
Charles University in Prague

Faculty of Mathematics and Physics

BACHELOR THESIS

Jan Buchar

HelenOS packet filter

Department of distributed and dependable systems

Supervisor of the bachelor thesis: Mgr. Martin Děcký

Study programme: Computer science

Study branch: General computer science

Prague 2015

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University in Prague has the right to conclude a license agreement on
the use of this work as a school work pursuant to Section 60 subsection 1 of the
Copyright Act.

In date signature of the author

i

Title: HelenOS packet filter

Author: Jan Buchar

Department: Department of distributed and dependable systems

Supervisor: Mgr. Martin Děcký, Department of distributed and dependable
systems

Abstract: Packet filtering is an essential feature of any operating system that
aims to function as a network router or gateway. This thesis aims to extend the
HelenOS operating system to support this functionality.

We analyze packet filters present in modern operating systems and implement a
HelenOS service that provides a configurable and extendable packet filter. We
also modify the HelenOS networking stack so that it allows an arbitrary service to
function as a packet filter. We demonstrate the extendability of our implementation
on a basic variant of the NAT mechanism.

Keywords: HelenOS packet filter networking

ii

I’d like to express my sincere gratitude to my supervisor for his advice and
guidance, and to my friends and family for their support and motivation.

iii

Contents

Introduction 3

1 Related work 4
1.1 Netfilter (GNU/Linux) . 4

1.1.1 IPtables . 4
1.1.2 ferm . 5
1.1.3 UFW - uncomplicated firewall 5

1.2 PF (OpenBSD) . 5
1.3 IPFW (FreeBSD) . 6
1.4 Microsoft Windows . 7

2 Analysis 8
2.1 Adding a packet filter to HelenOS 8

2.1.1 Packet interception . 8
2.1.2 IP datagram reassembly 8
2.1.3 Transport layer criteria . 9

2.2 Configuration . 9
2.2.1 Persistent configuration 9
2.2.2 Runtime configuration . 10
2.2.3 Configuration file format 10

3 Usage 11
3.1 Configuration syntax overview . 11
3.2 Ruleset evaluation . 13
3.3 Stateful packet inspection . 13

3.3.1 State keeping for stateless protocols 14
3.4 Advanced usage . 14

3.4.1 Network address translation 14
3.4.2 Port forwarding . 15

3.5 Disabling packet filtering . 16
3.6 Traffic logging . 16

4 Implementation 17
4.1 Modifications of the network stack 17

4.1.1 Forwarding datagrams . 17
4.1.2 Filtering outgoing datagrams 17
4.1.3 Filtering incoming datagrams 17

4.2 inetpf interface . 18
4.2.1 Packet filter registration 18
4.2.2 Datagram validation . 18
4.2.3 Response types . 19
4.2.4 Packet filter termination 20

4.3 PF service . 20
4.3.1 Filter . 20
4.3.2 Port map . 21

1

4.3.3 State table . 22
4.3.4 The validation process . 24
4.3.5 Configuration parsing . 24

4.4 NAT masquerading . 25
4.4.1 NAT for ICMP . 25

5 Evaluation 26
5.1 Testing environment . 26

5.1.1 Virtual network implementation 26
5.1.2 Controlling the virtual machines 27
5.1.3 Monitoring network communication 27

5.2 Scenario: Restricting traffic to specified ports 28
5.3 Scenario: Workstations behind a NAT 29

Conclusion 30

Bibliography 32

List of Abbreviations 34

A Contents of the attached CD 36

B Running the test environment 37
B.1 Building HelenOS . 37
B.2 Test environment usage . 37

B.2.1 Dependencies . 38

C Configuration reference 39
C.1 The rule header . 39

C.1.1 Actions . 39
C.1.2 Flags . 40

C.2 Criteria . 40
C.2.1 Criterion types . 40
C.2.2 Matching types . 42

2

Introduction

Network traffic filtering based on a configured set of rules is a core feature of
software-based firewalls – machines that serve as a barrier between a secure internal
network and another network that cannot be trusted, for example the Internet.

The HelenOS project aims to become a complete, multi-purpose operating
system based on a microkernel architecture [1]. The goal of this thesis is to extend
HelenOS so that it can function as a basic firewall that filters traffic flowing to
and from an internal network. To fulfill this goal, we must:

• Modify the HelenOS networking stack to forward packets from an internal
network to external hosts and vice versa

• Design an interface that allows a packet filter to hook into the network stack
and provides a way for the network stack to query the packet filter

• Implement the packet filter itself. The packet filter is a standalone service
that supports filtering based both on properties of the packets themselves,
and on the state of connections (stateful packet inspection). It should
support both IPv4 and IPv6. Apart from telling the network stack which
packets can be accepted, the service can execute arbitrary actions, such as
forwarding traffic from a specific port or NAT masquerading.

The thesis also contains a toolkit for automated testing of the packet filter in
a virtualized network environment.

Thesis overview

In chapter 1, we analyze existing packet filters in modern operating systems and
the way they are configured. Chapter 2 analyses the requirements of the thesis.
Chapter 3 introduces the HelenOS packet filter from a user’s point of view. Next,
chapter 4 describes its internal mechanisms and the details of their implementation.
Finally, chapter 5 describes the virtualized testing environment. It also presents
some of the scenarios that are a part of the testing process and which showcase
the capabilities of the packet filter.

3

1. Related work

This chapter contains a comparison of existing firewall software and an overview
of their configuration.

1.1 Netfilter (GNU/Linux)

Netfilter is a set of hooks in the Linux kernel that makes it possible for kernel
modules to register callback functions in the network stack [2]. It features both
stateless and stateful packet inspection (with respect to connection state), NAT
and other kinds of address translation.

The basic configuration unit of netfilter is a rule, which specifies a target
and criteria. If a packet satisfies the criteria of a rule, netfilter takes action
corresponding to the target. Rules are organized in chains and chains are divided
into tables. The most notable tables are filter and nat. The former is consulted
for every processed packet, the latter when a packet that creates a new connection
is encountered.

The filter table contains three built-in chains, INPUT (used for packets for
local addresses), FORWARD (for packets being routed) and OUTPUT (for packets sent
from the machine running netfilter). Chains are traversed from the first rule to
the last and when the processed packet matches, the traversal stops and the next
rule is determined by the target of the matched rule. The target can be either
jumping to another (possibly user defined) chain, or a definitive action such as
dropping the packet.

Rules and chains can be manipulated using dedicated userspace utilities such
as IPtables.

By default, netfilter doesn’t use connection state when evaluating rules. This
has to be enabled explicitly, for example with the -m conntrack option of the
iptables command.

It is intended that netfilter will be replaced with nftables [3], a simpler packet
filtering system based on a virtual machine that executes bytecode to inspect
network packets.

1.1.1 IPtables

IPtables is a command line tool used to manage netfilter rulesets. It directly
manipulates netfilter tables and chains. The following example creates three rules
for inbound traffic. The first rule lets ICMP echo requests pass, the second lets
TCP connections on port 80 pass and the third discards anything else.

iptables -A INPUT -p icmp --icmp-type 8 -j ACCEPT

iptables -A INPUT -p tcp --dport 80 -j ACCEPT

iptables -A INPUT -j DROP

IPtables rules are not persistent – any configuration is lost after shutting down
the machine. Persistent configuration can be achieved by writing the current
configuration to a file with iptables-save. The configuration is then loaded at
boot.

4

1.1.2 ferm

Ferm is a command line utility that loads rules from a structured file and translates
them to iptables commands [4]. The configuration file basically describes the
resulting netfilter chains. It also allows the use of variables, functions, arrays and
blocks.

chain (INPUT OUTPUT) {

proto (udp tcp) ACCEPT;

}

This example configuration translates to the following iptables commands:

iptables -A INPUT -p tcp -j ACCEPT

iptables -A OUTPUT -p tcp -j ACCEPT

iptables -A INPUT -p udp -j ACCEPT

iptables -A OUTPUT -p udp -j ACCEPT

1.1.3 UFW - uncomplicated firewall

UFW is an alternative tool for managing netfilter rules which aims for ease of use.
Its configuration language is similar to that of OpenBSD PF.

ufw default deny

ufw allow proto icmp

ufw allow to any port 80

The rules set up with ufw are stored in a file. This means no further actions
are needed to make them persistent.

