that authentication keys are distributed.
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One is based on pre-shared keys and without the need for an authentication
server. It is called WPA-Personal (also known as WPA-PSK) and was designed
for smaller home or office networks. Second, known as WPA-Enterprise (also
referred to as WPA-802.1X), requires a RADIUS server for client authentica-
tion and provides security suitable for business environments.

Only support for the WPA-Personal mode was implemented with this the-
sis and hence full description of the WPA-Enterprise mode is omitted.

4-way handshake

In order to establish an encrypted connection, the client needs to undergo a
key management procedure to obtain cryptography keys to be used in subse-
quent data transmission. This process is called the four-way handshake.

At the beginning, both parties possess the secret previously shared dur-
ing the authentication process. This secret is mapped with a cryptographic
function to a hash value known as the pre-shared key (PSK). In the case of
WPA-Personal, this value is directly used as the pairwise master key (PMK).
The PMK was designed to last the entire session and so it should not be ex-
posed anywhere. To that end, it is hard coded into the access point.

PMK is not used directly for data communication encryption but rather
used to derive a pair of temporal transmission keys. These are the pairwise
transient key (PTK) for protecting communication between station and the
access point and group temporal key (GTK) used for broadcast data reception.

Handshake is separated into four phases which are described as follows:

1. Authenticator sends the client a nonce (ANonce), which is a pseudoran-
dom sequence of numbers.

2. Client creates his own nonce (SNonce) and uses it for derivation of PTK.
Then it sends a message to the authenticator containing this nonce. This
message is complemented by message integrity code (MIC) constructed
from PTK, so that the authenticator can perform verification of the secret
used by the client and also to derive the PTK.

3. Third message, sent by the authenticator, contains security parameters
(same as in beacon and probe responses frames) and also the GTK en-
crypted using the PTK. Again, the message is secured by MIC.

4. Client installs decoded temporal keys and sends a confirmation to the
authenticator.

After successful completion of the handshake, encrypted communication
may begin. Algorithm used for encryption is based on selected security suite
during authentication phase. These days, most devices support hardware
encryption of data transmission. Support for software encryption of frames is
not included in this thesis.

The procedure is illustrated further in Figure 1.2.
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Figure 1.2: 4-way handshake sequence

1.3 Introduction to HelenOS

HelenOS is operating system with microkernel architecture. This is very dif-
ferent from conventional operating systems like Windows, Mac OS or Linux.

In most modern operating systems, we can differentiate between code that
is running in user (unprivileged) mode and kernel (privileged) mode. Code
running in mode kernel has complete and unrestricted access to the underly-
ing hardware. Execution of a malicious code in kernel mode could therefore
have catastrophic consequences on system operation. For that reason, the ker-
nel mode is generally reserved only for the most trusted components of the
operating system. In user mode, the executing code has no ability to access
hardware or reference physical memory directly. Crashes of applications run-
ning in user mode are recoverable from and not dangerous to operation of
the system. Applications can request a service from the kernel through sys-
tem call API which checks authorization of the call and grants access to the
execution of routine with higher privileges.

Microkernels require only the very necessary functions to run in privileged
mode (scheduling, memory management and inter-process communication).
All other system functionality and modules are implemented as programs in
user space, usually referred to as servers which communicate with each other
through IPC. This separation of operating system functions allows for better
design modularity and system reliability.

IPC is a crucial component of HelenOS. System tasks communicate with
each other by sending messages and waiting for replies. For each inter-process
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connection, the IPC library creates a user-space thread called fibril, which is
the smallest unit of execution. Multiple fibrils run simultaneously within the
kernel which enables concurrent processing of messages.

HelenOS is a research operating system created at Faculty of Mathemat-
ics and Physics at the Charles University in Prague. The original SPARTAN
kernel was developed between 2001-2004 by the founder of HelenOS Jakub
Jermář. Since then, many people (mostly students) have contributed to the
system and it is used as a platform for student software projects and theses.

Because of its microkernel design and open-source nature, HelenOS is ide-
al for demonstrating principles of operating systems and for experimentation
without the need for delving deep inside the system implementation details.
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2. Analysis
Now we are going to describe the preparation for the development process,
external tools leveraged during the work and subsequently the method of in-
tegrating the wireless device driver and framework into the existing HelenOS
environment.

2.1 Choosing a suitable WiFi device

It is currently not an easy to develop and deploy HelenOS on real hardware
but it can be easily emulated under QEMU or VirtualBox. However, contem-
porary hypervisors do not support virtualized WiFi devices and we there-
fore need to choose a suitable WiFi device candidate which can be connected
through the hypervisor to HelenOS.

When searching for an appropriate device, we have been deciding be-
tween two types. First option was to use an integrated WiFi adapter typically
connected through MiniPCI or Mini PCIe bus. This method however needs
support of Intel VT-d extension for I/O MMU virtualization on host comput-
er. Another possibility is to use an external adapter connected via USB and
use the USB pass-through feature of QEMU to delegate device management
from host to guest OS.

Another criterion we want to meet is that the target device should have
open technical specification or at least an available open-source driver in an-
other operating system, so as to determine the protocol used for the commu-
nication between the device and the host.

Wide-spread availability of the chipset on the market is another point to
consider.

After evaluating the specified requirements against the product offering
on the market, we have found that the Atheros AR9271 chipset fulfils all the
given criteria, with free product data sheet available, existing open firmware
implementation and Linux driver released under the ISC license [2] compati-
ble with the BSD license used by HelenOS.

2.2 Linux sources

During development of AR9271 device driver we had to deeply explore its
Linux driver and whole Linux wireless network stack, because information
contained in the product data sheet was insufficient for understanding the
device communication protocol.

2.2.1 Debugging Linux code

In order to investigate data flow between the device and the host, we needed
to debug the existing Linux implementation. We tried to use original debug-
ging environment implemented for Atheros wireless drivers, but found both
the source code and debugging information too complex and verbose, yet
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lacking the crucial information about the device initialization protocol which
we needed.

To omit the redundant parts of the source and to add more debugging in-
formation into the driver code, we had to compile the Linux driver ourselves.
To this end, we used Fedora Linux which greatly facilitates this process.

Building the kernel for Fedora requires installing the development tools
package from the main repository, followed by creating a directory tree where
we will prepare and build the new RPM kernel package. Fedora, unlike many
other distributions, does not allow building packages in privileged mode for
security reasons, hence this is a directory owned by our normal user account.

Next, we download the kernel source code package matching our ker-
nel version via a special Fedora downloader and install dependent packages
needed to build it.

After that we have to set our kernel version as the target platform in the
build tree configuration file.

Now we can modify the source code, add the desired debugging output
and comment out unnecessary parts of the AR9271 driver code.

Once done with the modifications, we can build our module and insert it
into kernel, remembering to remove the original Atheros driver module first.

The commands involved in this process are documented in the appendix
at the end of the thesis.

Building external kernel modules is documented in more described in of-
ficial Linux kernel documentation [3].

2.2.2 Structure of driver

The AR9271 Linux driver is a part of the Atheros Linux wireless driver family.
The whole family can be divided into several groups based on technologies
(802.11 standard variants) supported in each one, AR9271 being part of the
ath9k group. In addition, there are different drivers based on the the bus
used for communication (either PCI or USB interface), making ath9k_htc the
driver which supports AR9271.

All drivers share some common parts which are located in the ath shared
module.

Unlike other drivers in the ath9k family, ath9k_htc makes use of a special
HTC + WMI + HIF framework for host-target communication.

Host/Target Communication layer (HTC) is responsible for communica-
tion between the host CPU and the target (firmware located on the USB
adapter). It defines a basic API for build communication protocols for a spe-
cific target and the interconnecting bus. Multiple endpoints are used both in
the host and the target for processing different types of services, e.g. process-
ing control messages, beacon frames, management frames or data frames on
different priority levels used to support QoS. HTC uses TX and RX comple-
tion callbacks that check the endpoint target and call registered callbacks for
each endpoint. HTC does not understand the contents of messages it trans-
ports (only WMI does), but it does understand the mechanics of messaging
with the Atheros chipset.
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The Wireless Module Interface (WMI) is a wireless communication pro-
tocol for Atheros wireless devices. It defines a set of commands that can be
issued to the target firmware or that the target firmware can send back to the
host for processing. WMI supports use of events, i.e. special commands for
which callbacks are registered.

Host Interface layer (HIF) is the interconnect driver interface used by a
driver. It uses the HTC layer to register special callbacks for device insertion
and removal. This layer also defines the callbacks to deal with USB messages
coming from/to target device. During device initialization it also uploads the
firmware to the device. HTC calls the HIF layer when it needs to access the
chipset address space. An HIF implementation exists for each combination of
platform and interconnect API (SDIO/MMC stack, USB stack, etc.).

The structure of the Atheros driver framework is pictured in Figure 2.1.

Figure 2.1: Ath9k htc driver framework layout

2.3 External tools used for development

During the thesis implementation, several additional tools were used in order
to simplify and speed up the development process. In this section, the two
most important are described in more detail.

2.3.1 Wireshark

When working with data at the lowest level of abstraction as a programmer
interpreting sequences of bytes, we have to construct data packets very care-
fully because the position and value of every single byte may play a role.

Typically when communicating with an embedded device on this level,
there is no form of output in the target device which we could intercept and
debug ongoing data transmission.

Wireshark is an ideal tool to solve this kind of problem. It is an open-
source multi-platform packet analyser used for network transmission analy-
sis, communications protocol development or other network testing purposes.
It allows to examine data from ongoing network transmission while display-
ing them interactively, and also to capture the analyzed data on disk for later
examination.
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It can interpret a communication from a number of network types, such
as Ethernet, IEEE 802.11 and more. It also has a multitude of sophisticated
filtering and sorting options.

We used Wireshark to analyse data sent between the wireless adapter and
its HelenOS driver running under a QEMU hypervisor. Because the adapter is
connected to HelenOS via USB passthrough, there is no possibility to examine
data at the link or network layers, because the host Linux OS considers the
adapter a generic USB device. Wireshark helps us investigate the raw USB
data stream.

Wireshark was also used during implementation of this thesis for the pur-
poses of examining data transfer on the access point side (receiver of the sta-
tion’s packets). This is done by making a wireless hotspot from any computer
station running conventional operating system and configuring Wireshark to
monitor the target network interface. Wireshark can recognize network pack-
ets and interpret TCP communication which is useful for example for veri-
fying successful authentication between the station and the access point or
identifying request timeouts or packet loss.

It was sometimes also useful to capture Wireshark output from correctly
working Linux implementation and compare it to the output from our He-
lenOS implementation to identify where the problem might lie.

Examples of the Wireshark application interface are demonstrated in Fig-
ures 2.2 and 2.3.

2.3.2 Python

When writing a complex piece of code or working with a substantial code
base, it is important to have the ability to quickly prototype a new part of a
larger design solution or to briskly test some of the system’s functionality.

To this end, we choose Python which is a dynamic programming language,
nowadays very popular in the community. Because of its simplicity, there is a
huge amount of existing libraries implementing many features from numer-
ical and cryptography functions to graphical transformations. It is therefore
suitable for quick prototyping of applications or algorithms without the need
for writing too many lines of code and detailed understanding of the internal
mechanisms of third-party code.

In this project we used Python mainly for creating and testing cryptogra-
phy functions prototypes and verifying the process of key derivation during
the four-way handshake.

Example script used during development is available in the Appendix B
at the end of this document.

2.4 HelenOS integration

In this section we describe how the wireless device driver and IEEE 802.11
stack are incorporated into the HelenOS system, and what other ways of in-
tegration exist.
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Figure 2.2: Wireshark UI showing raw USB communication with AR9271

2.4.1 Device driver

Device drivers for HelenOS are implemented as individual servers which live
in user space and communicate through IPC. This structure is based on the
HelenOS microkernel design and we are also using it to implement our wire-
less device driver.

HelenOS facilitates development of drivers with its device driver frame-
work (DDF). The framework consists of the device manager which is the cen-
tral point collecting information about available drivers in the system, and the
libdrv library which is statically linked to every device driver and provides
a uniform interface to communicate with other devices.

