
MASTER THESIS

Jaroslav Jindrák

C++ Runtime for HelenOS

Department of Distributed and Dependable Systems

Supervisor of the master thesis: Mgr. Martin Děcký, Ph.D.

Study program: Computer Science

Study branch: Software Systems

Prague 2022

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University in Prague has the right to conclude a license agreement on
the use of this work as a school work pursuant to Section 60 subsection 1 of the
Copyright Act.

In date signature of the author

i

Title: C++ Runtime for HelenOS

Author: Jaroslav Jindrák

Department: Department of Distributed and Dependable Systems

Supervisor: Mgr. Martin Děcký, Ph.D., Department of Distributed and Depend-
able Systems

Abstract: In order for an operating system to support running programs written
in any given programming language, it needs to provide a runtime environment
for that language. The structure of the runtime varies depending on the language,
but it generally consists of a tool allowing the program to run, which can be an
interpreter or a runtime library, and a standard library providing functions and
types used by the program.

In this thesis we evaluate which parts of the C++ runtime are the most needed to
support existing programs written in C++ and implement them for the HelenOS
operating system. We then port an already existing open-source program written
in C++ to verify the correctness of both our research and our implementation.

Keywords: C++, runtime, HelenOS, microkernel

ii

Contents

1 Introduction 3
1.1 HelenOS . 3
1.2 Goals . 3
1.3 Thesis Structure . 4

2 Analysis 5
2.1 Runtime Library . 5

2.1.1 Runtime Type Identification 5
2.1.2 Static Constructors and Destructors 8
2.1.3 Exception Support . 10
2.1.4 Conclusion . 10

2.2 Standard Library . 12
2.2.1 Library Statistic . 12
2.2.2 Standard C Headers . 13
2.2.3 Modules . 14
2.2.4 Containers Library . 16
2.2.5 Input/Output Library . 20
2.2.6 General Utilities Library 21
2.2.7 Thread Support Library 24
2.2.8 Diagnostics Library . 24
2.2.9 Localization Library . 25
2.2.10 Numerics Library . 26
2.2.11 Remaining Library Modules 26
2.2.12 Conclusion . 28

3 Design and Implementation 30
3.1 Template Metaprogramming . 30

3.1.1 Metafunctions . 30
3.1.2 Pattern Matching and SFINAE 31
3.1.3 Recursion . 33

3.2 Directory Layout . 33
3.3 Build System . 34
3.4 Runtime Library . 35
3.5 Standard Library . 36

3.5.1 Exception Handling . 36
3.5.2 Namespaces . 39
3.5.3 C Library Wrappers . 39
3.5.4 General Utilities Library 39
3.5.5 String Library . 45
3.5.6 Containers Library . 46
3.5.7 Input/Output Library . 50
3.5.8 Thread Support Library 52
3.5.9 Tests . 56

4 Usage 58

1

5 Demonstrator 60
5.1 FunctionalPlus . 60
5.2 Result . 60

5.2.1 Missing features . 61
5.2.2 Bugs . 62

Conclusion 63
Future Work . 63

Example: C++ Approach to Asynchronous Sessions 64

Bibliography 66

Attachments 68

2

1. Introduction

In order to run programs written in a given programming language, an operating
system needs to have a runtime for that language. In most cases, this runtime
consists of a standard library (which contains a set of basic utilities and data
containers). Additionally, a runtime of a language can contain an interpreter or,
as is the case with C++ , a runtime library. A C++ runtime library contains func-
tions used for tasks such as Runtime Type Identification, static variable lifetime
management and stack unwinding.

1.1 HelenOS

HelenOS [1] is a portable microkernel-based operating system designed and im-
plemented from scratch. It was originally created as a software project at the
Faculty of Mathematics and Physics at the Charles University in 2006 and has
since then hosted multiple student theses and software projects.

Currently, HelenOS contains native implementation of only one runtime - a
non-standard runtime for the C programming language1. This means that if
one wants to implement a program native to HelenOS that can be added to the
main repository, they have to write that program in C. However, C does offer
programmers very little when it comes to abstraction and safety and thus is not
as well suited for user space application development as more high level languages,
such as C++ , might be.

1.2 Goals

When deciding on the topic of this thesis, we faced the decision whether we
would port an existing implementation of the C++ runtime or implement one
from scratch. If we were to port an existing implementation, we would gain a
complete, optimized and tested solution. However, in the spirit of HelenOS, we
decided to write one from scratch because of the following reasons:

• A ported runtime would not be able to be merged into the mainline HelenOS
repository which would lead to the impossibility of using C++ to implement
native programs distributed with HelenOS (including user space applica-
tions, drivers and servers2). This on itself would not be a big problem,
but some HelenOS developers voiced their desire to be able to implement
servers in C++ and a native implementation would allow for that.

• HelenOS builds its own cross-compiler, which has its version hard coded
in the build system. This means that the version of the compiler will only
increase in the future and as such our implementation would be able to uti-
lize newer features and techniques (such as variadic templates or expression

1Some other runtimes, such as the Python one, are available through ports.
2Daemon-like programs that mediate communication between drivers and the kernel.

3

SFINAE3) to achieve a much more readable and elegant source code of the
implementation.

• As we mentioned previously, the C library present in HelenOS is non-
standard, which means that some of its features are either missing, renamed
or have different semantics. Since the C++ standard library is built with the
use of the C library, this would require possibly large scale modifications to
any library we would be porting.

Implementation of the entire runtime would exceed the scope of a master
thesis and as such we will create only a subset of it that will suit for imple-
mentation and porting of commonly used C++ features. Note, however, that the
implemented subset shall (unlike the C runtime) be in compliance with the official
C++ standard. The scope of the implementation will be discussed in Section 2.

The standard version we were following in our implementation is the C++ 14
draft N4296 [2]4 (the standard). However, the C++ 17 standard was released
during the work on this project and we took the liberty of using some of its
features to implement the standard library to obtain more readable code.

1.3 Thesis Structure

In this first section, we have introduced the topic of this thesis and provided
our reasoning for its choice. The following section, Section 2, contains a further
explanation of what the C++ runtime consists of and researches which components
of the runtime should be part of our implementation. Section 3 then explains
some advanced features and techniques of the C++ programming language used
in our implementation as well as documentation for the various modules of the
implemented standard library. Afterwards, in Section 4, we show our readers
how a C++ program could be written for or ported to HelenOS. To demonstrate
the results of our implementation, we will present a project written using C++ in
Section 5 and, lastly, we will summarize our work and discuss possible future
steps.

3A newer C++ feature explained in a later section of this thesis, commonly used in template
metaprogramming.

4This is the C++ 14 standard with some editorial fixes.

4

2. Analysis

In this section, we will explore the contents of the C++ runtime and make a
decision as to which parts of the runtime we will implement in this thesis. As
we have previously mentioned, the C++ runtime consists of two parts – a runtime
library and a standard library. Each of these libraries will be discussed in one of
the following two sections.

2.1 Runtime Library

A C++ runtime library is a set of functions and types that are used by the compiler
to perform runtime tasks (such as dynamic casting or calling constructors of static
global variables). These functions can either be linked to a program (in which
case calls to them would be inserted into the executable by the compiler) or be a
part of the environment (e. g. can be called by the program loader).

Since the compiler links this library to a program, any implementation of the
runtime library has to conform to the Application Binary Interface (ABI) used
by the compiler. Both of the compilers used by HelenOS, GCC [3] and Clang [4],
use the same ABI for any C++ programs they compile – the C++ Itanium ABI [5]
(the ABI). Despite its name1, this ABI is used by many major compilers on all
major architectures.

The ABI specifies, among others, the way data are laid out in memory, the
virtual table structure, calling conventions, name mangling, Runtime Type Iden-
tification, static variable lifetime management and exception support. The latter
three are the primary parts of the runtime we will be implementing and will be
discussed in greater detail in the following four sections.

2.1.1 Runtime Type Identification

Runtime Type Identification (RTTI) is a feature of the C++ language that pro-
vides its users with information about the type of an object at runtime. The
standard defines three members of RTTI – the class type info, the typeid oper-
ator and the dynamic cast operator.

typeid and type info

The typeid operator returns a reference to an object of type type info. The
type info class is defined by the standard and is used in three situations:

1. To support the typeid operator.

2. To match an exception handler with a thrown object.

3. To implement the dynamic cast operator.

1The name is a historical artifact, this ABI was initially developed for the Itanium architec-
ture.

5

While the standard does not require the typeid to return references to the
same type info instance for multiple type checks of the same type, the ABI does
require it to do so. Because of this, the compiler creates instances for each type
that requires it (because of one of the three cases mentioned above).

Since different types might need to store different information in their respec-
tive type info instance (e. g. list of base classes for the use with the dynamic cast

operator), the ABI defines several types that derive from type info and are used
by the compiler. These types are:

• fundamental type info, used for primitive types

• array type info, used for arrays

• function type info, used for functions

• enum type info, used for enums

• class type info, used for classes that have no bases and as a base class
for the other class type info types

• si class type info, used for classes with a single public non-virtual base

• base class type info, internal type info for representing bases

• vmi class type info, used for classes that cannot be represented by
si class type info (e. g. because of multiple, non-public or virtual inher-

itance)

• pbase type info, used as a base for the two following pointer related struc-
tures, contains information about the const volatile (and other) qualifiers
of the pointee and a pointer to the type info representing the type of the
pointee

• pointer to member type info, used for pointers to members (i. e. objects
that are contained in a type such as a class or a struct)

• pointer type info, used for all other pointers

In order for a runtime to support the typeid operator, all it has to do is
implement the type info class and the derived classes listed above.

dynamic cast

The dynamic cast operator is used to safely convert pointers and references up,
down, and sideways along the inheritance hierarchy. If such a conversion is not
possible, the invocation of the operator either returns nullptr (when dealing with
pointers) or throws an exception (when dealing with references). Since the actual
type of its argument is (mostly) known only during runtime, the dynamic cast

operator must be (at least partially) implemented as part of the runtime library.
Invocations of dynamic cast that convert a pointer to a possibly cv-qualified2

void pointer, to a null pointer or invocations that are static are inserted inline by

2A type is cv-qualified if it is either const, volatile, or both.

6

the compiler. This leaves only those cases that are truly dynamic to the runtime
library, where they are handled by the function dynamic cast, whose signature
is shown in Listing 1.

extern "C"

void* __dynamic_cast(const void* sub,

const __class_type_info* src,

const __class_type_info* dst,

ptrdiff_t src2dst_offset);

Listing 1: Signature of the function that performs the dynamic cases of dy-
namic cast.

These cases are [2, Section 5.2.7 (8)]:

• Downcasting from a public base class to a derived class (as can be seen in
Listing 2).

• Sidecasting between two public base classes of a derived class (as can be
seen in Listing 3).

class A { /* ... */ };

class B: public A { /* ... */};

A* a = new B{};

B* b = dynamic_cast<B*>(a);

Listing 2: Example of a downcast.

class A { /* ... */ };

class B { /* ... */ };

class C: public A, public B { /* ... */ };

A* a = new C{};

B* b = dynamic_cast<B*>(a);

Listing 3: Example of a sidecast.

In both of these cases, the dynamic cast function is invoked and receives a
pointer to the argument of dynamic cast as its first argument sub. Its second
and third arguments are pointers to type infos of the (static) type of the variable
passed to dynamic cast and of the target type (the fourth argument is a hint that
may be passed by the compiler). It then traverses the inheritance graph from src

trying to reach dst, if a path is found, it returns the adjusted pointer, otherwise
it returns nullptr.

7

2.1.2 Static Constructors and Destructors

Another feature of the language that needs to be managed by the runtime is
the lifetime management of objects with static storage. An object has static
storage if it is declared in namespace scope (including global namespace) or if it
is declared with the static keyword (which also implies internal linkage) or the
extern keyword (which also implies external linkage).

Such objects are allocated when the program begins and deallocated when the
program terminates, but the runtime must ensure correct calls to constructors
and destructors of these objects. Note that whenever we refer to initialization in
the following two sections we mean dynamic initialization (as opposed to static
initialization, which is performed at compile time), unless specified otherwise.

Local Static Variables

Variables that are declared at block scope with the static specifier have static
storage but according to [2, Section 6.7 (4)] their initialization is performed the
first time the control passes through its declaration (though it can be repeated if
the initialization fails because of a thrown exception).

extern "C"

int __cxa_guard_acquire(int64_t* guard);

extern "C"

void __cxa_guard_release(int64_t* guard);

extern "C"

void __cxa_guard_abort(int64_t* guard);

Listing 4: Local static variable guard management functions.

According to the ABI, the runtime library has to define three functions that
will manage a guard object defined by the compiler for each local variable with
static storage, the signatures can be seen in Listing 4 (and will be referred to as
acquire, release and abort).

For each local variable with static storage, the compiler generates a sequence
of instructions similar to such that would result from the pseudo-code shown
in Listing 5. Here, the code first checks if the variable has been initialized by
calling acquire, which returns 1 if the initialization has not been completed for
the variable and 0 otherwise. In the case when the initialization has not taken
place yet, the variable is initialized and release is called, which sets the first byte
of the guard object to a non-zero value to mark the guarded object as initialized.

[2, Section 6.7 (4)] requires that should another thread reach the place of
declaration of a local static variable while another thread is in the process of
initializing said variable, it has to wait. Because of this, any call to acquire

has to be accompanied by a call to either release or abort, which unlock any
synchronization primitives locked by acquire (in the case of abort, which is called
when the initialization throws an exception, the guard object is not modified and

8

if (__cxa_guard_acquire(&guard_obj))

{

try
{

/* initialize the object */

}

catch (...)

{

__cxa_guard_abort(&guard_obj);

throw;
}

/* queue object destructor */

__cxa_guard_release(&guard_obj);

}

Listing 5: Example code of what the compiler might generate for local static
variable initialization.

the next time control reaches this place it will attempt to initialize the variable
again).

In order for local variables with static storage to be destroyed at program
termination and in the correct order, the runtime queues their destructor using
the cxa atexit function, which behaves similarly to the atexit function from
the C standard library. Note that due to this similarity this function will not be
discussed in greater detail and should one desire to learn more about its semantics,
the place to look for is section 3.3.5.3 of the ABI [5].