1.2 PF (OpenBSD)

PF1 is a stateful packet filter that was originally written for OpenBSD [5]. It was
intended to replace IPfilter, which was considered non-free due to its license [6].
Over time, it was ported to Mac OS X, FreeBSD, NetBSD and DragonFlyBSD.
The ports have minor differences in configuration and implementation, which we
won’t cover. Instead, we will focus on the OpenBSD implementation.

The central point of PF’s configuration is the configuration file /etc/pf.conf,
which is loaded at boot and can be reloaded with the pfctl utility. The configura-
tion is a list of rules that are evaluated from top to bottom. The last matching rule
determines the taken action (the quick keyword can be used to end evaluation
immediately).

Apart from stateless and stateful packet inspection, NAT and logging, PF has
numerous notable features, such as

• address tables – a construct that allows efficient matching of packets against
long lists of IP addresses

1The packet filter in OpenBSD shares its name with the one implemented in this thesis.
Outside of this section, “pf” means the HelenOS packet filter. When referring to the OpenBSD
packet filter, “OpenBSD PF” is used.

5

• packet scrubbing – de-fragmentation, dropping packets with invalid TCP
flag combinations and other normalization procedures

• pfsync – synchronization of the state table over multiple machines that
allows redundant firewalls

The rules are written in a language similar to English. It is worth noting that
the word order is fixed. Variables (called macros) and lists are supported.

Following example blocks all traffic through the machine, except for HTTP
requests from local networks. The HTTP responses will be passed too, because
pass rules keep state by default. The localnets variable is a list, which means
that a rule containing this list will be expanded into two separate rules, one for
each item of the list.

localnets = "{192.168.1.0/24 192.168.10.0/24}"

block in all

block out all

pass out log from $localnets to any port 80

This example ruleset also implicitly allows responses to the requests on port
80. This is because PF keeps tracks of connections by default and lets packets
that belong to an existing connection pass automatically.

1.3 IPFW (FreeBSD)

IPFW is a stateful packet filter that is a part of the FreeBSD project [7]. It
contains multiple components, such as a rule processor that is a part of the kernel,
a NAT facility, a traffic logger and a traffic shaper called dummynet.

The packet filter is configured using a command line utility called ipfw. By
default, the configuration is stored in /etc/ipfw.rules. There are also preset
firewall types such as workstation, which protects the machine running ipfw

using stateful rules (incoming traffic is only accepted if it belongs to an open
connection).

The rules themselves are composed of keywords in a fixed order. The keywords
make the syntax resemble English sentences. For example, the following command
allows TCP connections to the machine on port 80.

ipfw -q add 00400 allow tcp from any to me 80 in via dc0

The number after the add subcommand is used for ordering the rules. This
enables inserting rules into arbitrary positions on a running system.

The packet filter enables filtering based on all common network and transport
layer properties, such as addresses and ports. It also features more advanced
filtering methods, for example limiting the number of connections allowed by a
rule or matching based on the network interface that receives or sends the packet.

Although IPFW features stateful packet inspection, it doesn’t track connections
automatically. This has to be enabled for any rule that should create a new
connection for packets that match it.

6

1.4 Microsoft Windows

There are two packet filtering solutions on the Windows platform – Windows
Firewall and Static packet filtering.

Windows Firewall is primarily meant for desktop systems. It offers pre-set
profiles based on the users network. For example the “Public” profile is the most
restrictive one and is meant for networks anyone has access to.

Static packet filtering, available on Windows Server, provides a GUI to set up
static per-interface whitelists or blacklists [8].

7

2. Analysis

In this chapter, we analyze the requirements of adding a packet filter to HelenOS
and of its configuration.

2.1 Adding a packet filter to HelenOS

Because HelenOS is a multiserver operating system, it follows that a packet
filter should be implemented as a standalone service that communicates with the
network stack via IPC. We now outline the considerations related to integrating
such service with the rest of the HelenOS network stack.

2.1.1 Packet interception

All of the packet filters covered in section 1 work with rules that are based on
network and transport layer properties. Thus, it seems obvious that we should
intercept network layer packets. However, this approach makes it difficult to
obtain link layer properties, such as MAC addresses of the endpoints.

An alternative approach would be intercepting traffic on a lower level, such as
the network interface layer. An advantage of this would be direct access to the
raw packet data. However, we would have to reassemble fragmented packets and
thus duplicate functionality which is already implemented in the inetsrv service.

We chose to implement packet filtering in the inetsrv service. This way, we
can work with complete (unfragmented) datagrams, which are represented by
the inet dgram t structure type. This isn’t the only simplification of the overall
design – inet dgram t also abstracts us from IP protocol versions, making it
easy to support both IPv4 and IPv6. On the other hand, this approach makes
it difficult to access the raw data of the packets, which might be useful for the
filtering rules. Also, ICMP error messages are required to contain the first 64
bytes of the packet that caused the error [9]. This requirement isn’t satisfied by
this thesis.

2.1.2 IP datagram reassembly

Reassembling fragmented packets is indeed necessary for a packet filter that uses
transport layer properties or performs modification such as NAT [10]. Without
reassembly, we wouldn’t be able to extract information such as port numbers from
fragments of an IP datagram.

A negative implication of this is that the firewall needs to be the only point of
entry into the network it protects. Otherwise, some fragments might be routed
through a different machine, which would result in a loss of the whole datagram
or bypassing the firewall. This might be resolved by introducing a mechanism
similar to pfsync from OpenBSD.

8

2.1.3 Transport layer criteria

There are two basic ways of interoperating with the transport layer. We can
either register our packet filter with the tcp and udp services and respond to their
validation requests, or decode the transport layer headers of the IP datagrams we
receive from inetsrv.

An advantage of the former approach is that it separates filtering on the
network and transport layer. However, it introduces additional complexity into
communication between the network stack and the packet filter and some packets
would be passed between the services multiple times. Also, all the parts have to
share the configuration (maintaining rules separately for every layer would be
difficult and confusing). Moreover, mechanisms such as NAT also work the same
for multiple transport layer protocols and implementing them for every protocol
would mean duplicating the code or making the packet filter parts depend on
shared code.

Considering this, we chose to implement all packet filtering functionality in a
single service. This makes it straightforward to share common mechanisms and
also doesn’t obstruct extending the packet filter to support e.g. new transport layer
protocols. A drawback of this is that we duplicate the logic of decoding transport
layer PDUs and make the packet filter service operate on multiple network layers
at once.

2.2 Configuration

It is necessary for a general-purpose packet filter to support configuration, even
though some personal packet filters such as Windows Firewall only support a
limited number of preset configurations (IPFW also offers preset profiles). This
section analyses the way HelenOS pf will be configured.

2.2.1 Persistent configuration

It is important that packet filtering can be configured so that it persists after
rebooting the firewall. This can be achieved in two ways – with a shell script that
sets up the packet filter and is run on startup, or with a dedicated configuration
file that is loaded when the packet filter is started. The former is used by IPtables
and IPFW, the latter by OpenBSD PF.

An advantage of the first approach is that it doesn’t introduce more complexity
into the filtering rules – features such as variables and list expansions known from
OpenBSD PF can be replaced with variables and cycle commands provided by
the shell.

The second approach offers a cleaner, well-defined rule format that is indepen-
dent of the shell it is run in. It also doesn’t require support from the operating
system (other than reading files), as opposed to the first approach, which needs
the operating system to run some files on startup.