DDF framework structure

In DDF, the device driver model can be split into multiple parts. The first part
is the device-specific protocol for communicating between a device and its
driver, for example to read or write a character from/to device. The second
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Figure 2.3: Analysis of 4-way handshake followed by DHCP and DNS queries

part are driver-specific operations. These provide generic functionality for
this type of driver, such as initialization procedures and operations specific
for a given type of device (e.g. for network devices operations like send or
receive packet, etc.). The other parts of the driver are composed from logical
functions (a.k.a. DDF functions). Each logical function can be either external
or internal. External ones have an API exposed to other clients outside of
DDF and internal ones are used for attaching child drivers.

Every driver is then attached to a specific device. There could also be
more drivers suitable for that device in which case the DevMan decides which
one will be used. Driver should implement the device- and driver-specific
functionality and provide one or more DDF functions which will be exposed
and registered under the selected category of devices, so that users can easily
list and manage devices in each category. DDF functions also provide hooks
to handle incoming requests. This is typically done inside the driver’s entry
point for probing new device.

Several frameworks built on top of the DDF architecture already exist in
HelenOS and provide support for generic features useful for implementing
device drivers in their respective domains.

Bypassing the framework

When implementing a device driver using just the generic DDF framework,
the approach is quite straightforward.

We provide a class which implements a callback interface of generic device
events and pass it to the DDF device manager. The interface method are then
invoked by libdrv when corresponding events occur.
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Usually we want to include some driver-specific device data inside generic
driver structure. This can be done using a special setter function which stores
a pointer to our driver-specific structure inside the generic one.

Then in the main function of our device driver we pass a pointer with
the driver structure to generic DDF main function in order to initialize driver
with DDF framework as shown in Listing 1.

When using a different driver framework built on top of DDF, the process
is very similar. Only the resulting framework structure is passed as driver-
specific data to the generic DDF driver.

A multitude of device drivers already exists in HelenOS implementing
functions from the frameworks they build on. In this regard, our driver uses a
slightly different approach, because we want to implement several interfaces.

When using the standard approach provided by one of the driver frame-
works we have selected for our device driver, there is no interface for combin-
ing this framework with another one.

With regard to our AR9271 device, we want to use the network interface
controller (NIC) interface combined with the USB framework. In the case
of the USB framework, there already exists a mechanism which allows us to
bypass the standard procedure of driver initialization [4] which is also used
in the enclosed implementation of this thesis.

/** Device driver main function. */

int main(int argc, char *argv[])

{

...

return usb_driver_main(&my_driver);

}

/** Callback when new device is attached. */

static int my_device_add(usb_device_t *dev)

{

...

/* Setup driver specific data. */

my_device_t *mdev = usb_device_data_alloc(dev, sizeof(my_device_t));

/* Create DDF function. */

ddf_fun_t *fun = ddf_fun_create(mdev->ddf_dev, fun_exposed, "port");

/* Setup device operations. */

ddf_fun_set_ops(fun, mdev_ops);

/* Bind function to the system. */

int rc = ddf_fun_bind(fun);

...

}

Listing 1: Standard USB framework initialization
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/** AR9271 driver main function. */

int main(int argc, char *argv[])

{

...

return ddf_driver_main(&ar9271_driver);

}

/** Callback when new device is attached. */

static int ar9271_device_add(ddf_dev_t *dev)

{

...

/* USB framework initialization. */

usb_device_t *usb_device = calloc(1, sizeof(usb_device_t));

int rc = usb_device_init(usb_device, dev, endpoints, &err_msg);

/* Initialize IEEE 802.11 framework. */

rc = ieee80211_init(ar9271->ieee80211_dev, &ar9271_ieee80211_ops,

&ar9271_ieee80211_iface, &ar9271_ieee80211_nic_iface,

&ar9271_ieee80211_dev_ops);

...

}

/** IEEE 802.11 framework initialization. */

int ieee80211_init(...)

{

...

/* Setup implemented IEEE 802.11 and NIC operations. */

int rc = ieee80211_implement(ieee80211_dev, ieee80211_ops,

ieee80211_iface, ieee80211_nic_iface, ieee80211_nic_dev_ops);

/* Setup NIC framework. */

nic_t *nic = nic_create_and_bind(ddf_dev);

nic_set_specific(nic, ieee80211_dev);

nic_set_send_frame_handler(nic, ieee80211_send_frame);

/* Setup DDF function. */

ddf_fun_t *fun = ddf_fun_create(ieee80211_dev->ddf_dev,

fun_exposed, "port0");

nic_set_ddf_fun(nic, fun);

ddf_fun_set_ops(fun, ieee80211_nic_dev_ops);

ddf_fun_bind(fun);

ddf_fun_add_to_category(fun, DEVICE_CATEGORY_NIC);

ddf_fun_add_to_category(fun, DEVICE_CATEGORY_IEEE80211);

...

}

Listing 2: Bypassed USB framework initialization in AR9271 driver
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As a result, the AR9271 driver uses the generic DDF framework for driver
initialization and in device probe procedure, NIC interface is initialized as
driver-specific data to generic DDF driver and the USB framework is initial-
ized separately and stored as a pointer in the AR9271 driver-specific structure.
This approach is documented in Listing 2 and the resulting connection of in-
dividual modules is illustrated in Figure 2.4.

The USB framework can’t be used directly as AR9271 driver initializa-
tion framework, because NIC framework doesn’t provide ability to bypass
the standard framework initialization procedure, so implementing more in-
terfaces would be much more complicated. In the presented solution, the re-
lationship between individual frameworks results from the natural substance
of the individual driver layers.

Figure 2.4: AR9271 driver hierarchy

2.4.2 Wireless framework

Design of the IEEE 802.11 framework can be divided into two parts described
below.

Library with generic operations

Generic IEEE 802.11 functionality is packaged as a library that can be included
by wireless device drivers.

It uses a similar approach as existing driver frameworks in HelenOS. A
device driver which wants to implement IEEE 802.11 functions uses initializa-
tion functions of the framework to pass in data structures with implemented
IEEE 802.11 and NIC operations. Some of the generic procedures, such as
network scanning, are already implemented and can be used directly by most
wireless devices. They do, however, built on elementary operations which
must be implemented by each target device driver, e.g. switching to different
operating frequency of device, otherwise it will not operate correctly.

Main function of the IEEE 802.11 framework is naturally the processing of
network frames.

To handle incoming packets received by a wireless device, they must first
be loaded from the device through communication bus into host computer
and consequently stripped off to retrieve the IEEE 802.11 data frame itself.
This is done by the wireless device driver. After processing of a received
packet is completed, it is expected to pass its data further to the IEEE 802.11
layer, performed by calling the IEEE 802.11 RX handler. Framework then
parses the frame and processes it directly if it is a IEEE 802.11 management
frame. Otherwise it hands it over to the NIC framework which passes it
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further to the Ethernet protocol layer (ethip). This layer also implements the
ARP protocol to which it is logically connected. Based on the protocol type
it either processes it directly (in case of ARP) or passes it to the server which
implements the IP protocol (inetsrv). From there the packet is sent either
to the TCP or UDP transport layer and then to a respective socket which is
connected to a user application the data are addressed for. The scheme of the
communication between individual layers is depicted in Figure 2.5.

Similarly, the packet is successively processed from the client to a wireless
device. IEEE 802.11 implements the TX handler that is registered with the
NIC framework for processing outgoing packets. It packs it with information
from the IEEE 802.11 layer and passes it to the device driver TX callback which
then sends it through the communication bus to the wireless device.

Another possibility to implement this part of IEEE 802.11 framework is to
separate it to a server task and provide its functionality as a service. HelenOS
network services such as ethip or inetsrv are implemented in this manner.
We have chosen the solution using the library that can be included by device
drivers, because IEEE 802.11 framework is connected only with wireless de-
vices and also we do not want to add another level of indirection coming from
the IPC task communication.

Figure 2.5: Layered communication scheme

Interface for client applications

There is also a second part of the IEEE 802.11 framework which exposes an
interface for client applications. Currently, it consists of functions for con-
necting or disconnecting a wireless device to/from specified network and a
function for gathering results from network scanning. This interface is regis-
tered as an RPC skeleton that is used by a client application (implementation
enclosed) for managing wireless network connections.
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Client applications in HelenOS are always connecting to a specific device
managed by its device driver. This is done using the HelenOS IPC mechanism.
When processing client requests there are two parts that are communicating
with each other. Application-side implementation of functions marshalls ar-
guments into an IPC call together with the identification of the interface and
method. If IPC request is received, the service routine is selected from the
remote interface which is responsible for IPC communication, unmarshalling
parameters and calling the proper high-level callback from connected inter-
face supplied by the driver. This part is implemented by libdrv library [5].
An example of the RPC functions implementation is shown in Listing 3.

/** Application-side implementation. */

int ieee80211_get_scan_results(async_sess_t *dev_sess,

ieee80211_scan_results_t *results, bool now)

{

assert(results);

async_exch_t *exch = async_exchange_begin(dev_sess);

/* Send IPC request. */

aid_t aid = async_send_2(exch, DEV_IFACE_ID(IEEE80211_DEV_IFACE),

IEEE80211_GET_SCAN_RESULTS, now, NULL);

int rc = async_data_read_start(exch, results,

sizeof(ieee80211_scan_results_t));

async_exchange_end(exch);

sysarg_t res;

async_wait_for(aid, &res);

if(res != EOK)

return (int) res;

else

return rc;

}

/** Remote implementation. */

void remote_ieee80211_get_scan_results(ddf_fun_t *fun, void *iface,

ipc_callid_t callid, ipc_call_t *call)

{

/* Get the interface of driver callbacks. */

ieee80211_iface_t *ieee80211_iface = (ieee80211_iface_t *) iface;

assert(ieee80211_iface->get_scan_results);

ieee80211_scan_results_t results;

memset(&results, 0, sizeof(ieee80211_scan_results_t));

bool now = IPC_GET_ARG2(*call);

/* Call the function implemented by the driver. */

int rc = ieee80211_iface->get_scan_results(fun, &results, now);
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if (rc == EOK) {

ipc_callid_t data_callid;

size_t max_len;

if (!async_data_read_receive(&data_callid, &max_len)) {

async_answer_0(data_callid, EINVAL);

async_answer_0(callid, EINVAL);

return;

}

if (max_len < sizeof(ieee80211_scan_results_t)) {

async_answer_0(data_callid, ELIMIT);

async_answer_0(callid, ELIMIT);

return;

}

async_data_read_finalize(data_callid, &results,

sizeof(ieee80211_scan_results_t));

}

async_answer_0(callid, rc);

}

Listing 3: Example of RPC functions implementation

User applications are simple programs which just parse input data from
clients and call RPC functions. The nature of the problem itself is resolved at
the local part of the interface implementation.

In other systems, wireless authentication mechanisms are implemented
directly in client applications. For example, processing the four-way hand-
shake is a complex problem and it is better to manage it outside the device
driver. In our current implementation the handshake is tightly bound to the
IEEE 802.11 framework internals, so it is included in it, but in the future it
would be better to create an additional level of abstraction which would ex-
pose the necessary data structures of the wireless driver, so that the client
application can implement the entire authentication process outside the IEEE
802.11 framework.
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3. Implementation
This chapter documents the implementation details of this thesis. It also de-
scribes the changes performed to the existing HelenOS source code and out-
lines the problems which occurred during development.

3.1 Changes to the existing code

Development of the driver required modifications of some parts of the He-
lenOS source code in order to make driver work correctly. This section docu-
ments these changes.

3.1.1 Framework registration

So as to allow client applications to use methods defined in the remote IEEE
802.11 interface, we had to register them first. The device driver remote in-
terfaces dispatch table is located in the dev_iface module where we had to
create an entry pointing to our interface.

A new category for IEEE 802.11 devices was also added, so user can then
identify, list and manage these devices. This involved extending the list of
device categories in HelenOS’s location service in the locsrv task.

3.1.2 DHCP

After successful authentication between a station device and an access point,
an IP address needs to be acquired before processing data from the network.
This can be managed by the DHCP service, a HelenOS server task, that han-
dles communication between a network device and a DHCP server of the
target network.

Before this thesis was implemented, the DHCP client service was invoked
immediately after a new network device was initialized in the system. It
scheduled a discovery procedure to find the network’s DHCP server and if
successful, it followed with a DHCP request message for an IP address.