Global Static Variables

Unlike for local static variables, the ABI does not specify how a compiler or the
runtime should handle the initialization of global variables with static storage.
According to [2, Section 3.6.2 (4)], it is implementation defined whether the
initialization of a non-local variable with static storage is done before the first
statement in the main function or whether it is deferred to some point in time
after the first statement of main3

Fortunately, both GCC and Clang store the initialization procedures in the
ELF header of the generated binary file. This means that the task of global
static variable initialization is not handled by the compiler nor by the runtime
library, but by the program loader of the system, which parses the ELF header
of the binary file being executed. Currently, the HelenOS program loader does
not parse either of the ELF sections used to store initialization routines (called
.init array and .ctors), however GCC provides symbols that refer to arrays
that represent these routines. This means that instead of extending the program
loader in HelenOS to parse them from the ELF header, we could simply refer to
these arrays from within the startup function of libc (the associated destructor

3That is, as long as such initialization happens before the first use of any function or variable
defined in the same translation unit as the variable being initialized.

9

functions are registered similarly to those of static local variables).

2.1.3 Exception Support

The ABI defines two levels of the stack unwinding interface4. The first level is a
language agnostic unwinding library, which can be used to implement exception
support (such as that in C++) or e. g. the longjmp function in the C standard li-
brary. Functions and types included in this level range from register manipulation
to raising exceptions to the actual biphasic unwinding process (stack search and
actual unwinding, note that C++ does not require two phases in the unwinding
process, but the ABI requires their presence for C++ to be able to coexist with
other languages on the stack). The second level describes C++ specific parts of
the unwinding process, including data allocation, deallocation, initialization and
layout in memory.

Between the two levels the ABI defines personality routines. These are func-
tions that are called for each stack frame during the unwinding process and serve
as a mediator between the language agnostic unwinding library and the language
specific exception support library defined in the second level.

While it stands to reason we would need to implement the second level as
part of our implementation, the first level is not necessarily a part of only the
C++ runtime and thus often exists as a separate entity. The version of HelenOS for
which we wrote our implementation, however, does not offer any implementation
of the level one unwinding interface.

2.1.4 Conclusion

Now that we have examined what it entails to implement the different parts of
the C++ runtime, what remains is to decide which of these features we will be
writing as part of our implementation:

RTTI

To support RTTI, the implementation needs to contain the definition of several
simple structures that act as specialized type infos for different classes of types.
Additionally, the implementation of a single function (dynamic cast) is also
needed.

Since the implementation of the type info derivatives is fairly simple and the
dynamic cast operator is one of the C++ conversion operators 5 which allows us
to convert between polymorphic objects in a safe manner, we decided to include
this module in our implementation.

Local Static Variables

While trivial in implementation complexity, this feature enables programmers to
make use of the so called Meyers singleton [6]. This technique, an example of
which can be seen in Listing 6, represents an easy way to implement instances
of the singleton design pattern that have lazy and thread safe initialization. For

4It actually defines three levels, but the third level represents suggestions for implementation.
5The others being static cast, reinterpret cast and const cast.

10

this reason alone we find the inclusion of this feature in our runtime library to be
worth the effort of implementing it and will be including it in our implementation.

class Singleton

{

// Disable instantiation and copy.

Singleton() = default;
Singleton(const Singleton&) = delete;
Singleton& operator=(const Singleton&) = delete;

public:
static Singleton& instance()

{

// Initialized when control first reaches this place,

// lives for the entirety of the program runtime.

static Singleton inst{};

return inst;

}

};

Listing 6: A minimalistic example of the Meyers singleton.

Global Static Variables

This feature of the runtime library explicitly requires us to modify existing C
code in HelenOS, specifically the program loader and ELF parser. Fortunately, a
previous thesis [7] implemented a GCC specific extension for the C programming
language that allows program to denote functions as constructors and destructors
(which then act in the same way as constructors and destructors of global static
variables in C++ do). Both C++ and C constructors are stored in the .init array

sections of the ELF header, so we can use this thesis as a referential implemen-
tation. However, C++ and C destructors do not function the same according to
the ABI, because the C destructors are stored in another ELF section (called
.fini array) and C++ destructors are registered to the C++ runtime equivalent of
the C standard atexit function when the relevant constructor is executed.

This also implies that the support for C++ destructors of global static variables
requires C++ specific code inside the program loader of HelenOS. Since the loader
will be the same for both C and C++ programs in HelenOS, we would need a way
to call functionality of the C++ runtime library in a program loader designed to
support only C programs. This can be achieved by using the C standard function
atexit (by registering the C++ finalization function the first time a destructor
is registered with it) which, however, is not part of the standard C library in
HelenOS and would thus require implementation.

While the scope of the implementation of this feature is non-trivial and re-
quires us to invade existing HelenOS ecosystem, some objects in the C++ standard
library rely on it. This includes the cin and cout objects used for standard I/O op-
erations which, as we will see in Section 2.2, are commonly used in C++ programs.

11

Without the implementation of this feature, these basic objects would not func-
tion properly (in the least they would not be able to reference each other for the
sake of I/O synchronization). Because of this, we think that the implementation
of this C++ runtime feature is a necessity and will be including it in our runtime
library.

Exception Support

The implementation of stack unwinding support is a much larger endeavor than
the implementation of the remaining parts of the runtime library both in com-
plexity (a much lower level approach not unified across architectures6) and in
size. When we started our work on this project, there were efforts to implement
a HelenOS specific compilation target for GCC that would potentially allow us to
use the level one unwinding implementation of libgcc. This compilation target
has been finished [8] during the implementation of our runtime, but only for a
newer version of HelenOS and not for the one our project was based on. If we
were to use this implementation, we would be able to avoid most, if not all, archi-
tecture specific parts of the stack unwinding functionality, but it would require
us to rebase our code base and we would still need to implement the C++ specific
part of stack unwinding.

Additionally, a recent developer survey [9] indicated that over half of over 3000
developers reported exceptions being either partially (32.10%) or fully (20.03%)
disallowed in either work or school projects they were working on. Because of
this and the non-triviality of the implementation, we decided to not implement
the exception unwinding API in our runtime library as part of the project and
leave that for future work.

2.2 Standard Library

The standard library of a programming language provides users of that language
with utilities used in software development that need not be a part of the language
itself and have been deemed by the designers of the language to be of such use that
they should be available to each and every program written in the given language.
Unlike the runtime library, which generally does not provide its functionality to
the users via a public interface, the standard library of a programming language
follows well-defined signatures and semantics of all functions and types it consists
of.

Similarly to the runtime library, the implementation of an entire standard
compliant library is out of the scope of this thesis (the library is defined in over
700 pages [10] of the standard). Because of this, we will examine the contents of
the standard library and decide what subset of it we will be implementing in this
thesis in the following sections.

2.2.1 Library Statistic

In order to be able to determine which components of the standard library should
be included in our implementation, we need to find a suitable metric that will

6For example the ARM architectures require a different unwinder.

12

allow us to compare them. While we cannot predict which parts of the library will
be used in programs that are yet to be written, we can analyze how often they
are used in existing programs by scanning existing public code bases. The source
of these code bases for us will be GitHub, a web-based code hosting service which
hosts almost 57 million repositories and is used by almost 20 million users [11]
(and is also the platform that HelenOS itself is hosted on).

For simplicity, we will discuss the merit of the different parts of the library in
the scope of the individual headers as defined by the standard. Besides granting
simplicity, this approach lets us avoid missing intra-header dependencies which
would not be easily spotted if we used a symbol based statistic. However, in
addition to intra-header dependencies, we need to take into account inter-header
dependencies. These are sometimes explicitly stated in the standard, but in some
cases might not be noticeable from reading the standard itself. For example, the
<ios> header contains the types ios base and basic ios, which serve as base
classes for most of the other types in the I/O library module. Because these types
are seldom useable on their own, however, this header is not included by projects
as commonly as other I/O headers. To also minimize our chances to miss these
inter-header dependencies, we will also compare entire modules of the library (as
defined in the standard with some exception as will be noted in Section 2.2.3)
and then compare headers within those modules.

The statistic, which will be explored in the following sections, is based on
the data from 270 popular repositories7 written primarily in the C++ language
(enough so that the repositories get listed when one filters search results by this
language). Every considered header from the standard library was assigned a
numeric counter that represents the rate of inclusions in these projects. In each
of the searched repositories, we have scanned all files that contain C++ source
code (based on common C++ source file extensions [12]). For each of these files,
we incremented a header’s counter if it was included. Note that this means
that each project can contribute to any inclusion counter by adding at most one
and thus large projects will not overshadow small projects (the analyzed projects
range from hundreds to hundreds of thousands of lines of code).

Any and all of the scripts used to generate plots presented in the following
sections can be found as attachments of the electronic version of this thesis and
will be listed and described in the Attachments section.

2.2.2 Standard C Headers

Before we start investigating the different headers that the standard library
contains, we must note that [2, Section 17.2] requires us to include (slightly
modified) headers from the standard C library. These headers are available to
C++ programmers via the use of special wrapping headers that are prefixed with
the letter c and do not have an extension (e. g. <cstdio> is the C++ version of
the standard C header <stdio.h>).

Note that while the standard requires minor modifications to these headers
(such as omitting the restrict keyword or explicitly requiring C linkage from the

7This (seemingly arbitrary) number is based on the limit for unauthenticated requests to
the GitHub API and ensures that any of our readers can get the same amount in one execution
of our scripts.

13

compiler), the actual contents are dependent entirely on the standard C library
implementation. As we have mentioned before, this library in HelenOS is not
standard compliant, which means that some features of the library are missing,
have different signatures or different semantics.

Because of this, we will not be including any of these headers in our research
and will implement wrappers for those of these headers that are present in the
HelenOS standard C library.

2.2.3 Modules

The standard defines 13 library modules that group individual header files to-
gether based on their common purpose and use. As previously mentioned, we
decide to examine the standard library at the module level and then compare
individual headers inside each module in order to decide which header files we
will be providing as part of our implementation. The reason for this was that
header files in the same module might use the same utility functions (e. g. two
containers, albeit representing data in different ways, will use similar tools such as
algorithms, iterator related functions and types and type traits) and use the same
base types (e. g. in the case of the I/O module, a special header is provided that
contains base classes used by other I/O types that are seldom used for different
goals and as such their headers might not be included as often).

An added bonus of this approach is that by assuming relationships between
headers within a module, we reduce the complexity of checking for actual depen-
dencies (which can be then done within each module instead between each pair
of headers in the library).

The modules, as defined by the standard, are8:

• Language support library [2, Section 18] contains most of the C library
wrappers as well as C++ specific headers such as generic limits, dynamic
allocation operators and basic exception types.

• Diagnostics library [2, Section 19] contains commonly used concrete excep-
tion classes and exception wrappers for system specific errors as well as C
error handling facilities (<cerrno> and <cassert>).

• General utilities library [2, Section 20] contains, as the name suggests, gen-
eral utilities for C++ programs such as basic data structures (pairs and
tuples), memory management traits and types, smart pointers, function
objects and time utilities.

• Strings library [2, Section 21] contains the basic template for strings and
wrappers around the null-terminated character sequence utility headers
from the C standard library.

• Localization library [2, Section 22] contains facilities for programs to be
agnostic of cultural differences, including character classifications, date and
time representation, currencies and numeric parsing.

8Note that the features listed here are not exhaustive.

14

• Containers library [2, Section 23] contains basic types used to hold user
provided data in both sequential and associative fashion as well as adaptors
for these types.

• Iterators library [2, Section 24] contains generic iterators that work on
streams or traverse data differently from container iterators, traits and it-
erator adaptors.

• Algorithms library [2, Section 25] contains library provided algorithms that
can be used on (not only) user provided sequences of data.

• Numerics library [2, Section 26] contains numeric algorithms, complex num-
bers and operations with complex numbers and facilities for pseudorandom
number generation.

• Input/Output library [2, Section 27] contains basic stream types that oper-
ate on strings and files as well as instances of these streams that manipulate
standard input and output provided by the operating system.

• Regular expressions library [2, Section 28] contains types and function used
for operations that involve regular expression matching and searching.

• Atomic operations library [2, Section 29] contains objects that provide
atomic access to data.

• Thread support library [2, Section 30] contains types and functions used to
create and manage threads, perform mutual exclusion and wait for condi-
tions to be met.

In addition to excluding the C library headers from our statistic, we will also
be excluding the first module, Language support library. We do this because
twelve headers in this module are C library headers, two are part of the runtime
library (<typeinfo> and <new>), one provides a generic wrapper over C type
limits (<limits>) and is crucial to many templates defined across the library
and one is integral for the construction and many member functions of almost all
containers in the library (<initializer list>). Only one header, <exception>,
is neither part of the library nor crucial to other modules. However, it is an
important part of the Diagnostics library (because it contains its base classes)
and thus we decided to move this header to that module for the purposes of our
statistic.

Figure 2.1 displays inclusion counts of all headers included in the research.
In it, the modules fall into three distinct categories: modules with over 800
inclusions, modules with inclusions between 200 and 400 and modules with less
than 200 inclusions. While these numbers may be influenced by the number of
headers in each module, this comparison implies possible dependencies and cases
of code reusability and lets us examine each of the modules without worrying
ourselves with every possible dependency (i. e. providing a heuristic).

Because it is not easy to assess the complexity of implementing each header
or module (and explicitly state which headers will get implemented) due to the
size of the library as defined by the standard, we will assign priorities to each
module determining how important it is for us to be a part of our standard library.

15

c
o

n
ta

in
e

rs io

u
ti
lit

ie
s

th
re

a
d

s

d
ia

g
n

o
s
ti
c
s

a
lg

o
ri

th
m

s

s
tr

in
g

s

n
u

m
e

ri
c
s

it
e

ra
to

rs

a
to

m
ic

s

lo
c
a

liz
a

ti
o

n

re
g

e
x

Library Modules

#
 o

f
in

c
lu

s
io

n
s

0

200

400

600

800

1000

1200

Figure 2.1: Inclusion counts of headers grouped into modules as defined in the
standard.

We will do this by using the previously mentioned three categories – this would
mean that modules that had over 800 inclusions would have the highest priority,
modules that had between 200 and 400 inclusions would have medium priority
and modules that had less than 200 inclusions would have the lowest priority.

In the following sections, we will go over each of the modules and the inclusion
numbers of their headers, examining the importance of each header within a
given module. We will also possibly alter the priorities mentioned in the previous
paragraph if we find any important inter-module dependencies.

2.2.4 Containers Library

This module contains data structures and their adaptors that are used to store
objects9 provided by the users of the library. The standard defines three categories

9Note that we use the term object to refer to an instance of a type, i. e. not an instance of
user defined type (e. g. a class) as is common in object oriented languages.

16

of containers:

• Sequence containers, which organize objects stored in them into a linear
arrangement.

• Associative containers, which store pairs of keys and values either ordered
or unordered by the keys.