For HelenOS pf, we chose the second approach, because scripting support
in HelenOS is currently in an early stage of development and doesn’t support
features such as variables. Moreover, it is easier to debug the configuration parser
when we have full control of the loading process.

9

2.2.2 Runtime configuration

Because we decided to use a dedicated configuration language, it might seem
superfluous to have a tool for adding rules dynamically. However, this is useful
when we need to change the configuration for a limited period of time or for
testing purposes.

On the other hand, it is useful to know all the rules when the packet filter is
starting, as it enables us to perform optimizations of the rules and detect possible
logical errors in the ruleset. This can be of course done also when adding the rules
on runtime, but it might impair the performance of the packet filter.

We decided not to implement runtime configuration, because the benefits it
brings aren’t very important in the current stage of development.

2.2.3 Configuration file format

The rule syntax of IPFW and IPtables is designed with respect to rules being
added with shell commands. Iptables accomplishes this by using command line
options such as -A or -J, while IPFW uses a language that is more reminiscent
of a natural language. Iptables commands look more like the majority of shell
commands. The order of arguments is not fixed, which makes it easier to write
the commands.

However, the IPtables commands are hard to understand without documenta-
tion, which might be the reason tools such as ferm or UFW exist.

Although OpenBSD PF is primarily configured with the pf.conf file, the
rules’ syntax is similar to those of IPFW or UFW.

The configuration syntax of HelenOS pf should use English words to describe
rules, so that they are readable even for less experienced users. The order in which
criteria and other parts of a rule are written shouldn’t matter to the parser. This
will help avoid unnecessary errors.

10

3. Usage

In this chapter we describe HelenOS pf from a user’s point of view. We introduce
the basics of configuration and control of the packet filter. We also outline some
of its more advanced features such as stateful packet inspection and NAT.

3.1 Configuration syntax overview

Packet filtering can be enabled by running the pf command. However, before this
can be done, we have to write a configuration file and save it to /data/pf.conf.

The configuration file is a list of rules (a ruleset) that determine the packet
filter’s behavior during packet validation. The rules are evaluated from the first one
to the last. When a packet is validated, the first rule that matches it determines
the action that should be taken.

A rule is written in the following general form1 (square brackets denote an
optional value, * means any number of repetitions from zero to infinity):

<action> <direction>[<flag>]* {

[<criterion>[,

<criterion>

]*]

}

Actions

The <action> placeholder can be replaced with the following:

pass – let the packet pass,

block – just drop the packet without any notice to the sender

reject – drop the packet and notify the sender via ICMP

Traffic direction

<direction> can be either in or out, where in is used for any packets whose
destination is the machine that runs pf and out is used for any packets that are
forwarded or originated from the machine.

Flags

continue Using this flag, it is possible to override the default matching policy.
When a rule with this flag matches, the evaluation continues and the rule is
used only if no other rule matches. This is useful for specifying the default
filtering policy at the beginning of the file.

log Any packets matching the rule are logged by the packet filter. This applies
even when the rule has a continue flag.

nostate Forbid the rule to open a connection (see section 3.3).

1This is a simplified example. For a detailed description of the configuration language, see
appendix C.

11

Criteria

A <criterion> is an atomic filtering condition in the following form:

<type> [!]<match_type> <arg>[<arg>]*

<type> A criterion type such as dest addr or src port.

<match type> The way the criterion matches against a packet property, e.g. =

or between. It is possible to negate the matching type by prepending a !

sign to it – !between means anything outside given range.

<arg> The value(s) the criterion compares with the corresponding properties
of the packet. For example, a dest addr criterion with matching type =

requires one argument such as 192.168.1.254.

When a rule has multiple criteria, they are evaluated as a conjunction (logical
“and”). It is possible to express a disjunction (logical “or”) with multiple rules.

Some criteria only apply to certain protocols, for example src port will only
work for TCP or UDP. Rules containing such criteria do not match packets of
other protocols (a rule that contains a src port criterion won’t match an ICMP
message).

Basic criteria and matching types

src addr, dest addr The source or destination IP address. Possible matching
types are = or equal (the address in the IP header is equal to the argument)
and subnet (the address in the IP header belongs to a subnet specified by a
CIDR block in the argument). Both IPv4 and IPv6 addresses are supported.

src port, dest port The source or destination port. These criteria can only
match packets sent over protocols that use ports. Available matching types
are = (or equal), > (or greater), < (or smaller) and between. The
argument (or arguments, for the between matching type) is required to be
a number between 1 and 65535.

proto Transport layer protocol. Only the equal (or =) matching type is allowed.
The argument can be either the protocol number, or its name protocol
(e.g. TCP or ICMP). The protocol names are case insensitive.

interface Substitute the network interface name in the argument (e.g. eth1)
with its configured subnet address. The only allowed matching type is =.
The criterion is interpreted with respect to the direction of the rule. For
in, the criterion translates to src addr subnet <address>, for out to
dest addr subnet <address>.

Example configuration

The following is a complete example of a configuration file. It blocks any traffic
by default, with the exception of HTTP communication with 10.0.10.20.

block in continue {}

block out continue {}

pass out log {

12

dest_addr = 10.0.10.20,

dest_port = 80

}

pass out {

src_addr = 10.0.10.20,

src_port = 80

}

3.2 Ruleset evaluation

When pf validates a packet, it traverses the ruleset and matches the packet against
the criteria of each rule. The validation uses a first-match policy: the first rule
that matches the packet determines the action to be taken. This means that the
sooner a rule appears in the ruleset, the higher priority it has. This behavior can
be fine-tuned using the continue flag.

Start validating packet

Load next rule

Does packet match rule’s criteria?

Does rule have the continue flag?

Return last matching rule

yes

no

no

yes

no more rules

Figure 3.1: A diagram of the ruleset evaluation mechanism

3.3 Stateful packet inspection

pf is capable of keeping track of the network connections whose packets it filters.
That means that whenever a packet capable of opening a connection matches a
rule that lets it pass, an entry is created in pf’s state table. When a packet that
belongs to a connection already present in the state table is encountered, the rule
that opened the state is applied. This mechanism is a variant of stateful packet
inspection – packets are filtered with respect to connection state.

An obvious advantage of this behavior is performance – the packet filter doesn’t
have to evaluate the ruleset again for every packet in a connection.

13

Also, the connections are bidirectional. When a reply to a packet arrives, it is
passed automatically, which adds security and helps writing shorter rulesets. We
illustrate this on the following ruleset:

block in continue {}

block out continue {}

pass out {

dest_port = 80,

proto = tcp

}

This ruleset blocks everything except for TCP connections to port 80. The
ruleset itself, without state tracking, blocks responses to our TCP requests. We
could address this by adding another rule that allows traffic from TCP port 80,
but that could also allow outside hosts to initiate TCP connections to our machine,
which might not be the intended behavior.

Keeping track of TCP connections also enables pf to check that the packets in
the connections don’t violate the protocol. For example, connections that haven’t
been initialized with a three-way handshake are blocked.

In some cases, this behavior is undesirable – for example when we only want to
enable communication in one direction. In such situations, a rule can be forbidden
to create a new connection using the nostate flag.

3.3.1 State keeping for stateless protocols

From the previous section it might seem that pf only performs SPI for TCP. It
is true that protocols such as UDP or ICMP have no concept of a connection,
but it is still possible to make records in the state table for them. These records
have to expire after certain time, because there is no other way to know that the
communication has ended.

3.4 Advanced usage

This section deals with packet filtering actions that alter the processed packets,
namely NAT and port forwarding.

3.4.1 Network address translation

Network address translation (NAT) is a process of remapping a network address
space into another by modifying the network layer headers of forwarded packets.
This can be used to conserve public IP addresses and to secure internal networks
by hiding the computers in them behind a machine that performs NAT.