DHCP cannot be used for wireless devices in the same manner because
the device is not yet connected to a network at the time of device initialization
and the device must first connect to one, following the authentication protocol
described earlier.

Because of that we had to separate and expose the DHCP discovery proce-
dure, allowing to invoke it from the IEEE 802.11 remote interface implemen-
tation of device connection method after successful authentication.

Another issue related to DHCP communication arose while testing wire-
less device connection with different types of wireless routers. Some DHCP
servers do not send DHCP acknowledgement messages (ACK) by broadcast
but rather to a unicast address previously offered to the client. But in the He-
lenOS DHCP client, the device does not get an assigned IP address until the
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whole process of DHCP request procedure is done, making the unicast ad-
dress unreachable and the message dropped by the network framework. This
could be solved by setting the giaddr and ciaddr fields to zero in the DHCP
request message according to RFC 2131 [6]. After that the DHCP server sends
the ACK by broadcast, message is correctly received, forwarded to the DHCP
client task and the whole procedure is successfully completed.

3.2 AR9271 driver

The wireless device driver is divided into several modules which implement
functions from different levels of abstraction. The full source code is located
in uspace/drv/nic/ar9271 directory.

Based on the structure of the Linux driver and device firmware we are
using the same interfaces for communication between host and target. As
mentioned before in Section 2.2.2, there are three interfaces used for host-
target communication. HTC (message transport layer) is implemented in
htc.c module, WMI (message protocol layer) is located in wmi.c module
and finally USB implementation of HIF (host interconnect framework) is in
ath_usb.c.

The module for processing hardware related functions is placed inside
hw.c file. These are mainly functions related to the device’s EEPROM registry.

The crucial part of the driver is in ar9271.c. It contains the main func-
tion of the driver task, device initialization interface, implementations of IEEE
802.11 and some of NIC framework functions.

3.2.1 Problems during development

During implementation of the driver, we had to deal with several low-level
issues that were sometimes quite hard to identify and resolve.

First problem was with determining the communication protocol used in
incoming responses to our requests sent to HTC layer. From the source code
used in the Linux driver, we first deduced that when reading registry values
from the device, the incoming response message contains just the value read
from the device’s EEPROM. When the function for the reading registry value
was executed, it successfully sent the request to the device, but the driver
would freeze when initiating procedure for reading the response from device.
More precisely, it got stuck in the usb_pipe_read function used for reading
data from a USB pipe. The reason of the problem was not identified until we
used the Wireshark packet analyzer. When we attached it to the respective
USB hub where our device was connected, it returned a -EOVERFLOW error
status after reading from the USB input pipe. We concluded that the problem
was due to an incorrect size of the input buffer, deduced that there are several
headers included in the response message and finally resolved the issue.

Another problem with processing responses of the device came from the
fact that when an incorrect protocol is used, e. g. wrong message type value
is used in message header or payload size from header does not match the
actual message payload length, the device firmware may get stuck, causing
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the usb_pipe_read procedure to stall. This is difficult to debug and we had to
intercept the Linux driver communication with Wireshark to detect the minor
differences in the host-target communication protocol.

Getting the device ready to be able to process network packets is a very
complex procedure. There are lots of hardware components to be initial-
ized and setting up single component with slightly different value can cause
the whole device to malfunction. We had to examine thousands of lines of
Atheros wireless Linux driver source code in detail to find out all the compo-
nents which need to be initialized.

A big complication was finding the correct initial value of the phase-locked
loop (hardware control system of device). In many parts of the Linux driver
code there are code branches based on device code identification and revision
number. We expected that as device identification number value rises, the val-
ue used for the respective property in the program also increases. It is almost
always true, but there are some exceptions. This meant that we have originally
used an initial value meant for a different Atheros product range, preventing
it from processing any network packets. Identifying the source of this issue
was a lengthy process. We had to compile the Linux driver, adding detailed
debugging output including a list of all component initialization values and
then comparing it to the output from our own HelenOS driver.

A fragment of relevant code from the drivers/net/wireless/ath/ath9k/

reg.h file taken from the Linux kernel 4.1 sources is shown below in Listing 4.
It was assumed that as the version numbers of Atheros devices increase, the
corresponding values defined by macros would increase too, but this property
is broken between the AR9271 and AR9285 models.

769 #define AR_SREV_VERSION_9160 0x40

770 #define AR_SREV_REVISION_9160_10 0

771 #define AR_SREV_REVISION_9160_11 1

772 #define AR_SREV_VERSION_9280 0x80

773 #define AR_SREV_REVISION_9280_10 0

774 #define AR_SREV_REVISION_9280_20 1

775 #define AR_SREV_REVISION_9280_21 2

776 #define AR_SREV_VERSION_9285 0xC0 /*< Linearity broken. */

777 #define AR_SREV_REVISION_9285_10 0

778 #define AR_SREV_REVISION_9285_11 1

779 #define AR_SREV_REVISION_9285_12 2

780 #define AR_SREV_VERSION_9287 0x180

781 #define AR_SREV_REVISION_9287_10 0

782 #define AR_SREV_REVISION_9287_11 1

783 #define AR_SREV_REVISION_9287_12 2

784 #define AR_SREV_REVISION_9287_13 3

785 #define AR_SREV_VERSION_9271 0x140 /*< Our device. */

786 #define AR_SREV_REVISION_9271_10 0

787 #define AR_SREV_REVISION_9271_11 1

788 #define AR_SREV_VERSION_9300 0x1c0

Listing 4: Linux Atheros wireless driver device numbering
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3.2.2 Host interconnect framework

Because there exist multiple interconnection interfaces between host and de-
vice (for instance PCIe interface besides USB) used with Atheros wireless
devices, we create a unified interface for them to hide implementation details
of the individual variants. Every implementation of HIF will then implement
specified callbacks which are used by the HTC layer to communicate with the
device. The structure of a generic Atheros device is documented below in
Listing 5.

struct ath;

/** Atheros wifi operations. */

typedef struct {

int (*send_ctrl_message)(struct ath *, void *, size_t);

int (*read_ctrl_message)(struct ath *, void *, size_t, size_t *);

int (*send_data_message)(struct ath *, void *, size_t);

int (*read_data_message)(struct ath *, void *, size_t, size_t *);

} ath_ops_t;

/** Atheros wifi device structure */

typedef struct ath {

/** Maximum length of data response message. */

size_t data_response_length;

/** Maximum length of control response message. */

size_t ctrl_response_length;

/** Implementation specific data. */

void *specific_data;

/** Generic Atheros wifi operations. */

const ath_ops_t *ops;

} ath_t;

Listing 5: Communication interface for Atheros devices

For the purposes of this thesis we implemented USB HIF communica-
tion located in ath_usb module. After successful initialization of the USB
framework to configure our device driver, we pass the usb_device_t struc-
ture pointer to ath_usb_init function. In this procedure, pipes for data and
control messages communication are mapped onto USB pipe indices to allow
for correct communication with the device firmware and sizes of response
messages are set up. An ath_t structure instance is returned as an output
parameter and it is then used within the HTC layer.

Procedures for processing messages between host and target use standard
functions from the USB framework for reading and writing data through USB
pipes: usb_pipe_read, usb_pipe_write. Control messages are sent as they
come from the HTC layer. Data messages are supplied with prepended header
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including the payload size and a special tag different for TX/RX messages to
identify corrupted messages.

3.2.3 Host-target communication

Information about the HTC layer is located inside the htc_device_t structure
and included in the AR9271 driver structure, but it can be reused by different
Atheros wireless devices using the HTC communication interface.

During HTC layer initialization, we must first check whether firmware ini-
tialization inside device has succeeded. This can be determined by checking
that a special ready message is present inside the device. We simply try to
read the control message via the control pipe and check if message ID matches
the ready message.

If the firmware has been loaded successfully, we initialize the HTC services
and store endpoint numbers that will be used for communication between
host and target as described in Section 2.2.2. We send special management
messages for every service we want to connect and wait for a reply from
the device which includes an endpoint identifier to be used in subsequent
communication.

After initialization of services is done, we additionally send two confirma-
tion messages indicating that the HTC initialization finished successfully.

The HTC layer defines a messaging interface to send or receive data and
control messages, and uses the HIF layer for the actual transmission. HTC re-
lated information (target endpoint number and payload length) are prepend-
ed to the data buffer the same way as in the HIF layer. Data messages are
processed directly by the HTC layer, control messages are handled by the
WMI. These are used solely for processing inside the device driver, unlike
the data messages which are usually forwarded to the IEEE 802.11 layer and
typically further to network and higher layers in case of data frames.

3.2.4 Wireless module interface

WMI comprises interface for communicating with device through several de-
fined control commands recognized by the device’s firmware.

wmi_send_command handles processing of these commands. It takes a point-
er to the HTC device used for communication and a value used for com-
mand identification. If the command uses any arguments, then these are
passed in an attached command buffer. In order to process the response
value we have to allocate a response buffer which the reply is written in-
to. wmi_send_command then constructs a WMI command header containing a
command ID and a sequence number uniquely identifying the message with-
in the WMI communication. This header is prepended to the message and
sent using HTC. We then synchronously wait for the response from the de-
vice, regardless of whether the user is interested in the response value or not,
because the reply will be stored into an input queue by the target anyway.
At this point we ignore RX management frames coming through RX control
pipe. These contain detailed information about data messages and also statis-
tics and debugging information.
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Several wrappers are prepared for most common commands which are
operations on the EEPROM registry, allowing the user to write a value to a
specific offset in the registry memory. Values are converted to the correct en-
dianness before being sent. When reading a registry value, the result is parsed
from a response message and stored into an output parameter allocated by
the caller. There is also a buffered version of the function for registry writing
to allow processing more values (passed as an array) at once.

3.2.5 Hardware related functions

Many functions used during device initialization or when switching to differ-
ent a operating channel are located in the hw module. These usually involve
bitwise operations related to the device registry and resetting hardware com-
ponents to a correct state.

For detailed documentation of AR9271 device register description, refer to
the device’s official data sheet [7]. However, lots of information is missing
there, so for complete description of device registry, one has to study the
Linux driver source code [8], mainly the reg.h file.

3.2.6 Device initialization

In this section we describe what has to be done after plugging in a AR9271
device before we are able to process any network packets with the device.

Registration with device manager

First, we have to tell HelenOS that we want to manage an AR9271 device by
our driver. This is done through the HelenOS’s device manager (DevMan)
which probes the drivers installed in the system for the list of devices these
drivers support. Every device driver is associated with a .ma file that iden-
tifies the supported devices. Each line in the .ma file identifies one or more
devices. It contains a priority value, i.e. how suitable the driver is for such
device, and a hardware identifier that differs by the interconnection frame-
work used for device. In our case the USB device contains a vendor ID and a
product ID as documented below.

10 usb&vendor=0x0cf3&product=0x9271

Initialization inside USB framework

The design of a USB bus is organized into a star topology. In the root, there
is a USB host that may implement several host controllers, each providing one
or more USB ports. Multiple USB devices are linked to USB hubs which can
extend a USB network to a maximum of 127 ports.

There exist several host controller standards that allow a host controller
for USB to communicate with a host controller driver in the operating sys-
tem. Open Host Controller Interface (OHCI) and Universal Host Controller
Interface (UHCI) are based on the original USB 1.x standard. OHCI is a com-
mon interface on PCI cards based on the NEC chipsets. UHCI is a proprietary
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standard created by Intel. The main difference between these two is that UH-
CI is more software-driven than OHCI. USB 2.0 devices are using Enhanced
Host Controller Interface (EHCI) standard which can operates up to 40 times
faster. However, USB 2.0 support is not yet complete in HelenOS, so devices
need to use either the UHCI or OHCI standard.

Communication with USB devices is based on pipes which connect the host
controller with logical entities on device called the endpoints. We distinguish
two types of pipes. Message pipe is bidirectional and it is used for control trans-
fers. Stream pipes are unidirectional and they are used for transferring data in
various modes of transfer. Interrupt transfers are used for small transfers when
we need the maximum duration of the data transfer to be guaranteed. Bulk
transfers are used for large amounts of data that are transferred rather sporad-
ically. It has a character of non-periodic and bursty communication. Finally
isochronous type of transfer is used for time-dependent communication such
as multimedia streams. This mode of transfer is not supported in HelenOS
yet.