• Container adaptors, which wrap around a different container and provide
additional features.

Each of the first three categories provides a unique way of representing data
and as such we should implement containers belonging to all three of them in order
to satisfy all the needs the users of our library might have. Container adaptors,
on the other hand, each cater to a different need. However, these adaptors are
simple wrappers around containers from the first three categories and thus their
implementation is much simpler.

Sequence Containers

The standard defines the following sequence containers:

• array: A fixed sized array that has a size known at compile time.

• deque: A double ended queue, allowing insertions and deletions at the be-
ginning and the end.

• forward list: A singly linked list.

• list: A doubly linked list.

• vector: An array of objects that expands as needed.

One of the things we have to keep in mind while comparing the different sym-
bols defined by the standard is whether we can easily replace them with another
symbol should we decide to not implement them. Out of the containers listed
above, array, vector and deque are random access containers, i. e. can be index-
accessed in constant time. The remaining containers, list and forward list, are
only forward containers, which means that in order to reach a certain element,
we need to iterate over its predecessors in the sequence.

In the set of random access containers, deque differs from the remaining con-
tainers by not being contiguously allocated in memory (this is implied by the
standard requiring references into the container not being invalidated during in-
sertion at either end) which makes it a combination of the vector and list

container. The remaining two random access containers are very similar to each
other with vector being able to act as array while also being able to grow in size
as needed. However, the array container is a thin wrapper over a C style array
and as such is fairly easy to implement.

The list and forward list behave similarly to each other, the only major
differences between the two being that forward list only keeps pointers to nodes
in only one direction (which makes it more lightweight and more suitable for envi-
ronments with lower amount of memory) and the notion of before begin iterators,

17

which can not be dereferenced and their increment returns iterators that compare
equal to iterators returned by the begin member function of the forward list

instance. Because optimization is not our primary goal, the first difference is
unimportant to us. The second difference can be dealt with using either adaptor
iterators on list iterators or modifying the algorithms in ported code to not use
the before begin iterators. This means that the forward list container is not as
important because we can substitute its use for list.

Associative Containers

Container Stores Keys
map key + value unique
multimap key + value equivalent
set key unique
multiset key equivalent

Figure 2.2: Differences between associative containers.

The standard defines four different associative containers, each in an ordered
and an unordered variant, giving us eight in total. The basic differences of these
containers (ignoring whether a container is ordered) can be seen in Figure 2.2.
Associative containers provide us with the ability to associate a value with a key.
This value can be either an actual value (in which case the container stores a key
value pair) or the existence of such key (in which case the container contains only
keys).

The keys in an associative container can be either unique, in which case adding
a key that is already present in the container fails, or equivalent, which allows
multiple values associated to a single key (or multiple ”existences” of a key in
containers that do not associate actual values to keys). The containers with equiv-
alent keys behave similarly to those with unique keys. This holds especially in
the case of set and multiset, because their interfaces are nearly identical. While
multimap could in theory be used in the place of map, the latter has member func-
tions unique to it, including a commonly used overloaded operator[]. However,
the similar interfaces of these four containers potentially allow us to implement
them as adaptors over one generic base container, making the implementation
easier.

As we previously mentioned, each of these four containers is defined in two
variants – one with its elements ordered and one with its elements unordered.
While these two variants differ in their interfaces, their basic behavior is very
similar and as such one could be used in place of the other. But even so, both
of these variants can be implemented using two generic base containers in which
case we would get eight containers for the price of two.

Container Adaptors

Container adaptors are used to provide a specific interface using an underlying
container for implementation. Because of this, they are just thin wrappers over
existing containers. The standard defines three container adaptors in the con-
tainers library – queue, stack and priority queue. The former two can use nearly

18

ve
c
to

r

m
a

p

s
e

t

lis
t

u
n

o
rd

e
re

d
_

m
a

p

q
u

e
u

e

d
e

q
u

e

a
rr

a
y

u
n

o
rd

e
re

d
_

s
e

t

s
ta

c
k

fo
rw

a
rd

_
lis

t

Containers Library

#
 o

f
in

c
lu

s
io

n
s

0

50

100

150

200

Figure 2.3: Inclusion counts of headers from the containers module.

any sequential container, but the latter requires a heap like behavior (possibly
using the heap management functions from the <algorithm> header). Despite
this inter-module dependency, all three types are small (when compared to the
rest of the module) and would provide our library additional features at low cost.

Conclusion

In our examinations of the individual containers we deemed most of the containers
worthy of implementation due to them either being unique in their behavior, easy
to implement or able to be implemented as a group. The only container that did
not present itself as being important was forward list and the inclusion counts,
shown in Figure 2.3, support our decision to assign its implementation a lower
priority.

19

2.2.5 Input/Output Library

The I/O library, as its name implies, provides its users with means to manipulate
input and output from and to files (<fstream>), strings (<sstream>) and stan-
dard streams (e. g. stdin or stdout via <iostream>). Additionally, this module
provides functions and types used to manipulate these I/O facilities as well as
means to customize or create new streams (via <streambuf>).

ios_base

basic_ios
<CharT, Traits>

basic_istream
<CharT, Traits>

basic_ifstream
<CharT, Traits>

basic_istringstream
<CharT, Traits>

basic_ostream
<CharT, Traits>

basic_ofstream
<CharT, Traits>

basic_ostringstream
<CharT, Traits>

basic_fstream
<CharT, Traits>

basic_stringstream
<CharT, Traits>

basic_iostream
<CharT, Traits>

Figure 2.4: Inheritance hierarchy of the I/O streams. (Source: cppreference.com)

This module is the only one in the standard library that relies heavily on
inheritance and runtime polymorphism. Highest in the inheritance hierarchy,
which can be seen in Figure 2.4, are ios base (which focuses on flags and state
monitoring of the derived I/O types) and basic ios (which focuses on stream
buffers, utility member functions and encoding specific conversions). Both of
these types are defined in the header <ios> and are not very usable on their
own. This is an example of a header that is not important to the users of the
standard library (except for cases where they want to derive from them), but is
a crucial intra-module dependency.

On the next level of the inheritance hierarchy, the standard defines two types,
basic ostream and basic istream, which add stream operators and member func-
tions for input and output manipulation. These types on their own are capable
of managing the input and output of a program (the cout and cin objects are
instances of these types), but get rarely included because the standard provided
stdout and stdin streams are included via the <iostream> header (though they
are still usable by programmers that want to inherit from these types).

The remaining types (string based streams and file based streams) utilize the
input/output functionality of the iostream types and extend it primarily with
custom constructors (used to specify a file to open with opening flags or a string
buffer used). As such should be fairly easily implementable in comparison.

20

Besides this inheritance hierarchy, the behavior of the I/O types can be
changed by the usage of different streams. The base class that streams derive
from, basic streambuf, is defined in <streambuf>. Besides this base class, the
standard defines string based and file based derived types (basic stringbuf in
<sstream> and basic filebuf in <fstream>). Additionally, although not de-
fined explicitly, special stream buffers may be required for stdout, stdin and
stderr.

Outside of these I/O types, this module contains the header<iomanip>, which
offers manipulator functions used to manipulate the input or output via over-
loaded stream operators. Each of the manipulators returns a special function
object that changes the state of the I/O type it has been passed to. The stan-
dard defines three categories of manipulators:

• Standard manipulators, which change the flags and state (e. g. precision, fill
or width) of the I/O types.

• Extended manipulators, which allow for the input and output of locale
dependent currencies and times.

• Quoted manipulators, which allow for the input and output of quoted
strings.

The latter two categories of manipulators are locale dependent and as such
their inclusion depends on our decision to include the localization library, but
the standard manipulators offer a wide range of I/O manipulation at the cost of
defining few simple function objects (the state and flag manipulation features are
already provided by the types ios base and basic ios).

The last header defined in this module is <iosfwd>, which serves as a sim-
ple forward declaration of each of the I/O types to avoid circular dependency
problems in the implementation of the other headers. Because of this, the im-
portance of this header is highly tied to the importance of the other headers and
the difficulty of the implementation of this header is miniscule.

In Figure 2.5, we can see the inclusion counts for the aforementioned headers in
this module. Most included headers consist of the three that define the commonly
used I/O objects (<iostream>) and I/O types (<sstream> and <fstream>).
These three headers are tailed by the I/O manipulator functions defined in
<iomanip>. The remaining headers are all dependencies of the first three and
have nearly identical inclusion counts (with the exception of <ostream>, which is
helpful in the creation of e. g. logging I/O types which may cause it to be included
more often).

Because of this, we decided to keep the high priority of these headers given
by their existence in the second most commonly used module, with the possi-
ble exception of the extended and quoted manipulators from <iomanip>, whose
priority is bound to the priority of the localization module.

2.2.6 General Utilities Library

Through the general utilities module of the standard library, C++ provides its
programmers a wide variety of auxiliary types and functions. Due to the varied

21

io
s
tr

e
a

m

s
s
tr

e
a

m

fs
tr

e
a

m

io
m

a
n

ip

o
s
tr

e
a

m

is
tr

e
a

m

s
tr

e
a

m
b
u

f

io
s

io
s
fw

d

Input/Output Library

#
 o

f
in

c
lu

s
io

n
s

0

50

100

150

200

Figure 2.5: Inclusion counts of headers from the I/O module.

nature of the headers defined by this module, we will now examine each individual
header in the order as defined by the standard primarily by listing their main
contents10:

• <utility>: class template pair, auxiliary functions supporting semantics
like moving and forwarding, compile time integer sequences (used to imple-
ment e. g. tuple)

• <tuple>: a compile time heterogeneous container

• <bitset>: a bit sequence with size known at compile time

• <memory>: allocator, allocator traits, pointer traits, smart pointers

• <functional>: reference wrappers, basic arithmetic and logic functors,
function object wrappers and bind expressions, class template hash

10Note that more detailed information will be presented along with developer’s documentation
in Section 3

22

• <type traits>: metafunctions used to test type characteristics and trans-
form types at compile time

• <ratio>: compile time rational arithmetic

• <chrono>: time measuring capabilities (relying heavily on<ratio> in their
implementation)

• <scoped allocator>: an allocator adaptor that can be used with nested
containers

• <typeindex>: a type info wrapper that can be used as key in associative
containers

m
e

m
o

ry

fu
n

c
ti
o

n
a

l

u
ti
lit

y

c
h

ro
n

o

tu
p

le

ty
p

e
_

tr
a

it
s

b
it
s
e

t

ty
p

e
in

d
e
x

ra
ti
o

s
c
o

p
e

d
_

a
llo

c
a

to
r

General Utilities Library

#
 o

f
in

c
lu

s
io

n
s

0

50

100

150

Figure 2.6: Inclusion counts of headers from the utility module.

Figure 2.6 presents us with the inclusion counts of the individual headers from
this module. Five of the six most included headers have all great importance to
the rest of the standard library (<memory>, <functional> and <utility> pri-
marily for containers, <tuple> for any cases where we need to store a heteroge-
neous sequence of variables and <type traits> whenever conditional compilation

23

is needed). These five and the sixth (<chrono>) due to its inclusion count deserve
the high priority of implementation this module’s total inclusion counts warrant.
The remaining four headers are of more variable use, so we will go over them
individually:

• <bitset>: has no use in the rest of the library explicitly stated in the
standard and as such we assign it only a medium priority

• <typeindex>: similarly to <bitset> it is not required to implement any
other parts of the library and it is included by user code even less than
<bitset>, but it is only a simple wrapper over type info and as such we
also assigned it a medium priority

• <ratio>: is a crucial dependency of <chrono> which uses it for time unit
representation and conversions, it is also fairly small header and we decided
to keep it in the high priority group

• <scoped allocator>: is not used by any other header in the standard
library and has the lowest inclusion count out of all of the standard headers,
so we decided to assign it a low priority

2.2.7 Thread Support Library

The standard threading library provides C++ programmers with means to run
code concurrently using threads. Unlike most of the other modules, this one
tends to be implemented as a wrapper over system specific threading API. This
means that in order to be able to implement headers in this module, we need an
appropriate libc feature to wrap them around.

The threading support in HelenOS is provided through the fibril API. Be-
sides the actual threading primitive, common synchronization primitives such as
mutexes (which can be used to implement <mutex>), read write locks (which,
despite the naming difference, function in a similar way as locks found in the
standard header <shared mutex>) and conditional variables (used to implement
<condition variable>).

The only missing feature required by the standard library are promises and
futures from the <future> header. Those, however, can be implemented from
scratch, although their implementation will then be much harder than the rest of
the module.

Given the usability of the features provided by this module and the relative
ease of their implementation, this module should be high on our priority list
(possibly excluding <future> due to the aforementioned difficulties and leaving
it at a medium priority).

2.2.8 Diagnostics Library

The diagnostics library consists of two main part (excluding the C wrapper head-
ers): exception handling support features contained in the header <exception>
and exception classes contained in the headers <stdexcept> (generic exception
types) and <system error> (wrappers around system specific error codes and
conditions).

24

th
re

a
d

m
u

te
x

c
o

n
d

it
io

n
_

v
a

ri
a

b
le

fu
tu

re

s
h

a
re

d
_

m
u

te
x

Thread Support Library

#
 o

f
in

c
lu

s
io

n
s

0

20

40

60

80

100

120

Figure 2.7: Inclusion counts of headers from the thread support module.

Since we are not planning to implement exception handling support in this
project, one might think this library module will not be included either. However,
while we can turn off exception support through the use of a compiler flag, any
project that uses exception related features would fail to compile. This obstacle
can be surpassed by redefining exception related keywords such as try, catch and
throw by macros.

Even if we redefine these keywords, though, usage of the throw keyword that
uses an exception object that is either from the standard library or derives one
of the standard exception object would still fail to compile. Because of this, it
would be beneficial to implement these objects at least in the form of stubs (i. e.
implement their interface but have their members do nothing).

2.2.9 Localization Library

The localization module of the standard library provides programs written in
C++ with ways to overcome cultural differences such as character sets, currencies,
date formats and the textual representation of numbers. These features are acces-

25

sible through the standard headers <locale>, which contains tools to represent
most of the culture specific data mentioned previously, and <codecvt>, which
contains functions that can be used to convert strings between different character
sets. Note that the latter header has been deprecated as of C++ 17, so when we
talk about the importance of this module, we refer to the former header alone.

While the ability to represent data in a culturally appropriate way is a com-
mon requirement for contemporary software, HelenOS itself does not offer full
localization support and such support is not that important for porting programs
to it. That being said, the C++ standard requires other modules (such as the I/O
module) to be locale aware and describes some of their operations using types
and functions from the <locale> header. While it would be possible to write
these parts of the library without using this header, future implementation of this
module would require extensive refactoring in the library’s source code.