With these goals in mind, pf provides the masquerade action, that transforms
packets originating from an internal network so that they appear to come from the
firewall itself. Any replies are then translated back and passed thanks to stateful
packet inspection. The following is an example of a basic NAT configuration:

14

masquerade(10.0.20.15) {

src_addr subnet 10.0.10.0/24

}

block {

dest_addr subnet 10.0.10.0/24

}

Any traffic originating from the internal network (subnet 10.0.10.0/24) will
be masqueraded using NAT. The translation is transparent to the machines in
the internal network – from their point of view, they communicate directly with
the remote host. However, to the remote host it will appear that the traffic is
coming from the firewall (address 10.0.20.15). Additionally, any traffic destined
directly to the internal network is blocked to ensure its isolation.

In case we need to filter packets going out from the masqueraded network, it
suffices to add a new rule before the masquerade rule. This ensures that packets
blocked by the new rule will never match the masquerade rule.

Also note that pf ensures that the response to a request from a masqueraded
network originates from the correct address and port (which is the destination
of the request). This prevents computers outside of the internal network from
initiating a connection with computers inside.

3.4.2 Port forwarding

Port forwarding is a mechanism that allows forwarding traffic from a dedicated
port of the machine running pf to another machine. This is useful for example
when we need to expose a service running on a machine in a NAT-protected
network to the outside world.

This functionality is provided by the forward action. A rule with this action
must containtwo mandatory criteria, dest addr and dest port, and optionally a
proto criterion, such as in this example:

forward(10.0.10.17, 8080) {

dest_addr = 10.0.20.15,

dest_port = 80

}

This example rule forwards all traffic from port 80 of the firewall to port 8080
of the machine with address 10.0.10.17, and makes sure that replies from that
machine appear to originate from the firewall.

In case it’s necessary to filter the forwarded packets, we can use the special
through direction flag as follows:

block through {

src_addr subnet 98.154.87.0/24,

dest_port = 8080

}

15

This rule prevents traffic originating from a specified subnet from reaching port
8080 of a machine protected by a firewall via port 80 of the firewall (supposing
we also use the forward rule from the previous example). Note that the through

rules are evaluated after the forwarded packets are transformed, i.e. the actual
address and port are filled in.

3.5 Disabling packet filtering

In some situations, it might be necessary to disable the packet filter. This can be
done using the pfctl userspace utility. To deactivate pf, simply run the following
command:

pfctl disable

It is also safe to simply stop pf using the kill command. However, it might
cause some error messages to appear in the log files. This is because the network
stack services have no way to tell if pf was stopped or if it terminated due to an
error.

3.6 Traffic logging

When a packet matches a rule with the log flag, this fact is recorded in the
/log/pf log file. Note that if a rule has both the log and continue flags, any
packet matching it is logged, even though the packet is matched later by another
rule without the log flag. This way, it is possible to log all packets using only one
rule.

The messages about matched packets are logged with level 3 (“note”). This
means that they are logged by default and can be disabled by using a less verbose
log level for pf.

A report of a matching packet contains its source and destination address,
protocol number, source and destination ports for protocols that use ports and
the name of the action that was used to dispatch the packet (not necessarily the
one with the log flag).

16

4. Implementation

The following chapter deals with modifying the HelenOS network stack to support
packet filtering by passing IP packets to an external service and with the design
of such service (pf). The former is covered in section 4.2, the latter in section 4.3
and following sections.

Both inetpf and pf are written in the C programming language, which is well
suited for relatively low-level tasks such as packet filtering. It is also the main
programming language used in HelenOS.

4.1 Modifications of the network stack

Although an interface with the packet filtering service (referred to as “packet filter”)
is provided by inetpf, we had to modify the network stack to use this interface.
Because we decided that inetpf and the packet filter will use the inet dgram t

data structure, we will refer to the units of filtered traffic as datagrams.
We now describe the modifications we made to the inetsrv service (referred

to as “original inetsrv”).

4.1.1 Forwarding datagrams

A machine that is intended to work as a firewall must be able to forward packets
sent from one network to other network. Because the original inetsrv doesn’t
support forwarding at all, we implemented a basic variant of this mechanism:
whenever a datagram is received that doesn’t match any of the firewall’s addresses,
it is re-sent with the inet route packet function. Before that, its TTL value is
decremented.

4.1.2 Filtering outgoing datagrams

All outgoing datagrams, regardless of their origin, are processed by the
inet route packet function, where they should be validated. However, if the
datagram was sent as a result of rewriting an incoming datagram, it is not necessary
to validate it again – the packet filter already processed it.

We chose to move the code that actually sends the datagram to a new function
called inet do route packet. The inet route packet function uses the inetpf

interface to validate the datagram. If it passes, it is sent using our new function.
It is also safe to use this function to send datagrams without validation.

4.1.3 Filtering incoming datagrams

All received IP packets have to go through the inet recv packet function, which
makes it a good place for filtering incoming traffic. However, this function works
with packets which might have to be reassembled. In the original inetsrv,
reassembled datagrams are immediately delivered locally. This behavior is not
acceptable, as it bypasses validation.

17

To address these issues, we replaced the inet recv dgram local function
called by the reassembly module with inet recv dgram. This new function
decides if the datagram is destined to the firewall or if it should be forwarded.
In the first case, it is validated as an incoming datagram. In the second case, it
is forwarded using inet route packet, and therefore validated as an outgoing
datagram.

There is an additional issue in the first case: the packet filter might rewrite the
datagram so that it becomes an outgoing datagram. This happens for example
after port forwarding. If such transformation is made, inetpf returns a special
value. Thus, we can check if the datagram is still destined to the firewall (in this
case we deliver it locally), or if it should be forwarded (then we send it using
inet do route packet as it has already been validated).

4.2 inetpf interface

The inetpf interface is a layer between the IP networking server (inetsrv) and
a packet filter. Principially, any application can serve as a packet filter if it
implements the inetpf protocol.

4.2.1 Packet filter registration

A packet filter has to register itself with the inetpf service on startup before it
can start filtering traffic (see figure 4.1). Only one service can act as a packet filter
– it would be hard to deal with different responses and arbitrary modifications by
the services. If there is no registered service, inetpf lets everything pass.

Store SID

Send INETPF SHARE MEM
and share memory with sender

Send INETPF REGISTER

Receive shared memory

Packet filter

Figure 4.1: Registering a packet filter with inetpf

4.2.2 Datagram validation

When inetsrv processes an incoming or outgoing datagram, it uses the
inetpf validate function to decide whether the datagram should be blocked.
This function transfers the packet to the packet filter service and returns its
response.

See figure 4.2 for a detailed description of this process.

18

If no packet filter is registered,
let the datagram pass

inetpf validate

Send INETPF VALIDATE INIT
and wait for answer

Copy datagram to shared memory

Send INETPF VALIDATE
and wait for answer

If the datagram was rewritten,
copy it back

Return answer

Accept

Validate the datagram

Packet filter

Figure 4.2: The inetpf validation process

inetpf passes the datagrams that are to be validated via shared memory.
This implementation is faster than copying them between the services and also
makes the task of receiving modified datagrams trivial. On the other hand, the
protocol has to prevent data races such as inetpf rewriting the datagram in
shared memory with a more recent one while the packet filter is still validating it.

4.2.3 Response types

After a datagram is validated, the packet filter service returns an answer that
determines the action inetsrv should take:

PASS – the datagram has passed the check and can be delivered

BLOCK – drop the datagram – it didn’t pass

PASS REWRITE – deliver the datagram, but reload it from shared memory first
(this response means that the packet filter made some modifications to the
datagram)

Any actions apart from these, such as rejecting a datagram with an ICMP
message, have to be performed by the packet filter itself. This decision was made
to ensure that the inetpf interface stays simple and doesn’t provide services that
are out of the scope of inetsrv. A drawback of this is that every potential filtering
service will have to implement the common functionality (such as aforementioned
ICMP reject messages) again.

19

4.2.4 Packet filter termination

When the packet filter exits, for example because of a user’s request, it should
notify inetsrv. This is implemented by the INETPF UNREGISTER method.