AR9271 device uses the UHCI interface. In HelenOS UHCI root hub is
implemented in the microkernel manner as a server task. For every USB port
in the system there exists a separate thread executing routine that periodically
checks the port status and reports new devices. When new device is attached
to the system, new host controller connection is registered by the routine, a
control endpoint is initialized and the device is registered with DevMan.

After UHCI initialization is done, the system starts the main routine of the
driver task.

Driver frameworks interconnection

In the main function of the device driver, we merely initialize logging and
pass control to the DDF.

DDF registers the driver and separates its execution into its own fibril.
After the driver is successfully setup within device driver framework, the
DDF device structure is allocated and configured, and the callback for passing
a new device to the device driver is invoked. Here our driver structures and
connected frameworks are initialized.

We allocate the USB device structure and initialize it using the bypassed
mechanism as described in Section 2.4.1. Before that we have to configure
the USB endpoint descriptors to tell the driver which pipes are used for con-
trol and which for data transfers, what type of transfer they use, what are
their directions, interface protocols the endpoints belong to, etc. We can find
this information for example by connecting the device to a computer running
some conventional operating system like Linux or Windows and by using the
utility for displaying information about USB buses in the system. In Linux,
for example, this is be with the lsusb command with the -v flag for a verbose
listing.

Afterwards, the remainder of frameworks are initialized in a dependency-
satisfying order. First, the HIF USB device is initialized followed by the
IEEE 802.11 framework structure initialization (that includes setup of the NIC
framework), and finally the HTC device structure is allocated and configured.
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All pointers to the connected device structures and frameworks are stored in
the AR9271 structure, so we can forward operations specific to each one of
them.

Warming up the device

Once all structures and frameworks are allocated, we can move to initializa-
tion of the device itself.

First steps is uploading the firmware to the device. It is a software program
providing necessary instructions for communicating with the host computer.
We use the official open-source firmware by Qualcomm Atheros (still under
development) which can be downloaded from the Qualcomm Atheros GitHub
repository [9]. The firmware file is copied inside AR9271 HelenOS driver
directory structure, so it can be loaded during device probe from disk into
the memory.

Because the firmware is too large to be sent into the device at once, it is
uploaded in chunks that fit inside the USB control pipe. USB specification
defines standard device requests sent from host to device using so called
setup packets. Firmware transmission uses the USB SET request wrapper
implemented in HelenOS to transfer every chunk of firmware into the target
device.

After the firmware is loaded, we send a confirmation message using an-
other USB SET request to tell device that whole firmware is loaded inside
device RAM at a given address. The device then initiates a firmware config-
uration phase that may take up to 50ms according to Qualcomm developers.
We wait for 200ms to be sure.

The HTC framework initialization follows, including checking the ready
message via the input control pipe which should have been created by the
device after the firmware has been successfully configured and became ready
for communication. More details are available in Section 3.2.3.

Next phase is initialization of the hardware related parts. Majority of this
is represented by correctly setting device registry values. Sometimes we have
to wait until the process of registry setup is done inside the device before we
continue executing the next batch of operations, because it can be connected
for example with resetting or powering on some hardware parts of device. To
this end, the hw_read_wait polling function is implemented to wait until the
registry contains an expected value at a given address.

First, however, we have to do a warm reset of the device, followed by
reading the device’s hardware address (MAC) from EEPROM and reporting
it to the NIC framework.

To indicate a successful reset of the device, we also turn on the device’s
green LED light. This is done by configuring the general purpose I/O (GPIO)
port according to the device datasheet. There exist more features that the LED
light can perform, including setting its blink rate. Currently it is used only to
indicate the power state, but the API for managing GPIO modes and values
is ready and can be used more in the future.

Afterwards, the device needs to be initialized within the IEEE 802.11 frame-
work and NIC handlers registered. The NIC framework registers a new de-
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vice and invokes a callback indicating that the client has connected to the
device. This callback is implemented by the IEEE 802.11 framework and after
it handles its own configuration, it forwards the start-up initialization to the
AR9271 driver.

Initialization of the wireless device in station mode requires the following
steps, mostly WMI commands sent to the device.

First we have to tell the device to flush the receiving messaging queue be-
cause we are going to reset it. Hardware initialization is implemented in the
hw module. We have to deactivate the device’s physical layer, which means
that no packets can be processed during the initialization. We reset the de-
vice and set up the phase locked loop component for operation on 2.4GHz
frequencies.

Then we have to initialize the device’s EEPROM with a sequence of offset-
value pairs. This part is a bit tricky because the meaning of the values is
not properly documented and the device will not work properly if set up
wrong. We have to copy them from Linux sources and use them as they are.
Fortunately, the license of the Linux driver source code uses the ISC software
license, compatible with the BSD license used by HelenOS.

We set the device to operate in station mode on a default 2.4GHz channel
and pass it on to the IEEE 802.11 layer. Now we can reactivate the physical
layer and initiate device calibration procedures. In the reference Linux driver,
calibration is performed by continuous processing of data error rate statistics.
In our implementation, we set up calibration data only statically during the
switch to the different operating channel or during the device initialization.

To process only specific type of network data, we configure RX filtering.
By default we accept all types of data packet routing (unicast, broadcast and
multicast) together with beacon management frames. When connection with
the target access point is initiated, we configure filtering to accept only bea-
cons from our network and normal data packets.

Special message indicating successful station mode initialization is sent to
HTC layer of the device.

At the end of the whole process, we create separated fibril to process in-
coming data from the device and tell the IEEE 802.11 framework that the
device is ready to process data from the network.

The entire procedure of device initialization is symbolized in the diagram
in Appendix D of this work.

3.2.7 Processing network packets

Data from the network are processed by invoking htc_read_data_message

in a loop. This function uses the USB HIF layer to request data from the
respective USB pipe. When there are no data pending, the data polling fibril
is suspended to allow other threads to take over.

It should also be noted that if encryption is enabled, incoming data from
the network are decrypted by the device itself and then sent over the USB
pipe in plain texts.

Because one packet might be split into multiple data messages, the process
is a little bit complicated.
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If the received message is smaller than the known header size, it is im-
mediately discarded because it contains only garbage. If the tag value from
the HIF USB header does not match the RX tag defined by the protocol, the
message is dropped too.

We retrieve an RX status part of the message to check if the payload is not
corrupted. If it is, we can exit processing this message only if it is not marked
as an aggregated or split packet. Otherwise we must process it anyway to
find out the offset where the following aggregated packet starts. Split packet
is recognized as a packet where the data buffer size is greater or equal to the
maximum message length that can be processed by a USB pipe. Buffer size
can be greater if merged with the following message during processing of an
aggregated packet, as described below. Aggregated packets start somewhere
inside the data message, never at the start.

Complete size of the packet is read from the HIF USB header. Then, if the
current message is marked either split or aggregated, we read the remaining
packet fragments from the device by calling htc_read_data_message again.
The resulting packet is then forwarded to the IEEE 802.11 layer.

If there are more packets aggregated in the data buffer, i.e. when there are
still some data remaining, we are going to process them by recursively calling
the procedure on the rest of the data. If there is just a part of the following
packet header in the current data buffer, we have to also fetch the subsequent
message and merge it to current buffer to be able to get all the necessary
information about this packet during its processing.

To give you some perspective about the whole process of processing data
packets, its source code is included below in Listing 6.

static void ar9271_process_data(ar9271_t *ar9271, void *buffer,

size_t max_size, size_t size, bool aggr)

{

size_t strip_length = sizeof(ath_usb_data_header_t) +

sizeof(htc_frame_header_t) +

sizeof(htc_rx_status_t);

/* Too small message. */

if(size < strip_length)

return;

ath_usb_data_header_t *data_header =

(ath_usb_data_header_t *) buffer;

/* Invalid packet. */

if(data_header->tag != uint16_t_le2host(RX_TAG))

return;

htc_rx_status_t *rx_status = (htc_rx_status_t *) ((void *)buffer +

sizeof(ath_usb_data_header_t) +

sizeof(htc_frame_header_t));
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bool aggr_or_split = size >= max_size || aggr;

bool packet_corrupted = ar9271_rx_status_error(rx_status->status);

/* We can exit processing this data chain, because there should

* not be any unaligned packet in the following message. */

if(packet_corrupted & !aggr_or_split)

return;

/* Read remaining packet fragments from device. */

void *it = buffer + size;

size_t packet_size = uint16_t_le2host(data_header->length);

int remain_length = packet_size - size;

while(aggr_or_split && remain_length > 0) {

if(htc_read_data_message(ar9271->htc_device, it,

max_size, &size) != EOK)

return;

it += size;

remain_length -= size;

}

if(!packet_corrupted)

ieee80211_rx_handler(ar9271->ieee80211_dev,

buffer + strip_length,

packet_size - strip_length);

/* Process aggregated packets in data buffer. */

if(aggr_or_split && abs(remain_length) > CRC_LENGTH) {

size = 0;

/* There is just a part of the header of following packet in

* the current message, so we fetch the next message to be

* able to get all information. */

if(abs(remain_length) - CRC_LENGTH < (int) strip_length) {

if(htc_read_data_message(ar9271->htc_device, it,

max_size, &size) != EOK)

return;

}

/* Start of the packet is always aligned to multiple of 4. */

remain_length = (remain_length + 3) & ~0x03;

ar9271_process_data(ar9271, it + remain_length + CRC_LENGTH,

max_size, abs(remain_length) - CRC_LENGTH + size, true);

}

}

Listing 6: Processing the data packets in AR9271 driver
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3.2.8 Wireless framework related functions

Here we describe the callbacks implemented by the IEEE 802.11 framework.
Start-up callback is already described in Section 3.2.6.

tx_handler

Data coming from the IEEE 802.11 layer are merely provided with a config-
ured HTC TX header to recognize a packet by the target device’s firmware.
Management frames are sent unencrypted to the respective HTC manage-
ment endpoint. When processing data frames, we first query the IEEE 802.11
layer if encryption has to be used and eventually set up the appropriate key
type and index in header based on the security suite used for communication.
Data are then encrypted by the device itself. For data frames, the HTC best
effort endpoint type is always used without analysing the data contained in
the message. This could be improved in the future.

set_freq

Setting the device’s operating frequency first involves telling the device with
WMI commands to stop receiving packets and to drop all unprocessed pack-
ets from its TX queue. Then the frequency switch itself takes place by calling
the hw module. We must request access to device’s physical layer and once
granted, we can set the respective device registers to configure device to op-
erate on the new frequency. After that we report the new frequency to the
IEEE 802.11 layer and reactivate the physical layer. Noise floor is calibrated if
the 2.4GHz band was selected, and finally the device is told to start receiving
packets again and to set up RX filtering.

bssid_change

When the network connection state is changed, we have to configure the de-
vice accordingly. This takes place during the (de-)authentication stage.

Once the the device connects to a network, we query its BSSID from the
IEEE 802.11 layer. A special management message is constructed and ad-
dressed to the HTC layer using which we create a virtual node in the device
we are going to communicate with. Also, we have to set up data rates we
are able to communicate on. As mentioned before, we only support legacy
2.4GHz rates at the moment.

During device deauthentication from network, we just send a message to
remove the virtual node from the device.

In the end, we configure the RX filter with respect to the network connec-
tion state and write the BSSID into the device registry..

key_config

In order to use encrypted data transmission, we must first configure encryp-
tion keys in the device. AR9271 devices use hardware encryption of data
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frames, so it is enough to just write keys into the device, mark the frames as
protected and the device will handle its encryption and decryption externally.

Target network BSSID is used together with the keys for data encryption,
so we first query the IEEE 802.11 layer to retrieve it from the device where it
was previously stored. Based on the key type (group or pairwise), we select
a location inside the device registry where it will be written. Because registry
entry cannot handle the whole key, it is divided into several smaller parts
stored consecutively in the device memory.

In case of TKIP security suite, we also have to store the MIC used to au-
thenticate the message which is a part of the key data. This is done similarly
to the key itself.

Having configured both the pairwise and group keys, we inform IEEE
802.11 that the data frames are protected now.

3.3 IEEE 802.11 framework

Structure of the IEEE 802.11 framework source code is divided into several
parts based on the functionality it serves.