Because of this, even if we do not implement this module we should imple-
ment a place-keeping version of it that has the required interface, but performs
no or limited logic. By doing this, we make sure that when and if the later im-
plementation is done, no significant changes to the code outside this module are
required.

2.2.10 Numerics Library

This module includes, besides wrappers for math related C wrappers, the support
for numeric algorithms, pseudorandom number generation, complex numbers and
numeric arrays (vectors that have element-wise mathematical operations). As we
can see in the inclusion graph in Figure 2.8, the latter two headers are seldom
included. The former two headers were included in about a third of the projects,
but both numeric algorithms (of which there are only five not counting overloads)
can fairly easily be implemented when a ported program requires them.

The ease of implementation of <numeric> stems from the algorithms being
in most cases simple iterations over collections performing a mathematical oper-
ation. In the case of <random>, the defined API is not as simple, but most of
its functions and types serve for distribution and randomness purposes and as
such can be substituted with the C standard library facilities at the cost of only
skewing the results. These characteristics of the module lead to it having a lower
priority than the joint inclusion count of its headers would imply.

2.2.11 Remaining Library Modules

The modules of the standard library we have inspected so far consisted of multiple
headers. This meant that in each case we had the possibility to change the
priorities on a per-header basis. The remaining modules all consist of a single
header and as such do not warrant the need for a closer inspection similarly to
what we did in the previous sections. These modules are:

• Algorithms library contains functions that allow their users to provide al-
gorithmic operations on containers. Similarly to the <numeric> header,
these often consist of an iteration over an iterator range and applying an
operation to each element. This means that, in many cases, these functions
can be implemented as they are needed for porting on an individual basis

26

n
u

m
e

ri
c

ra
n

d
o

m

c
o

m
p

le
x

va
la

rr
a
y

Numerics Library

#
 o

f
in

c
lu

s
io

n
s

0

20

40

60

80

Figure 2.8: Inclusion counts of headers from the numerics module.

in a fairly short amount of time. However, they are often used in different
places in the rest of the standard library and as such we decided to apply
a lazy approach to the implementation of this module. This means that,
while assigning it a low priority, some of the algorithms will be implemented
as they are needed elsewhere.

• Atomic operations library provides wrappers around primitive types that
allow atomic access and modification to the underlying values. The features
of this module are generally implemented through the means of compiler
APIs for atomic operations (such as the atomic * functions provided by
GCC). Because of this and the relative verbosity of this module, we decided
to assign it a lower priority than its inclusion count would indicate.

• Iterators library contains types and functions used to support iteration over
containers such as iterator adapters and iterator traits. Many of the con-
tainers (and other facilities) in the standard library and as such we think
this module (or at least the parts used by the rest of the library) should
have a high priority.

27

• Regular expressions library contains features that allow C++ programs to
match and search for regular expressions. This module was the least in-
cluded of all of the standard library modules we checked. While the reasons
for this lowest position are unknown to us, the low inclusion count and the
availability of various regular expression libraries (such as Boost.Regex [13])
caused us to keep the low priority of this module.

• Strings library provides the string type, which acts as an expandable wrap-
per around plain C strings (pointer to an array of characters) that manages
the lifetime of the underlying array and keeps its length to avoid accidental
access to memory behind the end of the underlying array. Not only because
of these characteristics has this type or its equivalents from other languages
been extensively used. Because of this, we think that it should have a high
priority.

2.2.12 Conclusion

Header or module Count
Containers 1317
I/O 1017
Utilities 804
Threads 329
Strings 229
Iterators 131

Figure 2.9: High priority headers
and modules.

Header or module Count
Diagnostics (stub) 254
Localization (stub) 82
<bitset> 49
<future> 44
<typeindex> 18

Figure 2.10: Medium priority head-
ers and modules.

Header or module Count
Algorithms (lazy) 231
Numerics 228
Atomics 97
Regular expressions 63
<forward list> 25
<scoped allocator> 3

Figure 2.11: Low priority headers and modules.

We have now examined the different modules contained in the C++ standard
library in order to determine the priority of each of the modules’ implementation
for the purposes of porting programs written in C++ to HelenOS. Figures 2.9, 2.10
and 2.11 show the division into three priority groups we have created (along with
the summed inclusion counts in the case of modules and inclusion counts in the
case of headers).

As one can see, we have modified the priority of five headers that we did not
find to share the same level of importance with the other headers in their modules
and in three cases we have decided to implement modules either as stubs (i. e.
with limited or no functionality just for the sake of compilation) or in a lazy

28

way (i. e. implementing their functionality as it is needed by other parts of the
library).

We have originally set the priorities by the summed inclusion counts of the
modules’ headers. These counts were over 800 for the high priority group, between
200 and 400 for the medium priority group and under 200 for the low priority
group. As one can see, the final priority group memberships violate these ranges
quite often. This points out that this initial division was indeed just a heuristic
and our closer inspection was justified.

29

3. Design and Implementation

In this section, we will focus on documenting both the runtime and standard
library. However, both the API and the semantics of these libraries are already
defined by the standard and the Itanium ABI. Because of this, we will prioritize
the documentation of those parts of these two libraries that are not mentioned
in either document (and thus might be HelenOS specific). This includes the
explanation of some advanced C++ concepts that are needed to understand and
possibly maintain the code base should the need arise.

3.1 Template Metaprogramming

One of the concepts that is used heavily throughout the standard library is tem-
plate metaprogramming, i. e. using C++ templates to generate, modify or remove
code at compile time. Its use ranges from simple things such as disabling parts
of code unless the template parameters of that code have some specific attribute
(e. g. the parameter is integral) to more advanced techniques such as trait types
that offer default member types for their template parameters.

However, these advanced topics are commonly left out of the university cur-
riculum when it comes to C++ related subjects, possibly due to their complexity
and less than usual usability in the industry. Because of this, the following sec-
tions introduce some key template metaprogramming features that are needed in
order to efficiently implement the C++ standard library. Note, however, that they
are not meant to be a comprehensive introduction to the subject – they serve
merely to make any special tricks that may follow more readable. For a more in-
depth explanation, see Walter E. Brown’s presentation at CppCon 2014 [14] [15],
which these following sections are loosely based on.

3.1.1 Metafunctions

One of the reasons that some find template metaprogramming complex might
be that by doing it we are essentially abusing a language feature for something
it was not intended for. Templates were originally created to serve as means to
write generic code and thus avoid code repetition and bad extensibility.

For example, in regular C++ code we would enclose a reusable piece of logic
in a function. However, in the world of template metaprogramming (and prior to
the addition of constexpr functions in the world of compile time programming
in general) we do not have the ability to use functions. That is because template
metaprogramming is programming with types. Instead of functions, we use so
called metafunctions. There are two commonly used kinds of metafunctions –
those that return types and those that return values.

In Listing 7, we can see both of the aforementioned types of metafunctions.
As one might notice, the language does not offer a way for us to return something
from a metafunction. Returning here is performed by following conventions, i. e.
in the case of a type returning metafunction, we can access the result through
the type member type alias, and in the case of a value returning metafunction,
we can access the result through the value static data member. Other than

30

template<class T>

struct add_reference

{

using type = T&;

};

template<int x>

struct return_double

{

static constexpr int value = 2 * x;

};

Listing 7: Examples of a metafunction that returns a type and a metafunction
that returns a value.

adhering to these conventions, nothing distinguishes these metafunctions from
ordinary templates.

Through these simple conventions, we can create basic metafunctions. How-
ever, in order to write more complex metafunctions, we need the ability to make
decisions at compile time. The template language contains three features that
help us in this regard – SFINAE, pattern matching and recursion.

3.1.2 Pattern Matching and SFINAE

The ability to use pattern matching in C++ template metaprogramming can be
achieved through a rule of the language that causes a more specialized tem-
plate to be taken into consideration first in the case of partial specializations [2,
Section 14.5.5.1]. This rule is used in combination with a characteristic of the
language commonly referred to as Substitution Failure Is Not An Error (SFI-
NAE), which means that if the compiler tries to substitute a type into a tem-
plate during resolution and fails, that template (or template specialization) is
silently discarded and the compiler tries another one (a less specialized as was
previously mentioned). Only when no more templates or template specializations
are available to the compiler, the compilation fails.

For example, according to [2, Section 20.7.8.1], the standard allocator traits

structure specialized for a given allocator type A defines a type alias called pointer

as follows:

1. A::pointer if A::pointer is valid and denotes a type

2. A::value type* otherwise

This means that the pointer type alias is optional with a default based on
the mandatory value type type alias. Achieving this is no simple matter, but we
can do so with SFINAE and a concept discovered during the preparation of the
C++ 14 standard called void t.

In Listing 8, we can see that void t is a variadic alias template that for any
given list of types always acts as an alias to the void type. The choice of void was

31

// include/__bits/type_traits/type_traits.hpp

template<class...>
using void_t = void;

Listing 8: Definition of void t.

an arbitrary one made by the original author of the type [15]. What it is aliasing
does not matter, but it has to be a primitive and predictable type. This template
allows us to move some expressions into the process of template resolution by
using the type of these expressions (such as e. g. using the decltype operator) as
its template parameter.

template<class A, class = void>
struct get_pointer

{

using type = typename A::value_type*;

};

template<class A>

struct get_pointer<

A, void_t<typename A::pointer>

>

{

using type = typename A::pointer;

};

template<class A>

struct allocator_traits

{

using pointer = typename get_pointer<A>::type;

/* ... */

};

Listing 9: Implementation of the pointer default.

In Listing 9, we can see the implementation of the aforementioned default
value for the pointer in allocator traits. It does so through the auxiliary
metafunction get pointer which is defined as follows:

1. Base template – for a given type A, return A::value type*.

2. Specialisation for type A, for which A::pointer is defined and is a type –
for the given type A, return A::pointer.

If typename A::pointer fails during substitution, the compiler discards this
specialization and moves to the less specialized base template. SFINAE takes
effect here because we injected the alias expression into the template resolution
process by using it as a template parameter to void t.

32

3.1.3 Recursion

Template metaprogramming behaves similarly to functional programming. Be-
cause of this, we need to use recursion in combination with pattern matching to
achieve more complex tasks.

// include/__bits/tuple/tuple.hpp

template<size_t I, class T, class... Ts>

struct type_at: type_at<I - 1, Ts...> {};

template<class T, class... Ts>

struct type_at<0, T, Ts...>

{

using type = T;

};

Listing 10: Finding a type at a given index in a list of types

In Listing 10, we can see a metafunction the standard library uses to find out
what type is stored at a given index in a tuple. It does so by decrementing a
counter that is initialized as the index we are looking for. At any given step of
expanding these templates, the compiler will first try to use the specialization
where the index is zero and if that is the case, the metafunction returns the
current head of the type list passed to it. If the index is not zero, the compiler
falls back to the base template and the metafunction inherits from itself with a
decremented index and discard the head of the type list, which represents the
recursive call.

3.2 Directory Layout

The runtime is located in the uspace/lib/cpp1 directory. There, the implementa-
tion is split into header files (declarations and templates) in the include directory
and source files (non-templated definitions) in the src directory. Since the stan-
dard library is heavily templated, most of it is implemented in headers.

The standard requires the standard headers to not have any extension (e. g.
<vector> instead of <vector.hpp>). While we do have these headers to conform
with the standard, we decided to not put in them their contents and instead use
them as middle men. The actual headers lie in the bits directory and diverge
from some other implementations (such as the GNU implementation). We did so
primarily for two reasons:

• Language support – the lack of extensions would require any developers
working on this library to set their editors to interpret files without exten-
sions as C++ source files in order to gain language specific features (such as
syntax highlighting).

1Note that, unless starting with uspace/, any path we mention in this section is relative to
that directory for the sake of brevity.

33

// include/functional

#include <__bits/functional/arithmetic_operations.hpp>

#include <__bits/functional/bind.hpp>

#include <__bits/functional/function.hpp>

#include <__bits/functional/functional.hpp>

#include <__bits/functional/invoke.hpp>

#include <__bits/functional/hash.hpp>

#include <__bits/functional/reference_wrapper.hpp>

Listing 11: Example of a standard header file in our library.

• Compilation complexity – the standard groups types and functions in head-
ers by their common purposes and areas of use. While this may be needed
to ease header inclusion selection for the users of the library, it prolongs the
compilation of the library itself as additional types and functions may be
included by a source file when in reality only one is needed. An example
header file (<functional>) can be seen in Figure 11. Here, we have split
the header into seven subheaders, each implementing a single functionality
or a group of closely tied functionalities. Because of this, when e. g. the
bind type is needed by another header in the standard library, we do not
have to also include the function type.

Unlike the header files, the source files are not visible from outside the li-
brary and as such their names, locations and contents are not mandated by the
standard. We decided to mimic the layout of the include directory in the src

directory with the exception of the top level files already containing the imple-
mentation and the bits subdirectory is used for source files that are not directly
related to the standard library (e. g. the runtime library or tests).

3.3 Build System

In order to support compiling C++ programs, we had to modify the build system
of HelenOS and make it aware of C++ source files to prevent them being compiled
as C. Since C++ programs are supported only in the user space as the kernel is
entirely written in C and assembly, we had to modify only the user space makefile
located at uspace/Makefile.common.

The modification itself consisted of two parts: using the correct compiler and
the correct compilation flags. Fortunately for us, the HelenOS build system uses
GNU Make, which allows the use of pattern rules [16]. These generic rules allow
us to use pattern matching (such as by the extension of the file) to apply different
rules to different kinds of files.

Listing 12 shows two examples of these pattern rules, one for a C source file
and one for a C++ source file. In it, Make applies the indented rules depending
on whether the source file being compiled has the .c or the .cpp extension. This
then allows us to use both a different compiler and a different set of compilation
flags.

34

$< = file being compiled

$@ = output file (the object file)

%.o: %.c

$(C_COMPILER) $(C_FLAGS) $< -o $@
%.o: %.cpp

$(CXX_COMPILER) $(CXX_FLAGS) $< -o $@

Listing 12: Examples of pattern rules matching C and C++ source files.

Depending on file extensions means that we are limited only to a set of ex-
tensions. At the time of writing, these are: .cpp, .cc and cxx. Should the need
to add more extensions arise, one can achieve so by simply appending additional
rules at the end of the uspace/Makefile.common file.