Forget SID Send INETPF UNREGISTER

Receive INETPF DISABLE

Terminate

Packet filter

Figure 4.3: Notifying inetsrv of the packet filter’s termination

Note that inetpf also unregisters the packet filter if it crashes or hangs up
for some reason, but such event is logged as an error.

4.3 PF service

The pf service is the main subject of this thesis. It implements static and stateful
packet filtering on the network layer, based on a list of configured rules. It
also features an extendable system of datagram transformations such as NAT
masquerading or port forwarding.

This section describes the core components of the service.

4.3.1 Filter

The filter module is the centerpoint of packet filtering functionality. It uses a
list of configured rules to validate packets received from the inetpf interface.

The rules are represented by a data structure that contains an action callback
and a set of criteria. An action callback is a function (with certain metadata)
that returns an inetpf response. Apart from this, there aren’t many constraints
on the function – it can for example send ICMP messages or manipulate the
datagrams’ IP headers. The criteria are a conjunction of atomic conditions, such
as “destination address equals 10.0.0.138”. A rule as a whole specifies the action
to be taken for packets matching its criteria.

When pf starts, it loads rules from a configuration file. The filter then divides
them into multiple lists, called rulesets. Currently, there are separate rulesets for
inbound traffic, outbound traffic and traffic on mapped ports. Because it is trivial
to decide which ruleset should be evaluated during validation, this division gives
us a performance advantage, as we don’t have to evaluate irrelevant rules.

20

Rulesets are evaluated sequentially, using a first-match policy – the first rule
in the ruleset whose criteria are satisfied by the datagram determine the action to
be taken. This policy was chosen because it is (subjectively) easier to understand
and optimize.

Extendable actions

While the set of possible criteria is rather restricted and it is not difficult to add a
new one, the amount of possible actions is virtually unlimited. Moreover, actions
are more complicated than simple boolean expressions – they can have potentially
any effect. Therefore, we designed actions as modules that are as independent as
possible. We demonstrate this by describing how to implement a new action.

The source file of the new action must contain a structure of type action t.
The structure has following members:

name – a string that is used to distinguish the action during configuration loading

fnc – the function that is called when a datagram matches a rule. It must return
a valid inetpf response.

init – a function that initializes the action’s global state, e.g. initiates a connec-
tion to a service. It is called during the filter’s initialization.

load rule – a function that parses the action’s arguments and returns a pointer
to the rule’s configuration. This pointer is passed to fnc whenever it’s called
and enables it to maintain rule-specific context.

destroy – a function that is called when pf is going to exit and cleans up the
action’s global state

This structure has to be declared in the actions.c file, and included in the
filter actions array in the same file. To ensure that our new action is compiled
and linked with the rest of the filter, we must include its source file in the SOURCES
variable in pf’s Makefile.

This way of extending the filter encapsulates the individual actions well,
without restricting their access to the rest of pf and external libraries (provided
that they’re included in the Makefile).

It would be possible to eliminate the need to list the actions in actions.c

using a linker script that defines a new section in the resulting ELF binary and
putting the action t structures into this section. However, this would require a
modification of HelenOS’ own linker script, which could prove more difficult to
maintain than a plain C file.

4.3.2 Port map

The forward and masquerade actions require pf to map a port on the firewall
to a remote address and port. The mapping can optionally have a timer, whose
expiration means that the entry is no longer valid. This functionality is provided
by the portmap module.

The module’s interface

For a given mapping (local port and protocol to remote address and port),
portmap stores a data structure (portmap callback t) that contains a function

21

that should be invoked on datagrams received through the local port. Inserting
port mapping is implemented in the portmap insert function that also takes the
current timestamp as an argument. The timestamp is used to check the mapping
for expiration.

The port map itself doesn’t validate any traffic. Instead, the filter module
calls the portmap find function when validating a datagram to see if it should be
forwarded somewhere else. This function takes a protocol and port number used
to search for the mapping, along with a timestamp used for expiration checks. If
a mapping is found and hasn’t expired, its timestamp is updated with the current
one and its callback structure is returned.

A reason for these functions to work with timestamp arguments instead of
getting the timestamp themselves is simpler testing – in unit tests, we can easily
supply them any value and check if their behavior is correct.

Implementation details

Mappings are stored in a hash table that uses the protocol number and local port
as a key. This abstract data structure is a part of the HelenOS project, which is
one of the main reasons we decided to use it – it is unnecessary to implement our
own data structure for such a simple task.

Another reason for using hash tables is that they only require us to supply
a hash function for our key (a tuple of numbers). This is not as difficult as for
example defining an ordering on the keys, as required by search trees.

portmap also uses a reverse table that maps remote addresses and ports to
local ports. This is used in checking for duplicate mappings.

Reserving ports

Because pf operates predominantly on the network layer (it receives datagrams
from inetsrv), it has no concept of sockets. This becomes a problem when we
need to reserve a port that is used for a mapping. Binding a socket to such port
from some other program than pf would result in erroneous behavior – anything
that should be received by the socket would be instead forwarded somewhere else.

To address this issue, we open a new socket whenever a port mapping is
registered and bind it to the mapped port. The socket is in fact never used, but
it prevents other applications from using the port. This solution might have an
impact on pf’s performance, but it is currently the only feasible way of reserving
a port.

4.3.3 State table

Apart from static packet inspection (only based on the datagram’s properties), pf
also features stateful inspection. This means that it keeps track of connections
between hosts – once a datagram matches a rule, it creates a connection. From this
point, datagrams that belong to this connection are accepted without evaluating
the rules.

An obvious advantage of stateful inspection is the performance gain of not hav-
ing to evaluate the rules for every datagram. Another one is that the connections
are bidirectional, which simplifies configuration – we don’t have to explicitly allow

22

replies to allowed requests. As this might not always be the intended behavior,
it is possible to set a “nostate” flag for a rule, which prevents it from opening
connections.

A connection is identified by its protocol, source and destination address and
source and destination port. The state table uses these values as keys to stored
data about the connection – most importantly its state, a timestamp used to
check it for expiration and the rule responsible for its creation. The storage logic
is implemented in the statetable module.

The module’s interface

The module offers the following functions:

statetable insert Takes a rule, protocol number and a datagram. The address-
es and ports are extracted from the datagram and used to record a new
connection.

statetable check Takes a protocol number and a datagram. These are used to
look up a connection in the state table. If a connection is found, its state
and the rule responsible for its opening are returned by output parameters.
If the datagram is invalid in context of this connection (for example it tries
to open a new connection even though one already exists), the function itself
returns false. If it’s valid, the function returns true. If there is no connection
present in the state table, the function returns true if the datagram can be
used to open a new connection.

Both of these function also require the current timestamp as a parameter – it
is used to check whether the connection expired.

Implementation details

Data about connections is stored in structures of type connection t, which are
in turn stored in a hash table.

We chose to use a hash table because it is rather straightforward to compute a
hash out of the values that identify a connection (protocol, source and destination
address and port), in contrast to for example implementing a comparison function
on tuples of these values.

Connection state tracking

At this state of development, pf only validates the initial phase of a TCP con-
nection. When a new connection is being opened, we ensure that it is initiated
with a three-way handshake by only accepting datagrams with the correct flags.
After the connection is initiated, only packets without the SYN flag are accepted.
The connection remains open until it expires, because it is very difficult (if not
impossible) for the firewall to determine if the connection was closed [11].

Although stateless protocols such as UDP and ICMP have no explicit start
and end of a connection, it is still possible to track their state in some measure
– any accepted datagram can open a new connection, which remains open until
expiration. This gives us the advantage of both simpler configuration and better
performance.

23

4.3.4 The validation process

In figure 4.4 we can see how the filter module proceeds when it validates a
datagram. Datagrams destined to a mapped port must be transformed before
looking up their state so that the state table knows the actual endpoints of a
potential connection.