Interface for wireless device drivers together with framework internals
implementation are located in the uspace/lib/ieee80211 directory. Imple-
mentation of the core features, which are processing frames, framework ini-
tialization functions and IEEE 802.11 device structure getters and setters, is
located in the ieee80211.c file. Default implementation of the device driv-
er interface and other functions related to the IEEE 802.11 framework are in
ieee80211_impl.c. IEEE 802.11 user interface functions have their default
implementation in the ieee80211_iface_impl.c file. Respective headers are
stored in the include subfolder, but only ieee80211.h is supposed to be used
outside of the IEEE 802.11 library folder. This one should be included by
wireless device drivers.

User applications that want to interact with IEEE 802.11 devices should use
the interface defined in the uspace/lib/drv/include/ieee80211_iface.h file.
These functions are implemented in an RPC manner inside the uspace/lib/

drv/generic/remote_ieee80211.c module. User applications call stub func-
tions which send IPC requests to the server. There arguments are processed
and passed to the respective implementation within the connected IEEE 802.11
device. After it has executed the function, results are sent back from the IEEE
802.11 framework, through the server skeleton and to the client stub. The
structure of user interface operations is defined in uspace/lib/drv/include/

ops/ieee80211.h and it is passed to the server implementations which use
it to delegate the function call further to the implementation of the interface
inside the wireless device.

Common definitions of both user and driver interfaces are located in
uspace/lib/c/include/ieee80211/ieee80211.h.

Only data and management frames are handled by the framework as the
control frames are managed by the devices themselves.
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3.3.1 Frame format

Frames used in the IEEE 802.11 framework have uniform structure. Both
data and management frames have the same header format pictured below in
Figure 3.1.

Figure 3.1: IEEE 802.11 frame header format

Header is followed by the message payload that can be of variable size
depending on the frame type and the protocol. The last item in the IEEE
802.11 frame is the frame check sequence (also known as cyclic redundancy
check) that allows devices to verify the integrity of received frames.

Some frames have an additional Address 4 that is used when transferring
packets within a distribution system (between two access points). Since we
only support station mode, this frame variant is not included in the imple-
mentation.

In some kinds of frames, the message payload is composed of parts that
have a common general format. These are called information elements (IE)
consisting of several fields: element ID, length and then information field of
given length. All information element types are described in the IEEE 802.11
specification.

Frame control

This field identifies the type of the frame. Its structure is separated into several
subfields consisting of one or more bits. First two bits represent the protocol
version which is currently zero with other values reserved for future use.

type Frame type indicator — either control, management or data.

subtype Depending on the type it describes a specific subtype of the frame,
e.g. authentication, association request, RTS, etc.

to DS, from DS Flags which represent the frame is travelling from or to a
distribution system which is used later to determine the meaning of address
fields.

MF Flag indicating if more fragments of this frame will follow.

retry Indicator of packet retransmission.

PM Station power saving mode indicator.

MD Indicates whether the AP has pending data for the station. This is used for
power management purposes by the station to decide whether to go sleep or
stay awake.
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PF Protected frame field indicating whether the frame is transferred as clear
text or if it is protected with encryption methods like WPA.

order Strict ordering support indicator used when QoS is supported.

The current implementation does not support the MF, retry, PM, MD, order

fields.

Duration/ID field

Depending on two most significant bits, this field is used for different pur-
poses. In control frames it is used to carry station AID, but mainly it is used
to indicate how long it will take to transmit the frame through the air. This
helps the other stations in the network to coordinate when to start their own
transmissions.

This field is not used in the implementation of this thesis as power man-
agement is not supported yet.

Address fields

These fields are used to determine the addresses of the sender and the receiv-
er. Third address is used for filtering purposes. The order of the addresses is
defined by DS fields as described before.

Sequence control

This number consists of two subfields. First 4 bits are used as the frame
fragment number and the rest of the value identifies message order in the
communication between the sender and the receiver.

3.3.2 Initialization

The main task of the IEEE 802.11 layer is obviously processing packets within
WiFi networks. Besides that it must also initialize the wireless part of the
device driver structure and integrate it into HelenOS environment.

The process starts with initializing the IEEE 802.11 device structure itself.
Device driver first calls ieee80211_device_create which is a wrapper for
allocating memory for the wireless device structure. Its members are then
initialized with ieee80211_device_init including binding connected NIC to
the respective DDF device and setting the NIC driver specific structure to
IEEE 802.11. The resulting relationship is described at the end of Section
2.4.1.

The wireless driver has to implement several interfaces and pass them
to ieee80211_init which is the final step in the IEEE 802.11 layer initializa-
tion. These interfaces are: ieee80211_ops_t structure with WiFi framework
callbacks, ieee80211_iface_t which holds application interface implementa-
tions, nic_iface_t with functions related to the NIC application interface and
ddf_dev_ops_t which are NIC device operations currently unused by the de-
vice driver. When some implementations are left unfilled, default ones from
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the IEEE 802.11 layer are used, except the WiFi framework callbacks which
are mandatory and need to be implemented by the device driver. The only
WiFi framework callback with a default IEEE 802.11 layer implementation is
scan.

In order to process frames from the NIC layer we need to register a TX
handler using nic_set_send_frame_handler, create a DDF function and bind
it to a connected NIC device.

In the end, we register the resulting device function with DevMan and add
it to NIC and IEEE 802.11 categories to be recognized by both applications
using generic network devices and just the wireless ones.

Then NIC framework probes the new device and calls open callback im-
plemented in the IEEE 802.11 layer. It passes control to the device driver by
calling the start callback and, once the wireless device driver is ready, we
create a ieee80211_scan fibril for periodic network scanning. It simply in-
vokes scan in defined intervals. Using async_usleep ensures that only the
running fibril is suspended and not the whole thread.

3.3.3 Network scanning

Generic implementation of software scanning for neighbour networks is locat-
ed within IEEE 802.11 device operations implementation in ieee80211_impl.c

file. Unless the other implementation is supplied by the user, this one is used
in the scanning fibril.

List of discovered networks is stored inside the IEEE 802.11 device struc-
ture in ieee80211_scan_result_list_t. Data of each entry are held by a
ieee80211_scan _result_link_t structure.

Procedure is protected by scan_mutex lock inside the IEEE 802.11 device
structure, because user should not initiate connection process during scanning
as it requires information about the connecting network from this scanning
results shared structure.

Scanning is initiated only if the station is in disconnected state, because it
involves changing the device’s operating frequency that would interrupt the
connection between the station and the access point.

First, old entries are removed from the scan results. This operation is also
guarded by the mutex to prevent adding newly discovered networks while
iterating over the scan results structure. We store the time of the last beacon
that came from each known network and if the time that has elapsed from
this moment is greater than a defined threshold, we remove the entry from
the results.

The scanning itself is a straightforward process. First we store the origi-
nal frequency the device was operating on before the scan. Then we iterate
over all available channels in the 2.4GHz spectrum. The set_freq callback is
invoked on each channel and a probe request message is constructed. Device
stays on each channel for a defined amount of time, waiting for incoming bea-
cons and probe responses before switching to the next channel. In the end,
we switch to device to its original frequency and unlock scan_mutex.

Probe request is a management frame whose payload is composed from a
sequence of values including the network SSID, data rates supported by the
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station and the channel number.

3.3.4 Basic authentication

Before processing packets from the selected network, basic authentication
needs to be performed as explained in Section 1.2.2.

The whole process is driven by the ieee80211_iface->connect operation
from the user interface part. This function is invoked by the user application
when it wants to connect to a specific network from the scan results list.

We check if the device is in a ready state, otherwise the process cannot
proceed. If it already is connected to a network, we initiate the disconnection
operation that involves sending a deauthentication message to the currently
connected access point. This message is described in more detail later.

Scanning and connecting procedures cannot run concurrently as described
in the previous section, so we must wait until the scan procedure has finished
if currently running. Because that might take a long time, we set up a connec-
tion request indicator. This flag is checked on every channel iteration during
the scanning procedure and if it is set, it immediately breaks the execution
and unlocks the scan_mutex so we can start the connection process.

Once we are allowed to enter the critical section, scan_mutex is unlocked,
connection request indicator is cancelled and we find if SSID provided by
user is matching any of those in scan results list. If we have found a matching
network, we can initiate the basic authentication process.

Information about the network we are connecting to is stored inside the
IEEE 802.11 device in ieee80211_bssid_info_t. There is a link to the respec-
tive scan result entry and all other information needed by the IEEE 802.11
framework and the device driver during authentication.

First, we switch to the target network operating channel. Because channel
numbers are used in network frames but frequency values are used within
device drivers, functions for converting between these two formats are avail-
able

Basic authentication starts with sending an authentication request man-
aged by the ieee80211_authenticate function. Frame format is the same for
requests and responses, and its body is defined in the ieee80211_auth_body_t
structure. First we load information about the network we want to connect
to. We set up a frame header with the respective frame type and subtype
and fill in the MAC addresses of both parties. Because we do not support
the deprecated WEP shared key authentication, we use fixed values for the
authentication algorithm indicators corresponding to an open system mecha-
nism used for all other variants. Then we simply send the constructed buffer
using the IEEE 802.11 TX handler.

After that, the user connection process is suspended as it waits on a condi-
tional variable until the response is processed. Waiting has a defined timeout
so the process gets terminated if no response is received. In that case, a deau-
thentication message is sent to the target network.

When an authentication response is received, its status is checked to ver-
ify that everything went without any problems. Based on this we set the
device’s current authentication phase with ieee80211_set_auth_phase and

40



send a signal to the user connection process using the conditional variable
that the response was processed.

Constructing association request proceeds in a similar manner. Additional
information elements are included, same as in the probe request message. If
encryption is enabled, a privacy flag inside the capability field of association
message body is set and moreover, if any of IEEE 802.11i security suite is
used, RSN security information element taken from scan result entry is also
added in the message payload.

The process of waiting for an association response is the same as with an
authentication message. During response processing, AID is taken from the
message and stored inside the IEEE 802.11 device structure. bssid_change

callback is then called to configure the device for operating in the new net-
work. The AID value is used by the device driver to set up filtering of packets
destined for our station from the given BSSID.

If anything went wrong, deauthentication is sent to the target access point.
The message has a simple management frame handled the same way as the
other messages before. When deauthentication message is sent, informa-
tion about the connected BSSID in ieee80211_bssid_info_t is cleared and
bssid_change is called to notify the device that we are not currently connect-
ed to any network. If encryption was configured, we also have to deconfigure
security keys in the device with the key_config callback.

Based on the network security used in the target network, we have either
finished authentication process and therefore set the device state to connected,
or high-layer authentication, described in the next section, needs to follow.

3.3.5 4-way handshake

The general handshake sequence is described in Section 1.2.4.
All phases of the handshake are processed in one procedure because they

share a lot of common code. Communication between the client and the
authenticator uses EAPOL-Key frames whose structure is shown below in
Figure 3.2.

Figure 3.2: EAPOL-Key frame format
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Individual phases can be distinguished by differences in their key infor-
mation field that is used to specify characteristics of the key being transferred.
When neither MIC nor the secure bit is set inside key information field, i.e.
MIC is not included in message and encryption is not used, then we deduce
that this is the first message from the authenticator. Then we have to distin-
guish between the WPA and WPA2 security suites because the old WPA is
using a slightly different approach and the group key is transferred in an ex-
tra 5th message as described in this post [12]. Hence we use a third_or_extra

variable based on the MIC bit to identify the 3rd or 5th message of the hand-
shake, and key_phase set from the secure bit to identify the final message
with the group key which is the 3rd using WPA2, but the extra 5th when
WPA is used.

We clone the incoming EAPOL frame and use it then as the outgoing
frame, because usually a lot of field values remain the same. After processing
a message from the authenticator, we send back the EAPOL frame protect-
ed by MIC. It is computed using a keyed-hash message authentication code
(HMAC).

First message contains enough information to derive the pairwise encryp-
tion key (PTK). Using password and target network SSID, the pre-shared key
(PSK) is generated. This is done with the key derivation function PBKDF2
defined in the IEEE 802.11 standard. SSID is passed into the function as salt,
which are just additional data that modify the resulting password hash to
provide better security. In case of the WPA-Personal mode, this PSK key is
used directly as the pairwise master key (PMK). Then we can derive the PTK
using PMK together with a concatenated source and destination address, and
the ANonce and SNonce random values. These arguments are passed into
the IEEE 802.11 pseudorandom function to generate the resulting PTK.