Note that since we started working on this project, the upstream HelenOS
repository switched to the Meson build system [17], which eliminated any need
for the workarounds required by GNU Make. Currently, a C++ program being
compiled on an up-to-date version of HelenOS (including our runtime) simply
needs to set the language variable to ’cpp’ in its meson.build file.

3.4 Runtime Library

As mentioned in Section 2, most of the runtime library was implemented in confor-
mance with the ABI and its semantics were already presented as part of the analy-
sis. The implementation of these parts of the runtime library is part of the sources
of the standard library can can be found in the file src/ bits/runtime.cpp.

The initialization of global static variables, however, is not defined by the ABI
and will be detailed here. It is also not part of the C++ standard library source
code as it needs to be executed before a program’s main function is called.

typedef void (*init_array_entry_t)();

typedef void (*fini_array_entry_t)();

extern init_array_entry_t __init_array_start[] __attribute__((weak));

extern init_array_entry_t __init_array_end[] __attribute__((weak));

extern fini_array_entry_t __fini_array_start[] __attribute__((weak));

extern fini_array_entry_t __fini_array_end[] __attribute__((weak));

Listing 13: Declaration of the symbols prepared for us by the compiler that refer
to the initializers and finalizers.

Since the symbols for both the .init array and .fini array are defined by
the compiler, all we had to do to be able to access them was to declare them,
which was done in the file uspace/lib/c/generic/crt/entry.c, as can be seen in
Listing 13. These symbols refer to arrays of pointers to functions that take no
arguments and have no return values.

The functions pointed to by elements of the init array start array are
generated by the compiler and when executed initialize a group of objects (of a
certain type). The functions pointed to by elements of the fini array start

35

array, on the other hand, are not needed for the destructors of C++ objects to
be called because those are registered to a special cxa atexit function by the
generated initializers. The purpose of these functions is to support the destructor
attribute (a GCC extension). We have implemented this functionality because the
related constructor attribute shares its implementation with C++ constructors
and we wanted to avoid bringing only half the functionality to HelenOS (more so
when it was symmetric to the initializers).

When implementing cxa atexit, we could not use the C standard library
function atexit as we need to associate an object to a registered function (that
is to be destroyed). We worked around this by creating a secondary mechanism,
called atexit destructors, that worked like atexit with arguments and the first
call to cxa atexit registers it the first time the function is invoked.

3.5 Standard Library

The following sections focus on describing and explaining our implementation
of the C++ standard library. Given that the public interfaces and semantics of
the library are already described elsewhere (e. g. in the standard or on reference
websites), we will focus primarily on the inner workings of the different types and
functions as well as explaining mechanisms and tricks used to implement them.

Because of this focus, the following library modules will be entirely omitted
as their implementation is often directly mandated by the standard and they do
not require any special techniques:

• Language support library

• Diagnostics library

• Localization library

• Iterators library

• Algorithms library

• Numerics library

Also fully excluded are the two modules we did not implement – Regular
expressions library and Atomic operations library.

Similarly treated are comments present throughout the source code. Instead
of writing documentation comments for every member and non-member function
or type, which can be found in many other publications, the comments focus on
behavior not described by the standards, complex parts of the code and auxiliary
types and functions not mentioned by the standard at all.

3.5.1 Exception Handling

In Section 2.1.3 we decided not to include support for throwing and catching
exception in our runtime library. However, many existing programs written in
C++ and even parts of the standard C++ library make the use of exceptions. If we
were to only disable exception handling as part of the command line arguments

36

to the compiler, such programs would fail to compile and our library would have
to be completely void of any exception related functionality.

To avoid such situation we decided to overwrite the exception handling related
keywords (try, catch and throw) in a manner that allows the code to be compiled
and run successfully unless an exception is actually thrown and abort should a
throwing scenario be encountered.

try
{

/* ... */

}

catch(const std::exception& ex)

{

std::cerr << ex.what() << std::endl;

}

catch(...)
{

std::cerr << "Unidentified object caught, aborting\n";

abort();

}

Listing 14: An example of a common use of the try/catch language feature.

While redefining the keywords with macros works in most cases, there is one
issue that had to be addressed. In Listing 14 we can see a common use case of
the try and catch keywords. First, we execute some code in the try block and
then catch either an exception or an unspecified thrown object. The issue lies in
the two uses of the catch keyword here – catching a specific object and catching
anything.

Listing 15 contains three ways of redefinition we will use to demonstrate the
problem. In the first macro, we simply throw away any reference to the caught
object (if there is any) and using if constexpr disable the compilation of the
catch block. However, such a macro would fail if the caught object was referenced
anywhere in the catch block as was in Listing 14 where we printed the message
contained in the exception object to the standard error output.

/* (1) */

#define catch(expr) if constexpr (false)

/* (2) */

#define catch(expr) if constexpr (expr = {}; false)

/* (3) */

extern std::exception __exception;

#define catch(expr) if constexpr (false)

Listing 15: Three simplified ways to redefine the catch keyword.

37

This specific issue is fixed with the second macro where we use the C++ 17
feature allowing us to declare new objects inside the condition of an if state-
ment. Unfortunately, this macro will fail in the generic case where we catch any
object because that is denoted by three dots which would made the declaration
malformed.

Up until now, we have tried to redefine these keywords in such a way that
will prevent us from having a need to change software being ported to HelenOS.
This, as we have now seen, is not a feasible option as we cannot cover both cases
mentioned here. However, the third macro allows us to redefine the keywords in
both cases assuming we rename the caught exceptions to the declared external
symbol exception2. This works because using if constexpr with false as its
condition we guarantee the catch block is not actually compiled and the com-
piler only requires that symbols we reference in it are actually declared (but not
defined, so the extern declaration works).

Because of it being able to handle both cases, this is the approach that we
used and that can be found in the bits/trycatch.hpp file that contains all the
macros necessary for code that makes use of exceptions to compile with exception
support disabled (as it is as of the time of writing).

/* Original code */

catch(const std::exception& ex) {

std::cout << ex.what() << std::endl;

}

/* Modified code */

catch(const std::exception& ex) {

std::cout << __exception.what() << std::endl; // <<- Renamed.

}

/* Expanded code */

if constexpr (false) {

std::cout << __exception.what() << std::endl;

}

Listing 16: Example of how to use our catch redefinition macro.

In Listing 16, we can see an example of how this workaround can be used.
In the original code we are porting over to HelenOS, the program catches an ex-
ception and prints its message to the standard output. In order to work around
the disabled exception handling support in HelenOS, we can simply rename the
exception wherever it appears in the catch block to exception and the prepro-
cessor will effectively remove the catch block from the compiled code.

2Note that this is just a placeholder symbol provided by our library for convenience and one
can simply declare the exception outside the affected catch block.

38

3.5.2 Namespaces

HelenOS is not entirely standard conforming, specifically it contains additional
symbols in the C standard library include paths (e. g. a struct called list) which
could potentially collide with our library and user code if they were included to
the global (or another) namespace. To avoid any clashes, non-standard symbols
included with the C standard libraries are enclosed in a special helenos names-
pace.

Apart from this, there are two more HelenOS specific namespaces, both nested
within the std namespace. First of these is std::test, which contains all the test
related types, templates and functions. The other is std::aux, which contains
implementation specific symbols. Other implementations, such as libstdc++,
choose to use two underscores as a prefix for all implementation specific symbols
(as the standard marks any symbol with two leading underscores in the name as
reserved). We decided to use a nested namespace instead of a naming convention
which would mean implementation specific code more well-marked (e. g. because
of another level of indentation). The omission of the two leading underscores in
the names of these namespaces has no specific reason other than to make it easier
to conform with the 80 characters per line limit of HelenOS C style, but because
they are namespaces, the addition of two leading underscores is a trivial matter
should the need for them arise.

3.5.3 C Library Wrappers

In Section 3.2, we said that headers in the include directory do not contain
the actual contents mandated by the standard and instead include headers in
the include/ bits subdirectory. The exception to that statement are wrappers
around headers from the standard C library. This is because the wrappers them-
selves only include their corresponding C headers and import the symbols from
these headers to the std namespace. This means that language specific support is
not necessary for these files and by doing this we avoid an unnecessary inclusion
of what essentially is a group of namespace imports.

3.5.4 General Utilities Library

The General Utilities Library, as it name might imply, includes a set of utility
types and functions used throughout the rest of the library and elsewhere that
are too small to warrant their own library modules. In this section, we will go
over the implementation details of some of the more intricate members of this
library.

Tuples

A tuple is a data structure allowing its users to store objects of different types.
It acts similarly to an unnamed structure declared at the point of definition, but
it can also be indexed and thus act as a heterogenous array.

While some programming languages implement tuples dynamically (e. g. in-
terpreted or JIT compiled languages), C++ does not provide the tuple type as
part of the compiler, but rather as part of the standard library – using variadic

39

templates. In this section, we will go over the principles of the language that
allow for tuples to be implemented.

Compile-time integer sequences As previously mentioned, tuples demon-
strate an array-like behavior. Using variadic template parameters, we can create
a list of types of arbitrary length, but in order to provide indexed member access,
we need to be able to assign indices to the inidividual members of a variadic
template parameter pack. In order to do so, we will use the standard template
integer sequence, or rather its template alias index sequence.

template<class T, T... Is> class integer_sequence { /* ... */ };

template<class T, uintmax_t N>

struct make_integer_sequence

{

/**

* Recursive to the bottom case below, appends sizeof...(Is) in

* every next "call", building the sequence.

*/

using type = typename make_integer_sequence<T, N - 1>::type::next;

};

template<class T>

struct make_integer_sequence<T, uintmax_t(0)>

{

using type = integer_sequence<T>;

};

template<uintmax_t N>

using make_index_sequence_t =

typename make_integer_sequence<size_t, N>::type;

Listing 17: Simplified implementation of an index sequence.

In Listing 17, we can see the core principle of the implementation of an
integer sequence. It is parametrized by two types: T representing the type of
the members of the sequence and Is, which is a variadic list of objects of type T

that form the sequence.
The instantiation of an integer sequence is done through a metafunction

called make integer sequence, which recursively appends increasing integers to a
base empty sequence.

These templates provide us with a way to bind a sequence of integers together
and thus allowing us to pass both a variadic list of types and their corresponding
indices, which aids us with the implementation of the tuple template.

Implementation In order to be able to put different types next to each other
in memory as part of a tuple while being able to specify said types at the point

40

where the tuple is defined, we used inheritance to implement the data structure.
However, using inheritance presents us with two obstacles:

• We cannot inherit from primitive types.

• We cannot inherit from the same type twice.

The first problem, preventing us from using a tuple-like tuple<int>, has a
fairly trivial workaround of storing the primitive types inside wrappers and in-
heriting from those. Such a practice is already used in some languages to augment
primitive types with additional characteristics (e. g. in Java the Integer wrapper
type is used to give referential semantics to the int primitive type).

The second problem is solved by the fact that a tuple must provide an index
based access to its elements. In C++ , two specializations of a template are two
distinct type so if we embed the index of an element in the wrapper type as its
template argument, we guarantee that two tuple elements of different indices are
always of different types.

template<class T, size_t I>

struct tuple_element

{

T value;

};

template<class... Ts, size_t... Is>

class tuple_impl: public tuple_element<Ts, Is>...

{

// ...

};

template<class... Ts>

class tuple: tuple_impl<Ts..., make_index_sequence_t<sizeof...(Ts)>>
{

// ...

};

Listing 18: Simplified tuple implementation.

In Listing 18 we can see a simplified example of the implementation we
described above. Each element wrapper, called tuple element, is a template
parametrized by the type of the wrapped object and an integer denoting the el-
ements index within the tuple. The tuple type itself is parametrized by a list
of types it holds and it inherits from an internal type that is parametrized also
by an index sequence (using the method described in the previous section) that
then inherits from different specializations of the tuple element template based
on the types passed and their indices.

41

Element access Given that a tuple inherits from wrappers around all of its
held objects, retrieval of held objects of a given type or at a given index becomes
as simple an operation as finding the proper parent type and retyping our tuple
to a reference to it.

template<size_t I, class T, class... Ts>

struct type_at

{

using type = /* Type at index I in type list Ts. */;

}

template<size_t I, class... Ts>

auto get(tuple<Ts...>& tpl)

{

tuple_element<type_at<I, Ts...>, I>& wrapper = tpl;

return tpl.value;

}

Listing 19: Simplified element retrieval implementation.

In Listing 19 we can see an example of how element retrieval based on index
would work (element access based on the type of the held object would be analo-
gous). First, let us assume we have a metafunction type at which, given an index
and a list of types, returns the type that lies at that index in the given list. We
then create the parent type (a tuple element specialization) that corresponds to
the specific index in the tuple and create a reference to that type to which we
assign our tuple argument. Once we have a reference to the wrapper, we can
access its wrapped object and return it.

Operations While the implementation of element access is simplified by the
fact that the tuple inherits from the types it holds (or wrappers around those, to
be more specific), other operations over the elements of a tuple need to take a
more complicated approach – recursion.

Listing 20 shows our implementation of tuple comparison for equality. It is a
recursive function that iterates through the elements of two given tuples and at
each recursive step compares their elements at indices equal to the current level
of recursion. All the other operations are implemented in a very similar manner.

Memory

The memory submodule of the general utilities library defines several functions
and structures that describe properties of pointers and pointer-like behaving types
as well as tools for memory management. In this section we will explain the inner
workings of these traits and a type integral for the manipulation of shared memory
in a safe manner.

42

template<size_t I, size_t N>

struct tuple_ops

{ // I < N, we take the recursive step.

template<class T, class U>

static bool eq(const T& lhs, const U& rhs)

{

return (get<I>(lhs) == get<I>(rhs))

&& tuple_ops<I + 1, N>::eq(lhs, rhs);

}

};

template<size_t N>

struct tuple_ops<N, N>

{ // Last step of the recursion, I == N.

template<class T, class U>

static bool eq(const T& lhs, const U& rhs)

{

return get<N>(lhs) == get<N>(rhs);

}

};

Listing 20: Comparison of tuples for equality through recursion.

Traits In the C++ programming language, a trait is a template with (generally)
a single template parameter. It contains functions, data members and functions
that represent or modify various characteristics of their template parameter.

Rebinding Alongside the so called raw pointers (inherited from C), the traits
defined as part of the standard library are compatible with more complex pointers
(such as smart pointers that ensure memory deallocation once the pointers leave
scope). They do so through so-called rebinds. If Ptr<T> denotes a pointer, raw
or complex, to a type T, then its rebind to type U returned by a trait would be
Ptr<U>.