Start validating a datagram

Is it destined to a mapped port?
Invoke the callback

associated with the mapping

yes

Does it belong to
an active connection?

Invoke the action
associated with the connection

Return PASS

no

yes

Evaluate corresponding ruleset

Invoke the callback
associated with the matching rule

(if any)

If the rule allows creating states,
open a new connection

Return the rule action’s answer

no

Figure 4.4: A diagram of datagram validation

4.3.5 Configuration parsing

Because the configuration language is relatively simple, we chose to implement
a custom parser. It reads the configuration file character by character, treating
continuous strings of non-whitespace characters as tokens – lexical units of the
configuration file. The parser only keeps track of the current token.

The parsing process is initiated by calling the config load function. This
function takes a function as an argument that returns lines of the configuration
file. It uses this function instead of reading the file directly to enable unit testing
of the configuration parser.

During the parsing process, config load calls the read rule function repeat-
edly. The read rule function advances the current token cursor when necessary.
If the parser reaches the end of the input without errors, it returns a list of
rule prototype t structures.

The prototype list is handled by the filter module, which preprocesses it
and transforms it into the rulesets that are used for validating packets.

24

4.4 NAT masquerading

pf implements a basic variant of the NAT mechanism based on port forwarding
(NAPT). It maps an unused port number of the firewall to an internal address and
port. For outgoing traffic, packets are modified so that it looks like they originated
from the mapped port of the firewall. The address and port of any packet destined
to the mapped port are rewritten to the associated internal address and port. See
figure 4.5 for an illustration of this mechanism.

Firewall
10.0.20.15
10.0.10.15

Remote workstation
10.0.20.16

Masqueraded workstation
10.0.10.16

Request
from 10.0.10.16:54762

to 10.0.20.16:80

Request
from 10.0.20.15:24587

to 10.0.20.16:80

Response
from 10.0.20.16:80
to 10.0.20.15:24587

Response
from 10.0.20.16:80

to 10.0.10.16:54762

Figure 4.5: A demonstration of the NAPT mechanism

4.4.1 NAT for ICMP

Although ICMP messages don’t use ports, it is still possible to perform NAT for
some of them, most notably echo requests and replies [12]. Where ports would be
used for TCP or UDP, we use the message identifier. The identifier is a 16-bit
number, exactly like TCP and UDP port numbers. Thanks to this, we can easily
use the portmap module.

A drawback of this solution is that we cannot reserve these “ports”, which
means that there is a chance that a collision occurs. Also, messages that do not
contain an identifier, such as “Destination Unreachable” [9] have to be dropped.

25

5. Evaluation

In this chapter we describe the environment that was used to test the packet filter.
We also present some of the test scenarios that show its important features.

5.1 Testing environment

At this stage of development, HelenOS is mainly tested using virtualization
software (namely qemu [13]), which is also the case of HelenOS pf. This approach
was chosen because it allows automated testing and makes the testing environment
portable and easily deployable, as opposed to building a physical network.

For a guide on using the testing environment, see appendix B.

5.1.1 Virtual network implementation

Firewall
HelenOS
10.0.20.15
10.0.10.15

Switch 1

Switch 2
Workstation 2.1

HelenOS
10.0.20.16

Workstation 2.2
GNU/Linux
10.0.20.17

Workstation 1.1
HelenOS
10.0.10.16

Workstation 1.2
GNU/Linux
10.0.10.17

net2

net1

Figure 5.1: A diagram of the virtualized testing environment

To test the capabilities of HelenOS serving as a firewall, we set up two virtual
networks, net1 and net2, that are connected by a router running HelenOS pf.
The guests in these networks are qemu virtual machines that boot from a live CD
image. This helps to ensure that no configuration persists from previous tests.
Also, during development, the images are updated frequently and it would be
difficult to update a HelenOS installation on a virtual hard drive.

The networks contain both HelenOS and GNU/Linux guests. One reason for
this is that GNU/Linux ships with networking utilities that are far more mature
than their HelenOS counterparts. For example, netcat is a priceless tool for
testing network communication.

26

We connect the guests using VDE1, which is a robust virtual networking
solution shipped with qemu. The VDE networks are entirely separated from the
network of the host system, which prevents any broadcast messages originating
from the host’s network from entering the testing network.

It is possible to bridge the testing network with the host’s network. However,
this would require extensive, platform dependent configuration. For example, on
GNU/Linux systems, setting up a network bridge requires root access, as we need
to create a virtual network interface.

On the other hand, having no direct network connection to the testing envi-
ronment means we have to find another way of controlling the virtual machines
remotely.

5.1.2 Controlling the virtual machines

With network connection to the guests, we could use e.g. telnet to connect to
HelenOS’ remcons service and obtain a basic shell. A major drawback of this
solution is that the virtual machine running pf would have to be aware that it’s
being tested to allow traffic belonging to remcons pass. To control the GNU/Linux
guests, we could use ssh. That would require us to send commands to these
guests using different utilities than with the HelenOS guests.

We chose an alternative aproach that eliminates the dependency on network
configuration and the guest OS: we translate commands into series of key events
that are sent to the virtual machines via qemu monitor, which allows us to connect
any OS that can be controlled by a keyboard to the network. Of course, the
commands themselves are still different for the operating systems, but we can
enter them using a uniform interface.

5.1.3 Monitoring network communication

Because of our approch to controlling the guests, we have no information about the
results of the commands we ran2. This would be an issue for example if we tested
interactive commandline utilities. However, for testing network communication, it
is more suitable to observe traffic on the guests’ network interfaces and check if it
is filtered correctly by the packet filter.

Qemu can be configured to capture traffic on any network interfaces in the
virtual network and save it to pcap files. These files are then examined using
the ngrep3 utility, which filters the capture using the same rule syntax as libpcap
(used in tcpdump). After running the tests, the captures can also be examined
manually, using a program such as Wireshark.

1http://vde.sourceforge.net/
2We can of course check the results on the display of the virtual machine. However, it is very

difficult to automate this.
3http://ngrep.sourceforge.net

27

http://vde.sourceforge.net/
http://ngrep.sourceforge.net

5.2 Scenario: Restricting traffic to specified

ports

The following is an example of a highly restrictive setup. Workstations in the
internal network are only allowed to make HTTP requests and query one specific
DNS server. The workstations could be used for example to provide people with
web access.

To facilitate remote administration, SSH login and sending ICMP messages
are enabled for a single machine (which might be for example the administrator’s
workstation).

Block everything by default

block in continue {}

block out continue {}

Only enable DNS queries to 10.0.20.17

pass out {

interface = eth1,

proto = udp,

dest_port = 53,

dest_addr = 10.0.20.17

}

Enable HTTP(S) requests from the internal network

pass out {

interface = eth1,

proto = tcp,

dest_port = 80

}

pass out {

interface = eth1,

proto = tcp,

dest_port = 443

}

Enable SSH connections to machines in the internal network

from 10.0.20.16

pass in {

interface = eth1,

proto = tcp,

dest_port = 22,

src_addr = 10.0.20.16

}

Enable sending ICMP messages from 10.0.20.16

pass in {

interface = eth1,

28

proto = icmp,

src_addr = 10.0.20.16

}

5.3 Scenario: Workstations behind a NAT

In this setup, the workstations in net1 are hidden using NAT, which means they
can’t be reached from the outside. Because there is a HTTP server running
on Workstation 1.1 and we need to be able to access it from the outside, we
forward port 80 on the firewall to port 8080 on address 10.0.10.16. We restrict
access to this web server to a single machine. This can be achieved with following
configuration:

Block traffic destined to the firewall by default

block in continue {}

Block non-HTTP traffic from internal network

block out {

interface = eth1,

dest_port != 80

}

Block any traffic destined directly to the internal network

block in {

interface = eth1

}

NAT for the internal network

masquerade(10.0.20.15) {

interface = eth1

}

Only allow 10.0.20.17 to access our web server via port 80

block through continue {}

pass through {

src_addr = 10.0.20.17,

dest_port = 8080

}

Forward everything on port 80 to an internal web server

forward(10.0.10.16, 8080) {

dest_addr = 10.0.20.15,

dest_port = 80

}

29

Conclusion

The main goal of this thesis was to develop a packet filter that is configurable
and easily extendable. We fulfilled this goal by implementing pf, a full-featured
filtering service. Its architecture allows adding actions that are executed on packets
that match a rule. This is demonstrated by the reject, forward and masquerade

actions.
Furthermore, we analyzed the filtering mechanisms present in the packet filters

shipped with major operating systems and the methods of their configuration.
We used the results of this analysis to design a configuration file format that is
easy to write as well as to understand. The analysis also helped us to choose an
established matching strategy (first match wins), which is easy to understand and
allows optimizing the ruleset by placing the most frequently used rules near its
start.