The key has three parts used for different purposes. Key confirmation key
(KCK) is used in the follow-up authentication messages for MIC computation.
Key encryption key (KEK) is for encryption of the GTK key. And finally
temporal key (TK) is used for the encryption of data. In TKIP security suite,
there are also two additional keys used for computation of TX and RX MIC
in data frames.

In its second message, the client sends a reply to the authenticator which
contains the generated SNonce and a security information element.

Third phase is the GTK derivation. Based on the encryption protocol used,
we have to decode the GTK key from the encrypted message. If CCMP is used
either as a pairwise or a group security protocol, the NIST AES key wrap
algorithm is used. Otherwise it is calculated using the ARC4 algorithm. Then
key data are parsed from the encoded stream. With WPA2 security suite the
data are enclosed in an information element. In the case of WPA, the encoded
stream directly corresponds to the GTK key data.

After this, we can configure both the PTK and the GTK inside the device
driver using the key_config callback. WPA only installs PTK after its third
phase and GTK is then processed after the extra message is received.

Successful handshake completion is signalled to user connection initiating
process using a conditional variable and the wireless device is marked as
connected.
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Encryption algorithms used during the handshake are documented in Sec-
tion 3.4.

3.3.6 Processing frames

The primary task of the framework is processing the outgoing and incoming
frames. Both directions are described separately in the subsections below.

TX handling

Data frames coming from the NIC layer to be sent over the air are managed
inside the ieee80211_send_frame function. This callback is registered with
the NIC framework during IEEE 802.11 framework initialization. Frames are
processed only if the device is connected to a network, otherwise they are
dropped immediately. Based on the used security suite we have to reserve
enough place in header and footer of the frame for additional encryption
data. Frames of the IEEE 802 family use additional encapsulation sequence
defined in RFC 1042 that we have to append after the frame header [10].
Frame control fields from the frame header are filled with respect to frame TX
direction and a protected frame field is set if the frame has to be encrypted. If
TKIP security suite is used, we have to compute Michael MIC from the whole
frame data and append it. Currently only hardware encryption is supported,
but the ieee80211_encrypt_frame function is ready for software encryption
of frames to be implemented in the future. Resulting buffer with data is sent
using tx_handler to the device driver for further processing.

RX handling

The device driver manages incoming packets from the wireless device and
passes it to the IEEE 802.11 layer. According to a frame control field in the
header, it either passes it further to a function for processing management
frames or to a function for processing data frames.

Processing of management frames is subsequently divided by the frame
subtype. Probe responses and beacons are managed together, because they
use a very similar format. First it is checked whether the SSID information
element carries any information. Some hidden networks could block broad-
casting of their SSID and these frames are useless for our purposes. Then we
parse the SSID from IE and check if it is already present in the scan results.
If so, we just update their beacon timestamp and exit processing of frame.
Otherwise we create a new ieee80211_scan_result_link_t entry for this net-
work and fill it with information about the network from the beacon frame
(BSSID, SSID, WEP indicator). Some information elements are not placed in a
fixed order and there might also be some elements that we are not interested
in. Therefore a simple ieee80211_process_ies handler was written to parse
this information. Security related information is parsed by another function
called ieee80211_process_auth_info. When using the WPA security suite,
this information is located in vendor IE. In the case of WPA2, it is located in
RSN IE. The location of the WPA related information was not easy to find
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out, because WPA was implemented in a draft of IEEE 802.11i but official
documentation is missing. The information was eventually found on [11]. Se-
curity IEs are stored in the scan result entry and used later when sending an
association request. Other management frames for basic authentication were
described earlier.

Data frames are stripped off the IEEE 802.11 header and converted to an
802.3 Ethernet header for processing in higher layers. An NIC frame is con-
structed from the data buffer and sent to the NIC layer with the nic_re-

ceived_frame callback. During frame processing we check the frame protocol
type and in case of the EAPOL frame, we pass it to the four-way handshake
procedure. There is also an empty function ieee80211_decrypt_frame pre-
pared to be implemented to support software frame decryption

3.3.7 Driver interface

Only necessary functions are exposed to the driver interface. These are the
IEEE 802.11 framework initialization functions to allocate and configure wire-
less framework structure, getter and setter functions to wrap all manipulation
of inner attributes and structures, frame type indicators and finally a callback
interface that is called by the framework during important events that can-
not be handled by the framework itself and must be provided by the device
driver.

Together with the function interface, there are several structures and con-
stants exposed to the device driver which it shares with the framework.

The whole interface is defined in file uspace/lib/ieee80211/include/

ieee80211.h and can be included in the device driver by including the lib-

ieee80211.a library in its Makefile.

Getters and setters

When the device driver wants to get or set any information related to the IEEE
802.11 framework, it uses solely these wrapper functions. Every wrapper is
guarded by a gen_mutex lock to avoid concurrent execution of procedures by
the device driver and user application process accessing the framework via
IPC.

Callbacks

All mandatory operations that the framework needs to be provided by the
device driver are defined in the ieee80211_ops_t structure (except scan that
has a default implementation in the framework). These functions have already
been described before in the places of their use, so we only give a definition
of interface to recapitulate in Listing 7. Comments were reduced to not take
up too much space.
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typedef struct {

/**

* Function that is called at device initalization. This should

* get device into running state.

*/

int (*start)(struct ieee80211_dev *);

/**

* Scan neighborhood for networks. There should be implemented

* scanning of whole bandwidth. Incoming results are processed by

* IEEE 802.11 framework itself.

*/

int (*scan)(struct ieee80211_dev *);

/**

* Handler for TX frames to be send from device. This should be

* called for every frame that has to be send from IEEE 802.11

* device.

*/

int (*tx_handler)(struct ieee80211_dev *, void *, size_t);

/**

* Set device operating frequency to given value.

*/

int (*set_freq)(struct ieee80211_dev *, uint16_t);

/**

* Inform device about BSSID change. This should be called

* everytime device connection state changes.

*/

int (*bssid_change)(struct ieee80211_dev *, bool);

/**

* Setup encryption key in IEEE 802.11 device. Boolean variable

* is used to indicate if the key should be inserted or removed.

*/

int (*key_config)(struct ieee80211_dev *, ieee80211_key_config_t *,

bool);

} ieee80211_ops_t;

Listing 7: IEEE 802.11 driver callback interface

3.3.8 Application interface

Interface for user applications comprises just few functions so far, but it
should manage the basic functionality a user needs to operate the WiFi device.
The interface currently consists of:
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• connect Manage connection between the wireless device in station mode
and a target network including the whole authentication process and
configuring the respective network interface.

• disconnect Deinitialization of a network interface and deauthentication
of the device from the network.

• get_scan_results Fetching the list of scan results from the wireless de-
vice.

This is the interface exposed by the wireless framework. It is invoked by
a server-side RPC skeleton when processing user application requests from a
client-side stub.

Framework side implementation

Functions for managing device connection state were already described before
in Section 3.3.4. Disconnection procedure simply checks if a device is already
connected to a network and if so, calls the function for deauthentication.

Transmitting scan results is a fairly simple operation. If user requests fresh
results, the scan procedure is immediately initiated and the user is blocked
until it is finished. Then we copy the result entries into an array passed as
an output parameter to the procedure. The copying is necessary here because
we cannot pass an internal pointer to the client who is running in a separate
process.

The whole procedure is guarded by results_mutex which is used in all
situations when manipulation of the scan results list takes place. It can be
accessed either by a user application or by the IEEE 802.11 framework itself.

RPC stub implementation

User applications access the interface using a client RPC stub that forwards
their requests to a server side skeleton and further to the IEEE 802.11 library.

The main job of these functions is to marshall arguments and send them
over IPC to the server side. But during connection and disconnection there is
also another thing they must handle.

After connection procedure has been successfully completed and positive
response has been received from the server skeleton, we have to configure the
device’s IP address, otherwise it would be useless for networking purposes.
IP address can be configured by the DHCP client in HelenOS. We call the
nic_get_address function to retrieve a MAC address of our interface and
then we use it to search for link_id of a corresponding entry registered with
the inetsrv IP server by executing inetcfg_get_link_list and searching for
an entry matching our MAC address. This identifier is then used to initiate
DHCP discover procedure that manages the IP address configuration.

When disconnecting a device from a network, we additionally have to
remove the previously obtained DHCP address. This is done by iteration
through the list retrieved from inetcfg_get_addr_list and deleting the ma-
tching entry. After that we also have to remove the corresponding DHCP
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static route. This is currently done by searching for route with the currently
unique dhcp identifier.

3.4 Cryptographic functions

During the thesis development a new cryptographic library was implement-
ed. It comprises functions and algorithms needed for the four-way hand-
shake, but many of these could be also used for other purposes.

Generic functions are packed inside libcrypto library and IEEE 802.11-
specific functions are located inside ieee80211_impl.c file inside the IEEE
802.11 library.

3.4.1 AES

Currently the most widely used WPA2 security suite introduced in the IEEE
802.11i amendment, based on the AES algorithm defined in the FIPS 197 stan-
dard [13]. It is a symmetric block cipher created to replace its predecessor
DES. Besides being used in the WPA2 protocol, it is used by the U.S. govern-
ment to protect sensitive information.

We implemented the AES-128 variant using 128bit encryption keys which
is used with WPA2. As the computation of AES is rather complex it is placed
in separate aes module inside the libcrypto library.

The encryption algorithm begins with a derivation of series of round keys
from the input encryption key. Input text is then copied into the state array
that will be used as an intermediate cipher result. Processing loop follows,
separated into several steps. Individual iterations are referred to as rounds.

1. Bytes substitution — each byte is replaced by another one according to
a substitution table.

2. Shift rows — cyclic left shift of last three rows by offsets according to
their indexes.

3. Mix columns — transformation operating on individual columns of the
state array by combining their values.

4. Add round key — each byte of the state array is combined with a block
of the round key using the XOR operation.

In the first round only the add_round_key operation is executed and in
the last round the mix_columns function is omitted. At the end the cipher is
stored in the state array and copied into the output buffer.

Individual operations within the processing loop are illustrated on the
picture under in Figure 3.3.

Implementation follows the specification of algorithm from the published
standard.

Decryption algorithm uses inverse operations during the round phases,
and the operations are arranged in a different order.
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Figure 3.3: AES round phases

3.4.2 RC4

The WPA protocol uses the RC4 (also known as ARC4) stream cipher. It is a
simple and fast algorithm that is also used in the HTTPS protocol, but it is
more vulnerable than AES. It uses exactly same algorithm for encryption and
decryption.

The algorithm uses variable length encryption keys up to 256 bytes long.
These bytes are subsequently used to create a substitution box consisting of
permutations of all 256 bytes. Their order is based on the values in the key
stream. This phase is also known as the key-scheduling algorithm.

Processing loop iterates through the input text while incrementing two
indices. One increases linearly, the second based on values in the substitution
box. Values at those indices inside the substitution box are swapped and
then the same indices are used to retrieve the value from the box as follows:
sbox[sbox[i] + sbox[j]]. This value is then applied to the current input
byte with XOR and the result is appended to the output.

Specification of the RC4 algorithm is described inside an internet draft
document by T. Kaukonen [14].

3.4.3 Hash functions

This is the core of authentication-based functions. Hash functions produce
fixed-size fingerprints from a variable-length input. They are mainly used to
verify the authenticity of some piece of information, e.g. a received message.
Hash function is characterized by three main properties. It can be computed
very fast for any input because it uses just cheap CPU operations. It is very
difficult to calculate the original input text from a given hash, although many
so-called rainbow tables exist these days, representing very large dictionaries
with lists of plain text input to hash print mappings. The third advantage is
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that only a slight modification of the input sequence results in drastic change
to the fingerprint.

Two of the most commonly used hash functions, MD5 and SHA-1, are
implemented in the enclosed implementation of this thesis.