Default properties In addition to rebinding, to properly support even user de-
fined pointers and allocators the standard defines default values for some pointer
or allocator properties. For example, the template pointer traits contains three
aliases: pointer, element type and difference type. The first alias refers to the
template argument of the traits, the second to the type of the pointed to object
and the third to an integral type used to represent difference between two pointer
values during pointer arithmetic. However, a pointer type does not need to define
these aliases in order to be usable by a trait.

In Listing 21 we can see a pointer traits implementation with just these
three member aliases. For a raw pointer, i. e. a pointer in the form of T* for some
type T, we specialize the traits as we know all the aliases that need to be defined.
However, a more complex pointer may or may not provide these aliases while our
traits type has to provide them regardless of their definition in the pointer type.

43

template<class Ptr>

struct pointer_traits

{

using pointer = Ptr;

using element_type = /* Ptr::element_type or a default. */;

using difference_type = /* Ptr::difference_type or a default. */;

};

template<class T>

struct pointer_traits<T*>

{ // Raw pointer specialization.

using pointer = T*;

using element_type = T;

using difference_type = ptrdiff_t;

};

Listing 21: A simplified implementation of pointer traits.

Both rebinding and default aliases are implemented through the use of void t

as was described in Section 3.1.2 and in Listing 8.

Function Objects

The <functional> header provides a generic wrapper of callable objects called
function. This wrapper is a template with a single template argument that de-
scribes the interface of the function – its arguments and return type. For the
purposes of calling invocation, such information is enough. However, in order for
the compiler to know how much memory an object takes (and thus how much
should be reserved inside the wrapper), more information would be required.
Unfortunately, this information is not available to us when the wrapper is instan-
tiated, i. e. when the information is needed.

To combat this setback, we have made wide use of a technique called type
erasure throughout the header. By the term type erasure, we refer to storing the
wrapped object in a dynamically allocated piece of memory and pointing to it
with a type oblivious (void*) pointer. All interaction with the object, such as
allocation, copying, destruction and invocation, are performed through a set of
callbacks that ’remember’ the actual type of the object.

Aside from function, which allows us to simply invoke a stored callable object,
the header provides also a function called bind. This function creates an instance
of a type that, besides simple invocation, also allows us to store some arguments
in advance that will be passed to the bound callable object upon invocation.

The type returned by the bind function, in our library called bind t in the aux
namespace, stores a tuple with the bound arguments in addition to the callable
object which are then passed upon invocation in their respective positions.

44

Ratio and Time Utilities

The <ratio> header provides compile time representation of rational numbers.
It does so by defining a template, ratio, the template arguments of which are the
numerator and the denominator of the represented rational number. Additionally,
the header contains several template aliases that represent mathematical oper-
ations over these rational numbers. These are implemented through arithmetic
operations over the integral template arguments of the supplied ratios.

The primary use of the facilities provided by <ratio> within the standard
library is in the <chrono> header, which provides time related utilities. It does
so through two primary types:

• duration – represented by:

– an underlying type

– conversion rate to a second using the ratio template

• time point – represented by:

– a clock type

– duration since the clock’s epoch

In C and similar languages, functions that take a time related value as their
argument generally interpret that value in a predetermined way, such as the
amount of seconds for a duration or the amount of seconds since the system
epoch for time points. This means that the users of these functions need to know
the different formulae used to convert between these units whenever their value
is not represented in those exact units. However, since <chrono> provides types
representing the different time units, all its users need to do in order to achiev
proper conversion is to use type casts. A type cast between two duration types
works as follows:

1. A common underlying type for both durations (the one being converted and
the one it is being converted to) is determined.

2. A ratio conversion to the requested denominator is performed using the
common underlying type.

3. A conversion to the requested underlying type is performed.

Given that a time point conversion is only allowed for time points that share
the same clock type, a conversion between two time points is performed by con-
verting the durations from their common epoch.

3.5.5 String Library

The basic string template is implemented as a simple expandable container of a
character type specified as a template argument (the string and wstring symbols
in the standard library are just typedefs for char and wchar t, respectively).

The implementation is fairly straightforward, and we will not examine it in
more depth, but there is one important difference the basic string template has

45

from e. g. the vector template. In order to properly support different character
types, the char traits template is used. This template, defined in the same
header as the basic string template, has (among others) static member functions
for assignment, comparison and conversions of the specific character type and
length measurements, comparison, copying and movement of sequences of the
specific character type.

basic_string& append(const value_type* str, size_type n)

{

ensure_free_space_(n);

traits_type::copy(data_ + size(), str, n);

size_ += n;

ensure_null_terminator_();

return *this;
}

Listing 22: Example of char traits usage.

In Listing 22, we can see an example member function of the basic string

template which appends a C-style string (an array of characters) to the underlying
character array. Were we aiming to support only the basic char type, we would
be able to use a function-like memcpy from the C standard library. However, since
the argument n of the append function refers to the number of characters and
memcpy requires the number of bytes as its argument, we use traits type (another
template argument of basic string, by default this is char traits<value type>)
to provide character type agnostic operations (implemented via template special-
izations).

3.5.6 Containers Library

The containers library, implemented primarily inside the include/ bits/adt di-
rectory, provides means of storing, manipulating and operating over collections
of data. The different container types implemented within this library module
can be classified into three different categories – sequence containers, container
adaptors and associative containers. In this section, we will delve further into
the implementation details of associative containers, but we will only go over the
basic descriptions of the other two categories for the sake of brevity because their
designs are rather simplistic due to their sequential nature.

Iterators

An iterator is an object bound to a container that allows its user to iterate over
elements of the bound container in a specific manner – most often in the forward
and backward directions as well as in a random access way (resembling pointer
arithmetic). It can be a simple pointer for array-like containers (e. g. vector) or a
more complex type that overloads operators commonly used in pointer arithmetic.

The standard (as of C++ 14) defines five types of iterators (enumerated here
with a list of basic operators they need to implement):

46

• InputIterator – allows dereference (operator*, operator->, incrementing
(operator++, both pre-increment and post-increment, only one pass neces-
sary) and comparison for inequality (operator!=).

• ForwardIterator – is the same as InputIterator, but its increment opera-
tors need to allow for multiple passes.

• BidirectionalIterator – is the same as ForwardIterator, but allows for
decrementing (operator--, both pre-decrement and post-decrement).

• RandomAccessIterator – is the same as BidirectionalIterator, but al-
lows for pointer-like arithmetic by overloading the addition (opetator+,
operator+=), subtraction (operator-, operator-=), comparison (operator<,
operator<= and the > alternatives) and indexed access (operator[]).

• ContiguousIterator – is the same as RandomAccessIterator, but requires
the underlying data to be stored sequentially in memory.

All of the containers implemented in our library have their iterators also imple-
mented (if needed and their iterators are not just primitive types like a pointer).
Their associated iterator types are always denoted by the member alias template
iterator.

Sequence Containers

Sequence containers store objects in a linear manner, often in the order of their
insertion. All sequence containers provide their users with the ability to insert
or remove object at or from a specific place in the container, specified either by
an index or an iterator. Additionally, most sequence containers also allow for
front or back insertion or removal. The basic sequence containers provided by
our standard library are:

• array – a strongly types alternative to the array data type in C, which in
addition to the traditional index based access C-style arrays also provides
API similar to other, more complex, C++ containers such as iterators, swap
or the get function (originally designed for the tuple template).

• list – a bidirectional linked list.

• vector – a growing array, allows for index based access as well as access at
the back of the sequence.

• deque – a bucket based sequence container that allows for constant time
insertion both at the front and the back (a double ended queue). It is a
bidirectional linked list of arrays (buckets). Each bucket represents a subset
of the data stored within the container. Unlike for example vector, which
reallocates the entire underlying array whenever it needs to grow, deque

only allocates a new bucket at the beginning or the end of the bucket list.
This means that the only time data elements need to be moved is when the
user inserts new elements into the middle of the container and insertions at
the front and the back can thus operate at constant complexity.

47

Container Adaptors

Container adaptors are wrapper types that take a container as their template pa-
rameter and provide an alternative way of manipulating objects of that container
type. The standard library provides three container adaptors:

• queue – a wrapper type compatible with any container that supports inser-
tion at its front, removal from its back and observation at either end (e. g.
list, deque). Provides ’first in, first out’ means of storage.

• priority queue – similar to queue, but also requires the wrapped container
type to provide an iterator with random access semantics (e. g. vector,
deque). Takes a comparator type as its second template parameter and
uses it to provide constant time access to the largest (in the context of the
comparator) element stored in it.

• stack – a wrapper around any container that supports insertion, removal
and observation of data elements into and from its back (e. g. vector, list).
Provides ’last in, first out’ means of storage.

Associative Containers

Unlike sequence containers, which simply store data in themselves generally in
the order in which the elements were inserted, associative containers store either
keys or key value pairs in an unspecified manner. The C++ containers library
defines four different associative containers:

• map – stores unique keys and their associated values.

• set – stores unique keys.

• multimap – stores keys and their associated values, but allows multiple val-
ues (different or not) being associated to a single key.

• multiset – stores keys and keeps track of the amount of currently stored
specific keys by tracking their insertion and removal.

The above four containers, called ordered associative containers, allow for a
sorted traversal of their stored elements and are implemented as binary search
trees in our library. In addition to these, the library also provides an unordered
variant (named with a unordered prefix) for each and those are implemented in
our library as a hash table.

However, given the similarities between the 4 containers (be it ordered or un-
ordered), our library implements only one type for the ordered containers (rbtree)
and one for the unordered containers (hash table). These two types are then ex-
tended by key extractors and policy classes to provide behavior required by the
four different containers.

The following sections will go over the implementation of hash table and its
associated auxiliary types (the implementation of rbtree is analogous).

48

Underlying data structure All four of the underlying unordered associative
containers are specializations of the hash table template in our std::aux names-
pace. It is a hash table implemented by using separate chaining with linked lists.
The template itself is fairly simple – it contains the bucket array, the hashing
functor, key comparison functor, key extraction functor (described in the follow-
ing section) and management data such as the load factor or number of buckets.
The data management logic is mostly relayed to a policy class specified as the
hash table’s template parameter and only logic that is identical to all four con-
tainers is contained directly in the hash table template. In order for this one data
structure to support all four of the unordered associative containers provided by
the standard library, we made use of two generic concepts – storing data in a
generic way and using policy classes – which will be described in the following
two sections.

Data storage and key extraction Since our hash table supports both key
value pairs and just keys, we store those in an abstract way (specified as a tem-
plate parameter) and use special functors to manipulate them. These functors
return the key part contained in these abstract elements – in the case of key
value pairs they return the member of the pair that represents the key and in
the case of just keys these extractors act as an identity. Note that only keys are
needed in the hash table management logic and as such we can leave values to
the four specific containers. This mechanism allows the hash table template to
manipulate both the map and set behaviors in a unified way.

Policy classes The difference between the map and multimap containers (and
analogously for the set containers) is in the way keys are manipulated. In the
multi variant, multiple instances of the same keys (possibly with different associ-
ated values) are permitted. To accommodate this we use a policy class, specified
as a template parameter of hash table, that provides the logic behind the element
manipulation functions (insertions, erasure, search).

using table_type = aux::hash_table<

// template parameters of the specific container

value_type, key_type,

// key extractor

aux::key_value_key_extractor<key_type, mapped_type>,

// provided by the specific container,

// most can be specified as template parameters

hasher, key_equal, allocator_type, size_type,

// our internal iterator types, for the table and for the buckets

iterator, const_iterator, local_iterator, const_local_iterator,

// policy for handling duplicates of keys

aux::hash_multi_policy

>;

Listing 23: An example of how our hash table can be specialized.

49

Putting it all together In Listing 23, we can see how this hash table template
can be specialized to be used as the basis for the unordered map container. The
container itself then delegates most of its functionality to the underlying table
instance.

3.5.7 Input/Output Library

The Input/Output module of the C++ standard library is the only part of the
library that features a heavy object oriented design. The inheritance hierarchy,
shown previously in Figure 2.4, consists of the following groups of types, which
we will now describe in further detail:

• ios base

• basic ios

• standard I/O streams

• string streams

• file streams

In additions to these, the library also provides additional types and functions,
which serve as a way to buffer, format or manipulate the input and/or output,
as well as some already instantiated objects from these classes.

Class ios base

The ios base class is the base class for the I/O inheritance hierarchy. It contains
(but does not manage) flags of an I/O object that describe its state (e. g. a flag
telling the user whether the last I/O operation finished successfully) and current
formatting configuration (e. g. to what numeric precision should floating numbers
be printed).

Class basic ios

The basic ios class expands on ios base by adding public member functions used
to support localization, flag management and synchronization. It is also the first
member of the I/O hierarchy that is templated by a specific character type (as
well as character traits type, see Section 3.5.5 for an example of their use) and
provides relevant type aliases.

Streams

Reading and writing in the C++ I/O library is done through streams. A stream is a
type that accepts or provides characters from or to some file or device linked to it.
As opposed to the C I/O library, which relies mostly on simple format specifiers
and primitive types, streams overload the stream (>>, <<) operators. Since they
are overloads, these operator functions can accept more complex structured data
types and can be expanded upon by the users of the library (i. e. for any user

50

defined type, the user can add a new overload for these operators and the C++ I/O
library will gain the ability to work with that new type).

There are three groups of types derived from the standard basic stream

in the I/O library – standard I/O streams (e. g. basic iostream), files (e. g.
basic fstream) and strings (e. g. basic stringstream).

Stream Buffers

Stream buffers are used by streams and are meant to represent the underlying
device (basic streambuf), file (basic filebuf) or object (basic stringbuf). In
their most basic form they are a set of three pointers to the beginning and the
end of a character sequence as well as the current position in the buffer. In
addition to these three pointers, a buffer provides member functions that can
be used to insert characters into the buffer, retrieve characters from the buffer,
put characters back into the buffer and changing the current position within the
character sequence.

Formatters and Manipulators

In addition to the types or functions that are directly or indirectly used to retrieve
or print characters, the I/O library contains various convenience types that can
be used to change characteristics of the streams. Their purpose is to allow for a
simple way of changing of formatting and other options of a stream that can be
used alongside the manipulated text.

// Prints: 1true1

std::cout << true << std::boolalpha

<< true << std::noboolalpha << true;

bool b1, b2{};

std::istringstream s{"0 false"};

s >> b1 >> std::boolalpha >> b2;

// b1 and b2 both have the boolean value of false

Listing 24: An example set of I/O manipulators that change how streams handle
boolean values.