Our packet filter also features stateful packet inspection. It doesn’t allow
using the connection state as an explicit matching criterion, and performs SPI
automatically instead with the option of disabling it.

Lastly, we modified the HelenOS networking stack so that it supports packet
filtering for both IPv4 and IPv6 by querying a separate packet filter service. We
also added support for packet forwarding to the Internet Protocol service.

In conclusion, these features allow HelenOS to be used as a firewall or NAT
machine that protects either a single computer or a small local network.

Additionally, we created a simple virtualized testing environment that can be
used to test packet filtering, as well as other networking-related features.

Future work

Although we fulfilled the thesis’ goal, there are still many ways in which the packet
filter could be improved:

• We could modify the way the networking stack and packet filter communicate,
so that the filter also receives the raw packet data. This would allow several
new features:

– The filter could log packets that match a rule in the PCAP format,
which is supported by network diagnostics tools (e.g. Wireshark).

– The reject action could send error messages that contain the header
of the packet that caused the error, as requested by RFC 792 [9].

– It would be possible for the interface criterion to match actual MAC
addresses of the interface that sends or receives the packet.

• We could proxy TCP handshakes in a manner similar to that of OpenBSD
PF. This would improve the security of the firewall and reduce vulnerability
of the machines in the internal network to certain kinds of attacks.

• Another useful feature of OpenBSD PF are address tables - groups of subnet
addresses that are stored in data structures that allow efficient lookups.
These are useful for matching packets against large numbers of IP addresses.

30

• Compiling the ruleset to a pseudo-virtual machine bytecode like in nftables
would lead to a performance boost. We could even integrate the pseudo-
virtual machine into the network stack itself. This could reduce the amount
of necessary communication with the packet filtering service, as it could just
copy the bytecode after loading the configuration file and then just receive
notifications of events such as logged packets.

31

Bibliography

[1] HelenOS website. 2015. url: http : / / www . helenos . org (visited on
05/15/2015).

[2] Netfilter homepage. 2015. url: http://www.netfilter.org/index.html
(visited on 05/15/2015).

[3] Nftables project homepage. 2015. url: http://netfilter.org/projects/
nftables/ (visited on 05/15/2015).

[4] Ferm - firewall rules made easy. 2015. url: http://ferm.foo-projects.
org/download/2.2/ferm.html (visited on 05/15/2015).

[5] OpenBSD PF documentation. 2015. url: http://www.openbsd.org/faq/
pf/ (visited on 05/15/2015).

[6] OpenBSD commit: Remove IPF. 2001. url: http://marc.info/?l=

openbsd-cvs&m=99118909527873 (visited on 06/28/2015).

[7] IPFW documentation. 2015. url: https : / / www . freebsd . org / doc /

handbook/firewalls-ipfw.html (visited on 05/28/2015).

[8] Configuring Static Packet Filters. 2009. url: https://technet.microsoft.
com/en-us/library/dd469754(v=ws.10).aspx (visited on 05/14/2015).

[9] RFC 792 - Internet Control Message Protocol. 1981. url: https://tools.
ietf.org/html/rfc792 (visited on 06/23/2015).

[10] RFC 2993 - Architectural Implications of NAT. 2000. url: https://tools.
ietf.org/html/rfc2993 (visited on 06/26/2015).

[11] RFC 2663 - IP Network Address Translator (NAT) Terminology and Con-
siderations. 1999. url: https://tools.ietf.org/html/rfc2993 (visited
on 06/28/2015).

[12] RFC 3022 - Traditional IP Network Address Translator. 2001. url: http:
//tools.ietf.org/html/rfc3022 (visited on 06/23/2015).

[13] QEMU processor emulator. 2015. url: http://wiki.qemu.org/Main_Page
(visited on 07/26/2015).

[14] Compiling HelenOS from source. 2015. url: http://trac.helenos.org/
wiki/UsersGuide/CompilingFromSource (visited on 07/26/2015).

32

http://www.helenos.org
http://www.netfilter.org/index.html
http://netfilter.org/projects/nftables/
http://netfilter.org/projects/nftables/
http://ferm.foo-projects.org/download/2.2/ferm.html
http://ferm.foo-projects.org/download/2.2/ferm.html
http://www.openbsd.org/faq/pf/
http://www.openbsd.org/faq/pf/
http://marc.info/?l=openbsd-cvs&m=99118909527873
http://marc.info/?l=openbsd-cvs&m=99118909527873
https://www.freebsd.org/doc/handbook/firewalls-ipfw.html
https://www.freebsd.org/doc/handbook/firewalls-ipfw.html
https://technet.microsoft.com/en-us/library/dd469754(v=ws.10).aspx
https://technet.microsoft.com/en-us/library/dd469754(v=ws.10).aspx
https://tools.ietf.org/html/rfc792
https://tools.ietf.org/html/rfc792
https://tools.ietf.org/html/rfc2993
https://tools.ietf.org/html/rfc2993
https://tools.ietf.org/html/rfc2993
http://tools.ietf.org/html/rfc3022
http://tools.ietf.org/html/rfc3022
http://wiki.qemu.org/Main_Page
http://trac.helenos.org/wiki/UsersGuide/CompilingFromSource
http://trac.helenos.org/wiki/UsersGuide/CompilingFromSource

List of Figures

3.1 A diagram of the ruleset evaluation mechanism 13

4.1 Registering a packet filter with inetpf 18
4.2 The inetpf validation process . 19
4.3 Notifying inetsrv of the packet filter’s termination 20
4.4 A diagram of datagram validation 24
4.5 A demonstration of the NAPT mechanism 25

5.1 A diagram of the virtualized testing environment 26

33

List of Abbreviations

IPC Interprocess communication. 8

NAPT Network address and port translation. 25
NAT Network address translation. 3–6, 8, 9, 11, 14,

15, 20, 25, 29, 30, 39

PDU Protocol data unit. 9

SPI Stateful packet inspection. 14, 30

34

Attachments

35

A. Contents of the attached CD

The attached CD contains following items:

source/

A folder with the complete Bazaar source code branch.

image.iso

An ia32 HelenOS live CD image.

changes.patch

A patch file containing all the changes made to HelenOS in this thesis.

virtlab/

The testing environment. The tests directory contains the two test scenarios
presented in chapter 5, as well as other, less complicated tests.

thesis.pdf

This thesis.

36

B. Running the test environment

The following is a step-by-step guide on building the HelenOS CD image and
running tests of packet filtering functionality.

B.1 Building HelenOS

This step is only needed to test architectures other than IA32 - there is already
an IA32 image on the attached CD.

1. Copy the sources from the attached CD to your hard drive and open a
terminal in the source folder

2. Choose a folder where the HelenOS toolchain should build a cross-compiler:

$ export CROSS_PREFIX=/home/user/helenos-build

3. Build a cross-compiler (HelenOS can only be built with a supported version
of GCC [14]):

$ cd tools

$./toolchain.sh ia32

Depending on your OS, it might be necessary to install some dependencies.