Since both functions share a large portion of their source, we created a
common procedure create_hash inside which the specific worker function is
called implementing the core computation different for each of the algorithms.

create_hash

Hash function indicator hash_func_t is passed to a function to select MD5
or SHA-1 version of the hash. Procedure begins with converting the message
into a special 64-byte aligned representation. In order to store information
about the message’s original length, 0x80 is appended to the message and
zero-padding added for alignment. The message is then processed in 64B
blocks by the worker procedure for the given hash function. When the com-
putation is done, the resulting hash is copied to the output buffer.

sha1_proc

In the SHA-1 worker function, each block of scheduled input is processed
according to the RFC 3174 specification [15].

md5_proc

MD5 uses a similar approach as SHA-1 but the computation is simplified with
a shift amount array and a substitution box. Calculation process is taken from
RFC 1321 [16].

3.4.4 IEEE 802.11-specific functions

This section describes functions whose functionality is either IEEE 802.11-
specific or their implementation is restricted only for use within the IEEE
802.11 framework.

Keyed-hash message authentication code

This construction defined in RFC 2104 [17] is used for calculation of mes-
sage authentication code (MAC) providing integrity and authentication of
transferred data. It is based on MD5 a SHA-1 hash functions using terms
HMAC-MD5 and HMAC-SHA1 accordingly.

Based on the given encryption key length, it either creates a hash using
one of the specified functions if the key is longer than the block used dur-
ing HMAC computation, or it uses the key directly. Two special sequences
are created by applying XOR operation in iteration on every byte of the key
and a special constant, resulting in an outer and an inner key pad. The
resulting hash is then created using the following formula: hash(o_key +

hash(i_key + input)), where the plus operator represents string concatena-
tion.
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Password-Based Key Derivation Function

Key derivation function PBKDF2 is used for deriving the pairwise master
key (PMK) during a four-way handshake. Besides that it is used in disk
encryption software and also in many systems and applications for protecting
user passwords [18].

Resulting derivation is computed by parts that are called blocks. Every
block is constructed by calling a specific function on the input password and
salt sequence. This function involves specified iterations of chained pseudo-
random functions (PRF). First PRF is applied on the input password and salt
concatenated with the iteration counter. Then next PRF is applied to the pass-
word again, but the second parameter is the output from the last PRF and so
on.

In our implementation we use HMAC-SHA1 as the PRF function.

IEEE 802.11 PRF

Pairwise key computation is used in the PRF defined in the IEEE 802.11 stan-
dard. This function takes the PMK as the encryption key and input text which
is concatenation of the destination and source MAC addresses with generated
random sequences from client and authenticator (ANonce, SNonce) as illus-
trated in following pseudocode:

concat_string = min(DA,SA) + max(DA,SA) + min(AN,SN) + max(AN,SN)

ptk = prf-x(pmk, ’Pairwise key expansion’, concat_string)

The x in PRF denotes the length of the output which is 512b (64B) with
TKIP and 384b (48B) with CCMP.

The ’Pairwise key expansion’ string is then inserted before input data (con-
catenated sequence) and the created string is used in the processing loop. In
every iteration the number of iteration counter is appended after the data and
the resulting sequence is passed to HMAC-SHA1. The output is appended to
the result, so when the procedure finishes, the result is composed from these
concatenated blocks.

Key unwrapping

When GTK is received during a four-way handshake, it is encrypted inside
the message and we have to use an unwrapping procedure for its derivation.
Based on the used security protocol, either ARC4 or NIST AES unwrap is
used.

Since encryption and decryption are the same operation for ARC4, we
simply call RC4 using the KEK part of the PTK key that is concatenated after
EAPOL-Key IV sequence from the handshake message.

In case of the CCMP protocol, an additional algorithm is used for key
unwrapping called NIST AES [19]. Cipher text is interpreted as a sequence
of 64bit values that are preprocessed with bitwise operations and then passed
into the AES decryption procedure. Decrypted block is then appended to
the result stream. When the process is done, we check that the initialization
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sequence is present at the beginning of the decrypted data, otherwise the
message is corrupted and should be dropped.

Michael MIC

When using the TKIP protocol, the MIC has to be computed always on the
host side, contrary to CCMP. It uses a Michael MIC format which is the pre-
decessor of the current MIC introduced with WPA2.

Given key is copied and separated into two parts l, r which are used to
store the temporary result of the function. Frame header is processed sepa-
rately from the payload. Only destination and source address fields are used,
with 4 zero bits inserted before the data. This pseudo header is used on-
ly for MIC computation purposes. Michael procedure handles data in 32bit
blocks using bitwise operations applied on l, r values to produce the result-
ing MIC. Last block is padded to a multiple of four with special 0x5A value
and is processed separately at the end.

Final MIC value is then appended at the end of the data frame.

3.5 User application

A simple client application for managing wireless device is the part of the
thesis and it is titled wifi_supplicant.

When the application is started, connections to inetsrv IP server and dhcp

client process are initiated to be able to configure a device connection proper-
ly. User can list wireless devices, fetch scan results and manage connection to
the selected network.

Scan results are displayed in a table containing network SSID, access point
MAC address, network operating channel number and security related infor-
mation (security suite, encryption algorithm used).

If an error occurs, a descriptive error message is shown based on the error
code returned from the executed function.

As described before, the application calls functions from the RPC interface
that are delegated further to the wireless driver.

User documentation for wifi_supplicant is at the end of the thesis in the
appendix.
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4. Evaluation
In this chapter we briefly summarize the functional and performance aspects
of the resulting implementation of this thesis. Implemented features were
tested on various wireless networks using different hardware devices.

Whole development was done and tested with one specific wireless USB
adapter built on Atheros AR9271 chipset, specifically TP-LINK TL-WN722N
which is currently available at almost every electronics store.

4.1 Functionality

In order to test the correct functionality of the resulting framework in a larger
scope, we choose several representatives of WiFi access point devices and
platforms we used during testing:

• VDSL modem Comtrend VR-3031eu

• Hotspot application on Android OS 4.4.4

• NetworkManager 1.0.2 utility on Linux OS

Prototype implementation of the IEEE 802.11 framework supports neces-
sary processing of data and management frames that allows operation of the
wireless device in station mode. It also offers key management and authenti-
cation mechanisms used to provide secure data transmission.

The following table is summarizing supported security standards and en-
cryption protocols. WEP technology is not supported due to its deprecated
status, TKIP+TKIP combination is implemented, but was not tested yet, be-
cause it wasn’t available on tested devices.

Security suite Pairwise protocol Group protocol

WPA2 Personal
CCMP CCMP

CCMP TKIP

WPA Personal
CCMP CCMP

CCMP TKIP

TKIP TKIP

WPA2/WPA Enterprise Not supported

WEP Not supported

None Supported

Table 4.1: Implemented security protocols
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4.2 Performance

Several tests were performed to compare the wireless stack performance with
the existing wired one.

Results of latency tests are slightly worse as regards the wireless stack
due to the nature of wireless transmission and the half-duplex principle of
its operation. For this purpose, built-in ping utility was used. Values in
table represent the average round-trip time from 10 iterations of sending echo
message.

Throughput tests were done using the existing download tool in HelenOS
with omitted screen output. Here the measured times are much slower than
wired ones which could be caused by insufficient device calibration methods
which are in other systems done adaptively, but in our implementation the
calibration is set up only statically when switching device operating frequen-
cy. This can has a major impact on packet loss rate during data transmission.

Also when using download application, it quite often happens that the TCP
connection is interrupted and the program halts. After its termination it is not
operating correctly any more. When analysing the TCP transfer with Wire-
shark, it seems that sometimes there is a problem when some TCP segment
to be received in HelenOS is lost that it is not accepted afterwards during its
retransmission by the sender.

Wired Wireless with WPA2

E1000 NIC AR9271 IEEE 802.11 NIC

Latency tests

Czech Republic server: 217.31.205.50 (nic.cz) := CZ

United States server: 69.169.243.128 := US

CZ — 32 ms CZ — 38 ms

US — 175 ms US — 184 ms

Throughput tests

Small file of size 3 kB := SF

Large file of size 575 kB := LF

SF — 136 ms (22 kB/s) SF — 267 ms (11 kB/s)

LF — 2 204 ms (261 kB/s) LF — 11 715 ms (49 kB/s)

Table 4.2: Performance tests
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5. Related work
In this chapter we present two main existing open-source implementations of
wireless networking stack.

Since our implementation of wireless framework provides only basic func-
tionality so far, we can’t compare it to existing solutions thoroughly.

5.1 FreeBSD

FreeBSD is the free Unix-like operating system that is aiming for high perfor-
mance and easy manageability by its end users. Also because of that, it has
more users than the other BSD projects.

Whole IEEE 802.11 functionality is in FreeBSD implemented within the
net80211 module that provides operations required by wireless cards. This
code is shared with NetBSD system where the wireless network stack was
originated.

The stack is responsible mainly for media access control, cryptography
related functionality, packet processing, network node management and con-
verting packets between the 802.3 Ethernet and IEEE 802.11 format.

When new device is registered in the system, it has to call the ieee80211_

ifattach initialization function. Device control state is stored inside the ieee-
80211com structure. Information there has to be filled by the device driver,
such as a pointer to a connected network device, function callbacks and capa-
bility flags.

Another important entity in the framework are nodes. These represent the
stations when operating in BSS mode. Their structure includes the unicast
encryption key, current TX power or various statistics about the transmission
history. All neighbour nodes that can be seen by the device are stored inside
the ieee80211com structure in the ic_sta field. Functions for manipulation
with nodes including scanning, maintaining the network structure etc. are
implemented in ieee80211_node.c file.

Cryptography supports encryption and decryption of network frames.
Key management is done through the ioctl interface inside the IEEE 802.11
layer which is the system call for manipulating with underlying device pa-
rameters.

The advantage of the net80211 wireless stack implementation is that it is
very well portable. There was also an attempt to port it on Linux platform
within the MadWifi project, but it has ended up rejected and superseded by a
brand new mac80211 Linux stack.

Our prototype implementation of the IEEE 802.11 framework can be com-
pared to the BSD one as it is sharing similar implementation aspects. More
modular approach is used in the Linux implementation described in the next
section.
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5.2 Linux

Linux is the most popular alternative operating system. Its development is
largely driven by user communities besides the commercial developers. Like
FreeBSD, the source code of Linux are open-source, although published under
more restrictive GPL license.

Linux distinguishes between SoftMAC and FullMAC wireless cards. Soft-
MAC is a type of a network interface that implements management opera-
tions like authentication, association etc. on the software side (e.g. AR9271),
whereas FullMAC manage them in hardware.

In this case, wireless stack is designed in a more modular way. There
exist two separated paths the user space processes communicate with the
kernel. The data received from the wireless device are passed to the netdev

networking core, then through the TCP/IP stack until they are queued on the
relevant sockets in the user space where they are awaited by user process.
Outgoing packets are sent from netdev to wireless device driver using the
ndo_start_xmit callback. The driver has registered a structure with a set
of operation callbacks like other network devices in the system. Operations
like scanning and association are managed through the control path. The
user space interface is based on the nl80211 module. We can send control
commands through there and register events for responses.

Messages sent via nl80211 are in kernel handled in the cfg80211 module.
In case of a FullMAC device, the related hardware driver is right below the
cfg80211 layer and it registers a set of callbacks provided in the cfg80211_ops

structure. For SoftMAC devices there is a mac80211 MAC layer which is com-
municating with the cfg80211 directly instead of the device itself. mac80211

provides ieee80211_ops operations structure for device drivers while imple-
menting cfg80211_ops itself.

Initialization of a new device is first managed through the mac80211 layer
by calling its initialization functions and then the configuration is delegated
to cfg80211 layer. Device driver structure is separated into several layers
corresponding to wireless stack layers. These are visible only in respective
levels and are hidden for other layers.

We can set up more virtual interfaces based on single physical device.
These can be seen under different names using the ifconfig configuration
tool (e.g. wlan0, wlan1, ...). Each of these virtual interfaces is represented
by ieee80211_vif object containing also structures to be accessed by device
driver.

Managing authentication process together with eventual software packet
encryption is handled separately in external wpa_supplicant application, as
was said earlier.
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Conclusion
The main goal of the thesis was to implement a native HelenOS driver for an
IEEE 802.11-compliant device. This task was accomplished and the result is a
driver for Atheros AR9271, a popular WiFi chipset. During the development
of the driver, a wireless framework providing generic IEEE 802.11 functional-
ity was created and can be reused by drivers for other devices. This was the
second main goal of this work.