An example of such manipulators can be seen in Listing 24. There, we use the
boolalpha and noboolalpha manipulators to change the textual representation of
boolean values between numerical (0 and 1) and textual (”false” and ”true”).

All manipulators work in a similar manner. Whenever they are used in a
stream operator, the respective stream operator overload is called and receives
both the stream and the manipulator as its arguments. It then applies the ma-
nipulator (which can be a function or a function object) to the stream.

cin, cout, cerr and ios base::Init

Alongside the various types we have described so far, the I/O library also pro-
vides some prepared objects that are instantiated from these types. Namely, the

51

standard I/O descriptors for standard input, standard output and standard error
can be managed by the provided global objects cin, cout and cerr, respectively.
The former two are synchronized, which means that they have to reference each
other. However, given their nature as global variables, a special object of type
ios base::Init is used that performs their initialization (and destruction) in its
constructor (and destructor).

3.5.8 Thread Support Library

The threading support in C++ standard libraries tends to be implemented us-
ing an underlying API provided by another library (e. g. libstdc++ uses POSIX
threads). In the case of HelenOS, the threads used by user space applications
are called fibrils, which are cooperatively scheduled user space threads. The ker-
nel of HelenOS also provides its own threading API (upon which fibrils are built)
that are scheduled. Given that the asynchronous framework, which handles inter-
process communication as a layer above the lower level IPC mechanism provided
by the kernel, uses fibrils, we decided to primarily focus on fibrils as then the
C++ threads would be directly compatible with the asynchronous framework be-
cause they expose handles of the underlying threading mechanism through the
native handle member function of the thread class.

However, in order to not lock us to a single threading API (in case e. g. a
different threading API is introduced at a later point in time or we would need to
use preemptive threads), the threading library uses an abstraction that acts as a
facade to the underlying threading API. Using this approach allows us to change
the use of fibrils to the use of a different (but semantically similar) API.

Threading Middle Layer

The threading abstraction layer is created as a template that contains structure
definitions for each of the threading primitives (e. g. threads or condition vari-
ables) used through it. These structures then contain static member functions
for each operation performed on the associated primitives (e. g. initialization or
waiting).

In Listing 25, we can see a simplified example of the threading middle layer
for the fibril API containing an abstraction for the mutex type and its locking
functionality. In order to create a specialization for any given API, we need to
create the type that the structure threading policy will be specialized with –
in this case called fibril tag, we then specialize the threading policy type and
add definitions for the different threading primitives as well as declaring aliases
to the types used by the underlying API. Changing which API is used is then
done by changing the threading type alias to use the appropriate API tag.

Joinable And Callable Wrappers

A typical function that creates a thread in C (such as the pthread create function
from the POSIX Thread API or the fibril create function from the fibril API in
HelenOS) accepts a callable target of the thread that has the type int(*)(void*)
– that is, a pointer to a function that accepts one pointer argument that points
to an unspecified type – and returns an integral return code signalling either

52

struct fibril_tag;

template<class>
struct threading_policy;

template<>
struct threading_policy<fibril_tag>

{

using mutex_type = fibril_mutex_t;

struct mutex

{

static void lock(mutex_type& mtx)

{

fibril_mutex_lock(&mtx);

}

/* ... */

}

/* ... */

};

using threading = threading_policy<fibril_tag>;

using mutex_t = typename threading::mutex_type;

Listing 25: Simplified version of the threading middle layer.

53

success or failure. In addition to this function pointer, it then accepts (possibly
in addition to other configurational arguments) a pointer that is then passed to
the target function.

However, in C++ , a callable object passed to a thread (e. g. a function pointer
or a function object) can be of any signature. This means any return type and
a variable set of arguments of possibly different types. We have worked around
this limitation of the C APIs by creating a C++ specific thread starting func-
tion, called thread main, and a wrapper around the callable object passed to
callable wrapper. In addition to these two symbols, we had to implement one
more called joinable wrapper. This is because fibrils, the threading API we use
by default in HelenOS, does not support joining.

Using these three objects, the lifetime of a thread in our C++ standard library
looks as follows:

1. An instance of the standard thread class is created.

2. Inside its constructor, a callable object is created using a closure created
by the C++ lambda functionality.

3. The callable object is wrapped within a callable wrapper, which inherits
from joinable wrapper. These two wrappers together manage the execution
and joining of the function object passed to the thread constructor.

4. An native thread is created using the underlying threading API. It receives
thread main as its function to be called argument and the callable wrapper

as the single argument to this function. The C++ thread keeps a pointer to
the joinable wrapper for the purposes of waiting for its execution to end.

5. Our custom thread starting function is executed in the new thread. It casts
its argument to a pointer to callable wrapper (the type of which is the
template argument of this thread starting function) and executes it.

6. Once the callable wrapper finishes execution, it signals the fact through a
condition variable it shares with its parent (and by that wakes those that
used the join operation). If it is in a detached state, it is deleted (this is set
through the joinable wrapper pointer kept within the C++ thread object as
detaching is a feature closely related to joining).

Header <future>

The <future> header contains five main types and functions:

• future

• promise

• shared future

• async

• packaged task

54

All of these use the internal template shared state and its children, defined in
include/ bits/thread/shared state.hpp. The basic use of all of these features
revolves around storing and retrieving values. However, the standard requires
three cases to be taken into account:

• The stored value is of type R and is copied or moved in and out of the shared
structures.

• The stored value is of type R& and what is stored in the shared structures is
a reference to the passed object. However, unlike a regular C++ reference,
it is stored after the initialization of the shared structure.

• The stored value is of type void, which means that nothing is actually stored
in the shared structure, but once the value setting functions are called the
structure is marked as ready. This makes the void specializations suitable
for signaling state and synchronization.

Since the R& case requires us to allow the user of our types to set the value after
initialization but still requires the semantics of a reference, we had to resort to the
use of a pointer. However, in order to avoid code duplication, we implemented
one version that works for each of the types that are used to retrieve values (e. g.
future).

R get()

{

/* ... */

if constexpr (!is_same_v<R, void>)
{ // (1)

if constexpr (is_reference_v<R>)

{ // (2)

assert(state_->get());

// Returns a reference to the pointed to object.

return *state_->get();

}

else // Returns directly the stored value.

return state_->get();

}

// Nothing returned when R == void.

}

Listing 26: Retrieval of R, R& and void in one function.

In Listing 26, we can see the implementation of the get function of the future
template. This template uses the shared state structure described earlier, but
instead of using R as its template argument, it uses the future inner t<R> meta-
function, which works as follows:

• If R is a reference type, change it to a pointer.

55

• If R is not a reference type, return R.

This makes it possible to store a reference after the shared state was created
and to remove that reference from the shared state safely before the shared state
itself is destroyed. However, this means that we have to handle values handled
by the setter or getter functions in a way that accommodates for this - namely
dereference the value (a pointer) stored in the shared state when retrieving a
reference and store the address of the value when storing a reference.

We do this by using the constexpr if feature of the language, which allows
us to perform checks on constant expressions during compilation. In the first (1)
check, we handle the case of R being void and only returning a value from the
function if this check fails. In the second (2) check, we either return the stored
value or the result of dereferencing the stored value depending on whether R is a
reference type or not.

In order to properly handle these three requirements when it comes to storing
values (e. g. in promise), the state and exception management logic is stored in
a common base template promise base and the three cases are implemented as
follows:

• promise<R> inherits from promise base<R> and allows for the stored value to
be set through the use of a constant lvalue reference or an rvalue reference.

• promise<R&> inherits from promise base<R*> and allows for the stored value
to only be set through the use of an lvalue reference, storing the address of
the referred object.

• promise<void> inherits from promise base<void> and does not store any-
thing, only signals that it entered the ready state.

3.5.9 Tests

The library contains a set of 791 tests that are designed to verify that different re-
quirements imposed on it by the standard are fulfilled. These tests use a custom
testing framework that provides basic assertion functionality and automatiza-
tion. While HelenOS already contains a unit testing framework, called PCUT,
we needed a more C++ aware tool set including, but not limited to, support for
iterator range comparisons and templates.

Including with our library is also a program, called cpptest, which when
invoked runs all tests and prints a test report to its standard output.

Adding Tests

To add their own tests, one can inherit from the test suite class and imple-
ment its two pure virtual member functions:

• name returns a string literal containing the name of the test, which is then
shown in the output of cpptest or any program invoking the test.

• run executes the test or tests contained in the class.

A simplified example of such test implementation can be seen in Listng 27.
Once created one can add their test class to a test set and execute them (as can
be seen in uspace/app/cpptest/main.cpp).

56

// include/__bits/test/tests.hpp

class test_example: public test_suite

{

public:
bool run(bool report_to_stdout)

{

report_ = report_to_stdout;

start();

// Our tests:

test1();

return end();

}

private:
void test1()

{

test_eq(int{}, 0);

}

};

Listing 27: Simplified implementation of a test suite.

Object Lifetime Monitoring

In order to test some features of the standard library, we may need to track the
lifetime of an object. An example of such a feature would be smart pointers,
where we need to make sure that the owned object gets deallocated when the last
owning smart pointer leaves its scope.

To do this, the testing headers include a type called mock, which tracks its
lifetime (including construction, copying, moving and destruction) through static
counter variables. An example of such test can be seen in Listing 28.

mock::clear();

{ // Artificial scope, limits the lifetime of ptr.

test_eq("constructor cleared", mock::constructor_calls, 0U);

unique_ptr<mock> ptr = make_unique<mock>();

test_eq("mock constructor invoked", mock::constructor_calls, 1U);

test_eq("destructor cleared", mock::destructor_calls, 0U);

}

test_eq("mock destructor invoked", mock::destructor_calls, 1U);

Listing 28: An example of a test that check an object gets properly destroyed
with its owner.

57

4. Usage

In this section, we will show how to write and build a simple C++ application
for HelenOS. In order to do that we need to add a new entry to the uspace/app

directory. This new directory should contain our source file and a makefile, min-
imalistic examples of both are shown in Listing 29.

// uspace/app/hello/hello.cpp

#include <iostream>

int main()

{

std::cout << "Hello, HelenOS!\n";

return 0;

}

uspace/app/hello/Makefile

USPACE_PREFIX = ../..

BINARY = hello

SOURCES = hello.cpp

include $(USPACE_PREFIX)/Makefile.common

Listing 29: A simple C++ Hello World program and makefile.

The source file is the same as it would be for any other system with a
C++ runtime, but the makefile needs to be integrated into the HelenOS build
system. This is achieved by defining three macros:

• USPACE PREFIX, which in our case is equal to ../.. because our program
resides in uspace/app/hello

• BINARY, which contains the name of the built executable file

• SOURCES, which contains a list of source files used to build our executable
and in our case this macro contains only the file hello.cpp (note that the
build system detects C++ projects by one of the .cpp, .cc and .cxx ex-
tensions and as such one has to use these extensions if they want to write
C++ programs for HelenOS1).

Additionally, the uspace/Makefile.common file needs to be included. For the
program to be built with HelenOS, we need to add the path to our new direc-
tory to the DIRS list in uspace/Makefile. In order for the built HelenOS image
to contain our program, we need to add the path to the executable we speci-
fied in the BINARY variable of our makefile to the RD APPS NON ESSENTIAL list in
boot/Makefile.common.

1This requirement can be extended by other extensions in uspace/Makefile.common

58

Figure 4.1: Execution of the hello program in HelenOS.

After all of these files are modified or created, we can build HelenOS by
executing the make command in the root directory and then run HelenOS by
executing the tools/ew.py utility. Once we boot into HelenOS, we can run our
program by typing hello into the system’s terminal as can be seen in Figure 4.1.

59

5. Demonstrator

In order to demonstrate the functionality of our C++ runtime, we were search-
ing for a project written in the C++ programming language with the following
properties:

• A large project that includes as much of the standard library as possible in
order to have proper testing coverage.

• Implemented by a third party to avoid bias when it comes to which features
of the standard library are used.

• Accompanied by a set of automated tests which will serve to verify whether
our implementation is correct.

• Preferably has little to no dependencies outside the standard library in order
to ease the porting process due to the non-standard nature of HelenOS.

In Section 2, we analyzed several open-source projects written in C++ to see
which parts of the standard and runtime libraries we would be implementing
in order to make our runtime as suitable for porting C++ programs to HelenOS
as possible. Our ideal demonstrator project would thus be not one of those we
analyzed in order for us to be able to see how the results of our analysis hold
against a project not included in it.

5.1 FunctionalPlus

The library we chose, FunctionalPlus [18] by Tobias Hermann, is a C++ library
that provides functions and types commonly found in functional languages that
allows its users to write C++ program using the functional paradigm. Its single
header variant, which we ported to HelenOS, consists of over 16,000 lines of code
and includes 43 standard library headers from various areas such as containers,
streams, threading and algorithms.

Bundled with the library is also a set of over 1,500 automated tests that will
help us verify the correctness of our runtime implementation. These tests also
use the only dependency the library has – the doctest C++ testing framework [19].
Fortunately, only a small subset of the macros provided by doctest is used, so
this dependency can be avoided by implementing these macros ourselves.

To summarize, this library fulfilled all of our requirements – it is large (around
one third of our runtime’s size), has only one dependency that can be easily
substituted, it is a popular open source library with over 1,500 stars on GitHub
and provides nearly twice as many unit tests as we wrote for our runtime and
with that brings the total number of tests we can use to verify our runtime’s
functionality to over 2,200.

5.2 Result

We have successfully ported the demonstrator to HelenOS and made its tests
pass with just minor modifications to the FunctionalPlus library itself. The

60

tests are run by the cppdemo application, the sources of which can be found
in uspace/app/cppdemo.

With regards to headers, out of the 43 required by the library our implemen-
tation lacked only the <forward list> and <atomic> headers. The former was
included only for the purposes of metaprogramming template specializations and
the removal of its inclusion had no effect on the library on HelenOS as any user of
the library would be unable to use the forward list template. The latter header,
<atomic>, was never used by the library itself, but rather by one of the tests.
This means that even though we were missing two headers the library required,
we did not lose any functionality by not implementing them.

In the process of porting FunctionalPlus, we encountered two types of issues:

• Missing features of the runtime that prevented compilation, these could be
missing either partially, such as missing template specializations or member
functions of existing types, or entirely.

• Bugs hidden in our implementation that caused the tests to fail, including
standard non-compliance of our implementation in certain areas.

5.2.1 Missing features

When we started the porting process, missing features were the first kind of
issues we have encountered, because they prevent the compilation from finishing
successfully. Most of the features that were missing can be split into two groups
– mathematics functions and algorithms.