4. Build HelenOS:

$ cd ..

$ make PROFILE=ia32

This will produce an image.iso file in the source directory. We can either
boot this image directly or use the testing environment.

B.2 Test environment usage

The testing environment is a virtualized network of HelenOS and GNU/Linux
machines. It can be run with

$./virtlab.sh [--headless] [--debug] /path/to/image.iso \

[tests/test_dir]

This command starts the virtual machines and sets up networking. If a
test dir is supplied, it also runs the test in the directory. This means it creates a
hard disk image with a packet filter configuration file and starts pf on the machine
that serves as a firewall. Then it runs a series of commands to test if the packet
filter behaves as expected.

37

If the --headless flag is used, QEMU’s graphical output is disabled and
the environment is shut down after the test finishes. The --debug flag sets pf’s
logging level to “debug”, which is useful for debugging tests.

The virtlab.sh script uses the Finnix live CD on its GNU/Linux machines.
Its image is included in the attached CD. If necessary, it is possible to use a
different image by setting the LINUX environment variable.

The HelenOS images are run on i386 systems by default. To test other
architectures, we must use the Q environment variable to supply a command to
run the corresponding emulator, for example:

$ Q=qemu-system-x86_64 ./virtlab.sh

There is also a script that runs pf’s unit tests and prints their results:

$./unit.sh /path/to/image.iso

It is also possible to run the unit tests and all the feature tests:

$./run_all.sh /path/to/image.iso

B.2.1 Dependencies

• QEMU

• VDE2

• ngrep

• socat

38

C. Configuration reference

The pf configuration file consists of rules that follow one after the other, with any
number of whitespaces between them. A rule consists of a header and criteria
as follows (square brackets denote and optional value, an asterisk means zero to
infinity repetitions of the string preceding it):

rule_header {

[criterion1[,

criterion2]*]

}

The configuration file format uses whitespace to separate its tokens (lexical
units). These are only mandatory when they divide two alphabetic strings (for
example, the tokens dest addr and equal require a whitespace between them, but
dest addr and = don’t). While the whitespaces are optional, it is recommended
to use them for better readability. It is allowed to use spaces, tabs and newlines
with any number of repetitions.

C.1 The rule header

The header’s purpose is to specify the rule’s action and other parameters that are
more related to the packet filter than to the packet itself. It must start with an
action and can be followed with flags separated by whitespaces. Some actions
have arguments that modify their behavior. These are listed in parentheses after
the action’s name and separated by commas.

The following is the general structure of a rule header:

action[(argument1[, argument2]*)][flag]*

C.1.1 Actions

Action Description

block Drop the packet.
pass Accept the packet.
reject(code, code6) Reject the packet with an ICMP message. Uses

type 3 and code code for IPv4 and type 1 and
code code6 for IPv6. Both arguments are
optional.

forward(addr, port) Forward all packets matching this rule to address
addr and port port. Rules that use this action
must contain a dest addr and dest port

criterion.
masquerade(addr) Masquerade packets matching this rule (coming

from an internal network) using NAT, so that
they appear to originate from addr (which must
be an address that belongs to the firewall).

39

Action Description

The rule itself doesn’t block traffic destined to
the internal network.

C.1.2 Flags

Flag Description

in (out) Match inbound (outbound) traffic. Anything
forwarded by or sent directly from the firewall is
considered outbound traffic. Packets destined to
one of the firewall’s addresses are inbound traffic.
This behavior changes slightly when the rule
contains the interface criterion.
The default direction is out.

through Match traffic on ports that are mapped to a
different combination of address and port. The
packet is validated after its header is altered.
This flag cannot be used together with in and
out.

continue Only use this rule for packets that don’t match
any other rule.

log Log any packet that matches this rule.
nostate Packets accepted on behalf of this rule don’t open

a connection (they are not recorded by the state
table).

C.2 Criteria

Criteria are conditions a packet must satisfy for a rule to match. They are specified
by a type (the property the criterion matches), one or more aguments (the value
to which the criterion compares the corresponding value in the packet) and a
matching type (the way the property is compared to the arguments).

A criterion has the following form, where ! means a negation of the criterion:

criterion_type [!]match_type argument1[argument2]*

C.2.1 Criterion types

Name
Matching

types
Allowed

protocols Description

interface equal All If the rule has the in flag, translates
to src addr subnet MASK, where
MASK is the subnet address set on
the interface whose name is supplied
as argument to this criterion.

40

Name
Matching

types
Allowed

protocols Description

If the rule has the out flag, the
criterion translates to dest addr.
When the address is reconfigured on
the interface, this criterion is not
reloaded.

src addr

(dest addr)
equal,
subnet

All Matches the source (destination) IP
address of the packet. Supports
both IPv4 and IPv6. The argument
must be a textual representation of
an IP address. The subnet

matching type requires a subnet
address, such as 10.0.10.0/24.

src port

(dest port)
equal,

greater,
between

TCP, UDP Matches the source (destination)
port in the transport layer header of
the packet. The argument is a
numeric value between 1 and 65535.

proto equal All Matches the transport layer protocol.
Allowed arguments are either
protocol numbers or their textual
representations - TCP, UDP, ICMP
or ICMPv6 (case insensitive).

size greater All Matches the size of the data in the
IP packet (including e.g. the
transport layer header). The
argument must be a numeric value.

icmp type equal ICMP The ICMP type. The argument
must be a numeric representation of
the type.

icmp code equal ICMP The ICMP code. The argument
must be a numeric representation of
the code.

icmp6 type equal ICMPv6 The ICMPv6 type. The argument
must be a numeric representation of
the type.

icmp6 code equal ICMPv6 The ICMPv6 code. The argument
must be a numeric representation of
the code.

tcp flag set TCP Matches if the packet has the TCP
flag specified by the argument,
which should be either a numeric
value (the bit offset in the flags field,
counting from bottom - 0 means
SYN), or a textual representation
such as SYN, ACK or RST.

41

C.2.2 Matching types

The following is a list of possible matching types. Some matching types have
alternate forms that can be used as shortcuts. The forms only differ in appearance
and possibly readability.

Name
Alternate

forms Description

equal = Checks whether the argument equals the value in the
packet.

greater > The criterion is satisfied if the value in the packet is
greater than the argument.

between None True if the value in the packet is between the
criterion’s arguments.

subnet None Checks if the address in the packet is part of the
subnet supplied as the argument.

set None True if specified flag is set in the packet.

42

	Introduction
	Related work
	Netfilter (GNU/Linux)
	IPtables
	ferm
	UFW - uncomplicated firewall

	PF (OpenBSD)
	IPFW (FreeBSD)
	Microsoft Windows

	Analysis
	Adding a packet filter to HelenOS
	Packet interception
	IP datagram reassembly
	Transport layer criteria

	Configuration
	Persistent configuration
	Runtime configuration
	Configuration file format

	Usage
	Configuration syntax overview
	Ruleset evaluation
	Stateful packet inspection
	State keeping for stateless protocols

	Advanced usage
	Network address translation
	Port forwarding

	Disabling packet filtering
	Traffic logging

	Implementation
	Modifications of the network stack
	Forwarding datagrams
	Filtering outgoing datagrams
	Filtering incoming datagrams

	inetpf interface
	Packet filter registration
	Datagram validation
	Response types
	Packet filter termination

	PF service
	Filter
	Port map
	State table
	The validation process
	Configuration parsing

	NAT masquerading
	NAT for ICMP

	Evaluation
	Testing environment
	Virtual network implementation
	Controlling the virtual machines
	Monitoring network communication

	Scenario: Restricting traffic to specified ports
	Scenario: Workstations behind a NAT

	Conclusion
	Bibliography
	List of Abbreviations
	Contents of the attached CD
	Running the test environment
	Building HelenOS
	Test environment usage
	Dependencies

	Configuration reference
	The rule header
	Actions
	Flags

	Criteria
	Criterion types
	Matching types