As a by-product, a library with cryptographic algorithms was also im-
plemented to provide the needed functionality for secure data transmission
within a wireless network. It makes it possible to communicate using the cur-
rently most widespread wireless LAN security standard WPA2. Many of the
implemented functions are not specific to IEEE 802.11 and can also be used by
other applications to provide data integrity or other forms of authentication.

The enclosed implementation is also accompanied by a simple utility for
managing connection and authentication between a wireless device in station
mode and a WiFi network access point.

As shown in the Evaluation chapter, the implemented solution is function-
al, but it will need to be optimized to provide the same levels of performance
as existing implementations in conventional operating systems. On the other
hand, the presented solution is more robust regarding the system security,
because In Linux or Windows a buggy device driver can crash the whole sys-
tem. This is not a case of the HelenOS system thanks to its microkernel design
providing the application isolation by its nature.

Future work

The current implementation could be improved and extended in many ways.
At the moment, the resulting driver allows the device to operate only in

station mode. Although it is the most used form of a WiFi device operation
in desktop operating systems, it would also be attractive to be able to run the
device in hotspot mode and host the wireless network. This would involve
implementing support for processing more types of frames than in the cur-
rent implementation and also managing and keeping track of the connected
stations and forwarding their messages to their respective recipients in the
network.

Another feature that the current implementation lacks is any form of pow-
er management. To avoid keeping the device awake for the whole time the
HelenOS is running, we should put the device to sleep mode when there are
no data ready for it and keep it awake only if there are more data pending in
the sender’s queue. This could be detected from the frame header.

If it becomes necessary for the IEEE 802.11 framework to handle multiple
tasks simultaneously, it would be better to process incoming and outgoing
packets asynchronously to make the system more scalable. As said before,
it would also be better to extract the authentication process from the IEEE
802.11 framework for a more modular approach.
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To add support for devices that are not able to manage encrypted packets
themselves, software encryption and decryption must be implemented. This
implies programming several new cryptographic functions that are not yet
included in the current solution.

As described in Evaluation chapter, it would also be useful to improve the
device calibration procedures to operate adaptively based on recent signal
and noise floor values.
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List of Abbreviations
In this section are described the abbreviations connected with network terms
used in the thesis.

AES Advanced Encryption Standard, standardized block cipher encryption
algorithm.

AID Association Identifier, unique value which allows the access point in
infrastructure WiFi network to keep track of client stations.

AP Access Point, the device to which clients in infrastructure WiFi network
are connecting. It is a central point for managing communication between
clients.

BSS Basic Service Set, basic unit of infrastructure WiFi network consisting of
two or more computers communicating between each other.

CCMP Counter mode Cipher block chaining Message authentication code
Protocol, encryption protocol designed for WLAN providing data confiden-
tiality, authentication and access control. It is based on AES standard.

CSMA/CA Carrier Sense Multiple Access with Collision Avoidance, network
multiple access method using carrier sensing.

DCF Distributed Coordination Function, type of media access control dis-
tributed mechanism used in WLAN. It is using CSMA/CA algorithm for col-
lision avoidance on shared transmission channel.

DHCP Dynamic Host Configuration Protocol, standardized network protocol
used for assigning the IP addresses to network devices.

DS Distribution System, method for interconnection between multiple AP in
WLAN.

EAPoL Extensible Authentication Protocol over LAN, simple encapsulation
of EAP that can run over LAN. EAP is an authentication framework used in
wireless networks.

ESS Extended Services Set, component of the WLAN architecture composed
from two or more BSS.

GTK Group Temporal Key, encryption key used in multicast communications
by CCMP and TKIP protocols.

HIF Host Interface, interconnect driver interface used in Atheros wireless
drivers.
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HTC Host/Target Communication, transport layer used in Atheros devices
responsible for communication between the computer and device firmware.

IEEE Institute of Electrical and Electronics Engineers, the world’s largest pro-
fessional association for the advancement of technology.

ISO/OSI International Organization for Standardization / Open System In-
terconnection, network reference model for how applications can communi-
cate over a network. It consists of seven layers - physical, data link, network,
transport, session, presentation and application.

ISP Internet Service Provider, an organization that offers Internet services to
the end users.

LAN Local Area Network, computer network covering small geographical
areas, such as home, schools or office buildings.

MAC Media Access Control, sublayer of data link layer in ISO/OSI model
providing addressing and shared channel access methods.

MIC Message Integrity Code, value generated from cryptographic algorithm
used to protect data from unauthorized alternation.

MIMO Multiple-Input and Multiple-Output, abstract mathematical model for
multiple antennas communication systems, recently used in radio communi-
cation area for significant increase of data throughput and network coverage.

PCF Point Coordination Function, centralized technique for media access con-
trol used in WLAN.

PSK Pre-Shared Key, shared secret between the AP and client in infrastructure
WiFi network used to construct keys for encrypted data transmission.

PTK Pairwise Transient Key, encryption key used in unicast communications
by CCMP and TKIP protocols.

QoS Quality of Service, level of the overall performance of computer network
as seen by the users.

RC4 Rivest Cipher 4, stream cipher.

RFC Request For Comments, series of documents describing internet proto-
cols and systems. They are rather recommendations than standards, but large
majority of the Internet is following them.

RTS/CTS Request To Send / Clear To Send, flow control mechanism in IEEE
802.11 wireless networking used to avoid hidden and exposed node frame
collision problems.
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SSID Service Set Identification, unique identifier for a WLAN.

TCP Transmission Control Protocol, main protocol of transport layer in
TCP/IP protocol family that guarantees reliable communication and deliv-
ering messages in correct order.

TKIP Temporal Key Exchange Protocol, encryption protocol defined in IEEE
802.11i amendment as an enhancement to WEP.

WEP Wired Equivalent Privacy, deprecated security algorithm for IEEE 802.11
wireless networks.

WiFi A popular label for certain types of WLAN networks based on IEEE
802.11 specifications.

WLAN Wireless Local Area Network, interconnection method between mul-
tiple computers using microwave radio signals.

WMI Wireless Module Interface, wireless protocol for communication used
in Atheros devices.

WPA Wireless Protected Access, the WiFi Alliance certification of IEEE 802.11
amendment. Original WPA version uses TKIP encryption, WPA2 uses CCMP/
AES.
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A. User application documentation
The work is supplied with a simple client application called wifi_supplicant

for managing connections to wireless networks.

Available parameters

Here are described all the options that can be used when running the appli-
cation.

Usage: wifi_supplicant [<cmd> [<args...>]]

Available <cmd> commands:

list

List available WiFi devices in index: name format.

scan <i> [-n]

Output scan results for the device at index i. -n parameter is to force
initiation of scan procedure immediately. Example of results output is shown
further in Figure A.1.

connect <i> <ssid> [<password>]

Connect the device with tag i to network which SSID starts with ssid pre-
fix. If encrypted communication is used, secret passphrase should be supplied
in the password field.

disconnect <i>

Disconnect the device i from currently connected network.

Example usage

First we need to find out what is the index of wireless device we want to use.

wifi_supplicant list

This will output indexes of wireless devices together with their service name
(logical path in system). If there is just single WiFi device in the system, it has
index value 0. Next step is to list available WiFi networks in neighbourhood.

wifi_supplicant scan 0

Now we can choose the desired WiFi network from list and connect to it.

wifi_supplicant connect 0 my_network my_password

If everything went OK, the program should print positive notification on the
screen output. Otherwise some error occurred. When program states that
the device is not ready yet, it means that the initialization of the wireless
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device has not finished yet. This could be detected for example by checking
device log file. Sometimes it may happen that the timeout occurred when
authenticating to network. This can signalize a packet loss during the process,
we can try connecting again.

After the device has successfully connected to a network, the applica-
tion composes a request for IP address assignment which passes to HelenOS
DHCP client. Currently the success of this procedure is not verified. To
check that this process was completed successfully, we need to check that the
DHCP route connected with this wireless device is created by running inet

command. In output of this command there should be configured address
with dhcp4a value in Addr-Name field.

Figure A.1: Example of scan results output
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B. Example Python script

import hashlib

import hmac

import struct

from Crypto.SelfTest.st_common import a2b_hex, b2a_hex

from Crypto.Util.py3compat import tobytes, b

from Crypto.Hash import SHA as SHA1, HMAC

from Crypto.Util.strxor import strxor

# IEEE 802.11-specific pseudorandom function.

def custom_prf(key, a, b, l):

i = 0

r = ’’

while i < ((l + 159) / 160):

hmacsha1 = hmac.new(key, a + chr(0x00) + b + chr(i), hashlib.sha1)

r += hmacsha1.digest()

i += 1

return r[:l/8]

# PBKDF2 key derivation function

def pbkdf2(password, salt, key_len=32, count=4096):

password = tobytes(password)

prf = lambda p, s: HMAC.new(p, s, SHA1).digest()

key = b(’’)

i = 1

while len(key) < key_len:

salt_str = salt + struct.pack(">I", i)

u = prev_u = prf(password, salt_str)

for j in xrange(count-1):

prev_u = t = prf(password, prev_u)

u = strxor(u, t)

key += u

i += 1

return key[:key_len]

# Values used for PTK computation

pass_phrase = "test_phrase"

ssid = "archie-net"

ap_mac = a2b_hex("14f65aaf5eb7")

client_mac = a2b_hex("c04a00294507")

a_nonce = a2b_hex("05994a54bfbe2064c8dbccef24c434c862b599dff4b99ba1378a3314"

"f422bd68")

s_nonce = a2b_hex("bff89495ee27154b24ec5b1a9ae1bd16ee385366b292cd77b4cc9c1b"

"08b7f2ef")

A = "Pairwise key expansion"

B = min(ap_mac, client_mac) + max(ap_mac, client_mac) + \

min(a_nonce, s_nonce) + max(a_nonce, s_nonce)

raw_data_stream = "0103007502010a00000000000000000001bff89495ee27154b24ec" \

"5b1a9ae1bd16ee385366b292cd77b4cc9c1b08b7f2ef0000000000" \

"000000000000000000000000000000000000000000000000000000" \

"00000000000000000000000000000000001630140100000fac0401" \

"00000fac040100000fac020c00"
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data = a2b_hex(raw_data_stream)

pmk = pbkdf2(pass_phrase, ssid)

ptk = custom_prf(pmk, A, B, 384)

print "PMK: " + b2a_hex(pmk)

print "PTK: " + b2a_hex(ptk)

print "MIC: " + hmac.new(ptk[:16], data, hashlib.sha1).hexdigest()[:32]

print "TK: " + b2a_hex(ptk[-16:])

Listing 8: Verification of pairwise key derivation process
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C. Source tree structure
Only newly created files are presented in the following diagram.

uspace

app

wifi_supplicant

Makefile
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lib
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include

ieee80211

ieee80211.h

crypto
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drv
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remote_ieee80211.c

include
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D. AR9271 initialization diagram

69


	Introduction
	Context
	IEEE 802.11 concepts
	Different variants of standard
	Operating modes
	Access methods

	IEEE 802.11 authentication
	Finding the network
	Basic authentication
	Association
	High-layer authentication

	Introduction to HelenOS

	Analysis
	Choosing a suitable WiFi device
	Linux sources
	Debugging Linux code
	Structure of driver

	External tools used for development
	Wireshark
	Python

	HelenOS integration
	Device driver
	Wireless framework


	Implementation
	Changes to the existing code
	Framework registration
	DHCP

	AR9271 driver
	Problems during development
	Host interconnect framework
	Host-target communication
	Wireless module interface
	Hardware related functions
	Device initialization
	Processing network packets
	Wireless framework related functions

	IEEE 802.11 framework
	Frame format
	Initialization
	Network scanning
	Basic authentication
	4-way handshake
	Processing frames
	Driver interface
	Application interface

	Cryptographic functions
	AES
	RC4
	Hash functions
	IEEE 802.11-specific functions

	User application

	Evaluation
	Functionality
	Performance

	Related work
	FreeBSD
	Linux

	Conclusion
	Bibliography
	List of Abbreviations
	Appendices
	User application documentation
	Example Python script
	Source tree structure
	AR9271 initialization diagram