In the first group are three functions that were expected to be in the <cmath>
header. This header provides functions from the standard C library and as such
the absence of these functions was not entirely a fault of our implementation.
Rather, the issue was in a design choice made by the HelenOS developers we
were not aware of – the functions expected to be in the C <math.h> header
were declared by the C standard library, but were defined in a different library,
called libmath. After finding this out and properly linking the additional required
library, these issues were resolved.

As for the second group, in Section 2 we have decided to employ a lazy ap-
proach when implementing the contents of the <algorithm> header. This means
that we would implement the different functions when and if they are required by
another part of the library. Because of this, our demonstrator program requiring
some algorithms our implementation could not provide was to be expected. Fol-
lowing our lazy approach, we ended up implementing 68 different algorithms and
once we started porting FunctionalPlus over to HelenOS, we found 12 algorithms
to be missing. This means that using our lazy approach, we have implemented
85% of the algorithms required for a full port of our demonstrator.

61

5.2.2 Bugs

“There are two ways to write error-free programs; only the third one works.”
—Alan J. Perlis, Epigrams in Programming

The tests provided by our demonstrator revealed several bugs in our imple-
mentation. These ranged from small bugs like off-by-one errors or compilation
errors not found sooner due to them happening only in templates with specific
template parameters that were never instantiated before to us not understanding
the requirements imposed by the standard properly and more significant bugs
resulting in crashes.

After fixing all the bugs revealed by the tests to the point when all tests passed,
the difference in our code consisted of 1,310 insertions and 232 deletions1. With
the pull request adding our runtime into upstream HelenOS having slightly over
51,000 lines of code, changes needed by the 1,540 tests provided by FunctionalPlus
were contained within 0.45% of the runtime’s code.

The changes needed to both fix bugs and implement missing feature in our
runtime as well as changes done to the FunctionalPlus library will be provided
with this thesis as attachments.

1These numbers include the implementations of any missing features.

62

Conclusion

When we started our work on this thesis, our goal was to implement a C++ runtime
that would be capable of porting existing programs written using C++ to HelenOS.
In order to do that, we analyzed existing popular open-source projects with the
goal to discover a subset of the runtime that could be implemented in the scope
of this thesis while allowing us to run ported programs on it.

During our analysis, we have created a priority based system ordering parts
of the C++ runtime in order from the most needed to the least needed based on
the rate at which they were required by popular projects on GitHub. Then,
during the implementation phase of this project, we implemented most of the
features deemed to have high or medium priority in the previous phase. Lastly,
we successfully ported a reasonably large (in comparison to the runtime itself)
software project to HelenOS.

With our demonstrator program ported, the correctness of our runtime was
verified with over 2,000 automated tests. Additionally, the porting process has
shown only a small amount of missing features required by the ported project,
which supported our analysis. Lastly, our implementation has been successfully
merged into the upstream HelenOS repository2 and at the time of merging con-
sisted of over 51,000 lines of code. Because of this, we consider our thesis to fulfill
our assignment and goals.

Future Work

As is the case with most software projects, there is still room for improvement and
future expansion. As a non-exhaustive list of examples, we present the following
project ideas that can expand upon our project:

• Implementing the remaining features of the runtime. These include low level
features of the runtime library like exception handling support as well as
any missing headers or symbols missing from already implemented headers.

• Modernization of the standard library, bringing it up to the C++ 17 or
C++ 20 standards.

• Adding the ability to compile and run C++ program from within HelenOS
itself. Two steps are required for that to be possible – our library needs
to be added to the HelenOS image and a new enough version of the GNU
Compiler Collection that supports C++ 17 (the current version, 4.6.3, only
fully supports C++ 98 with some experimental C++ 11 features) needs to be
ported.

• One of the reasons we had for choosing to implement our own runtime
from scratch for HelenOS was the desire to implement parts of HelenOS in
C++ voiced by some of the developers. As the runtime is now, one would
need to deal with C style code and C++ style code in one program whenever
HelenOS specific API is used. An alternative to this approach would be to

2https://github.com/HelenOS/helenos/pull/41

63

provide an extension of the standard library (or a whole new library) that
contains C++ wrapper types and functions that simplify the use of these
HelenOS APIs when utilized within a C++ program. To demonstrate how
such a wrapper would work, we will provide a rough idea in the following
section.

Example: C++ Approach to Asynchronous Sessions

One of the HelenOS APIs one might want to use from within a C++ program is
the Asynchronous Framework, which forms a higher level layer above the lower
level inter-process mechanism HelenOS provides. In order to interact with the
framework concurrently, the framework provides a concept of sessions [20].

async_sess_t *session;

int server_connect()

{

async_exch_t *exch = async_exchange_begin(NS_SESSION);

session = async_connect_me_to_iface(exch, SOME_IFACE);

async_exchange_end(exch);

}

int server_read(int arg, void *buf, size_t bufsize)

{

async_exch_t *exch = async_exchange_begin(session);

aid_t req = async_send_1(exch, SOME_SRV_READ, arg);

async_data_read_start(exch, buf, bufsize);

async_exchange_end(exch);

int rc;

async_wait_for(req, &rc);

}

Listing 30: A simplified example of asynchronous session use in C.

In Listing 30, we can see a simplified pseudocode example of how such an
asynchronous session might be established and used. First, in the function
server connect, we establish an exchange on the naming service session and con-
nect a session to the service. Once the session is established, we can run the
second function, server read, concurrently and begin to receive data in an asyn-
chronous fashion by creating a new exchange, sending a request to some server
requesting a read operation and then starting the asynchronous read operation
itself into the provided buffer. We then close the exchange and can wait for
the result to be read (here we wait directly within the server read function for
demonstrative purposes, but we could return the request and wait elsewhere).

Once we are done, we need to perform at least two more tasks – handle the
received data, including conversions as we receive an array of bytes due to the lack

64

of generics, and close the session. The former task can lead to excessive amounts
of boilerplate code scattered across our program and the latter task may cause
us to run to the problem of leaks if we forget to close our sessions.

class session

{

async_sess_t* session_;

public:
session(SOME_IFACE): session_{}

{

/* Establish the session just like in server_connect()

in the C example, store it in session_. */

}

template<class T> future<T> read()

{

return std::async(std::launch::async, ()[]{

/* Behave just like server_read in the C example,

handle errors, then convert and return the result

of the exchange once it is available. */

});

}

˜session() { /* End and deallocate session_. */ }

};

Listing 31: A simplified example of how an asynchronous session might work in
C++ .

In order to demonstrate how the C approach might be simplified by using
C++ , Listing 31 presents a simplified pseudocode implementation of a session

class. This class uses the pair of a constructor and a destructor to manage the
lifetime of the session object as well as the establishment and termination of the
session itself. With this approach, we are guaranteed that all resources will be
safely closed and deallocated when the session class instance leaves its scope.

We can simplify the usage of the session itself by utilizing the future template,
which will allow us to store and manipulate the promised response from the server
before it is available and retrieve it once it is. Additionally, since future is a
template, we can incorporate generic means of conversion to avoid any handling
of byte arrays as was necessary in C, because such handling can be hidden under
the hood of the session class.

65

Bibliography

[1] HelenOS. http://www.helenos.org. [Online; accessed 2018-05-25].

[2] C++ Standard N4296. http://www.open-std.org/jtc1/sc22/wg21/docs/

papers/2014/n4296.pdf. [Online; accessed 2018-05-28].

[3] GNU Compiler Collection. https://gcc.gnu.org/. [Online; accessed 2018-
05-31].

[4] clang: a C language family frontend for LLVM. https://clang.llvm.org/.
[Online; accessed 2018-05-31].

[5] C++ Itanium ABI. https://itanium-cxx-abi.github.io/cxx-abi/. [Online;
accessed 2018-05-31].

[6] Meyers, S. Effective C++. 3rd Edition. Addison-Wesley, 2005.

[7] Jan Mareš. Port of QEMU to HelenOS. Master’s thesis, MFF UK, 2015.

[8] HelenOS Ticket: Add *-helenos-* target to GCC. http://www.helenos.org/
ticket/574. [Online; accessed 2021-12-31].

[9] C++ Developer Survey. https://isocpp.org/files/papers/

CppDevSurvey-2018-02-summary.pdf. [Online; accessed 2018-11-11].

[10] Bjarne Stroustrup’s FAQ. http://www.stroustrup.com/bs faq.html. [On-
line; accessed 2018-06-18].

[11] GitHub Blog: Celebrating nine years of GitHub
with an anniversary sale. https://blog.github.com/

2017-04-10-celebrating-nine-years-of-github-with-an-anniversary-sale/.
[Online; accessed 2018-06-22].

[12] Common C++ source file extensions. https://en.wikibooks.org/

wiki/C%2B%2B Programming/Programming Languages/C%2B%2B/Code/

File Organization#Extensions. [Online; accessed 2018-06-22].

[13] Boost.Regex library. https://theboostcpplibraries.com/boost.regex. [On-
line; accessed 2018-11-11].

[14] Walter E. Brown: Modern Template Metaprogramming: A Compendium,
Part I. https://www.youtube.com/watch?v=Am2is2QCvxY. [Online; accessed
2019-02-08].

[15] Walter E. Brown: Modern Template Metaprogramming: A Compendium,
Part II. https://www.youtube.com/watch?v=a0FliKwcwXE. [Online; accessed
2019-02-08].

[16] GNU Makefile Documentation, Pattern Rules. https://www.gnu.org/s/

make/manual/html node/Pattern-Rules.html. [Online; accessed 2019-02-20].

[17] Meson. https://mesonbuild.com/. [Online; accessed 2021-12-31].

66

http://www.helenos.org
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4296.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4296.pdf
https://gcc.gnu.org/
https://clang.llvm.org/
https://itanium-cxx-abi.github.io/cxx-abi/
http://www.helenos.org/ticket/574
http://www.helenos.org/ticket/574
https://isocpp.org/files/papers/CppDevSurvey-2018-02-summary.pdf
https://isocpp.org/files/papers/CppDevSurvey-2018-02-summary.pdf
http://www.stroustrup.com/bs_faq.html
https://blog.github.com/2017-04-10-celebrating-nine-years-of-github-with-an-anniversary-sale/
https://blog.github.com/2017-04-10-celebrating-nine-years-of-github-with-an-anniversary-sale/
https://en.wikibooks.org/wiki/C%2B%2B_Programming/Programming_Languages/C%2B%2B/Code/File_Organization#Extensions
https://en.wikibooks.org/wiki/C%2B%2B_Programming/Programming_Languages/C%2B%2B/Code/File_Organization#Extensions
https://en.wikibooks.org/wiki/C%2B%2B_Programming/Programming_Languages/C%2B%2B/Code/File_Organization#Extensions
https://theboostcpplibraries.com/boost.regex
https://www.youtube.com/watch?v=Am2is2QCvxY
https://www.youtube.com/watch?v=a0FliKwcwXE
https://www.gnu.org/s/make/manual/html_node/Pattern-Rules.html
https://www.gnu.org/s/make/manual/html_node/Pattern-Rules.html
https://mesonbuild.com/

[18] FunctionalPlus library. https://github.com/Dobiasd/FunctionalPlus. [On-
line; accessed 2021-11-12].

[19] Doctest. https://github.com/onqtam/doctest. [Online; accessed 2021-11-
12].

[20] HelenOS: Async Sessions. http://www.helenos.org/wiki/AsyncSessions#

Entersessions. [Online; accessed 2022-01-01].

67

https://github.com/Dobiasd/FunctionalPlus
https://github.com/onqtam/doctest
http://www.helenos.org/wiki/AsyncSessions#Entersessions
http://www.helenos.org/wiki/AsyncSessions#Entersessions

Attachments

Attached with the thesis are the following files:

• Files necessary to run our version of HelenOS:

– hdisk.img, which serves as a virtual hard disk for the system.

– image.iso, which serves as the system image that HelenOS is booted
from.

– run.sh, which executes Qemu and boots into HelenOS (tested with
Qemu version 5.2.0 on openSUSE Tumbleweed).

• Relevant source files:

– usr/lib/cpp contains the sources of both our runtime and standard
library.

∗ The sources for our tests are located in the src/ bits/test sub-
directory.

– usr/app/cpptest compililes into the cpptest utility, which runs all the
automated tests we have written for our runtime.

– usr/app/cppdemo contains the sources of our demonstrator:

∗ fplus.hpp is a single header version of the FunctionalPlus library.

∗ main.cpp contains automated tests for the FunctionalPlus library
along with auxiliary code to avoid dependencies on the third-party
testing library doctest.

• List of differences that were needed to be made in order to make our demon-
strator work:

– diffs/fplus.diff contains changes done to the upstream header, done
mostly due to differences of C++ versions and missing features in He-
lenOS.

– diffs/libcpp.diff contains all added features and fixed bugs in our
library that were needed to make the tests of our demonstrator to pass.

– diffs/stats.diff contains statistics of insertions and deletions from
diffs/libcpp.diff.

• Scripts and data used in our analysis:

– scripts/data is a directory that contains all header inclusion data used
to generate our plots. Specifically, it contains the main headers.csv

list with inclusion rates for all headers and then files with the prefix
headers that accumulate these numbers into groups as discussed in
our analysis.

– scripts/clone repos.rb, scripts/get trending repos.rb used to get
information from GitHub and to clone them.

68

– scripts/header search.rb, which was used to generate the contents of
scripts/data.

– scripts/mkplot.R, which was used to generate the plots from the con-
tents of scripts/data.

– scripts/repos.txt lists the GitHub repositories that were used in our
analysis and obtained from scripts/get trending repos.rb.

69

	Introduction
	HelenOS
	Goals
	Thesis Structure

	Analysis
	Runtime Library
	Runtime Type Identification
	Static Constructors and Destructors
	Exception Support
	Conclusion

	Standard Library
	Library Statistic
	Standard C Headers
	Modules
	Containers Library
	Input/Output Library
	General Utilities Library
	Thread Support Library
	Diagnostics Library
	Localization Library
	Numerics Library
	Remaining Library Modules
	Conclusion

	Design and Implementation
	Template Metaprogramming
	Metafunctions
	Pattern Matching and SFINAE
	Recursion

	Directory Layout
	Build System
	Runtime Library
	Standard Library
	Exception Handling
	Namespaces
	C Library Wrappers
	General Utilities Library
	String Library
	Containers Library
	Input/Output Library
	Thread Support Library
	Tests

	Usage
	Demonstrator
	FunctionalPlus
	Result
	Missing features
	Bugs

	Conclusion
	Future Work
	Example: C[4]++Approach to Asynchronous Sessions

	Bibliography
	Attachments

