Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS

Mgr. Be. Antonin Steinhauser

IPv6 for HelenOS

Department of Distributed and Dependable Systems

Supervisor of the master thesis: Mgr. Martin Décky
Study programme: Informatics

Specialization: Software Systems

Prague 2013

I am much obliged to my thesis supervisor, Mgr. Martin Décky, for his advices
and hints in this research.

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 paragraph 1 of
the Copyright Act.

In Prague date 18. 7. 2013 Antonin Steinhauser

Nazev prace: IPv6 for HelenOS

Autor: Antonin Steinhauser

Katedra: Katedra distribuovanych a spolehlivych systému

Vedouci diplomové préce:

Mgr. Martin Décky, Katedra distribuovanych a spolehlivych systému

Abstrakt: Tato prace rozsituje operaéni systém HelenOS o podporu nového IPv6
protokolu. Implementace protokolu IPv6 je na stejné trovni jako diivéjsi imple-
mentace IPv4 protokolu. Sitovy stack HelenOS nyni nabizi t¥i mddy prace se siti:
uzivani pouze IPv4 protokolu, uzivani pouze IPv6 protokolu a dudlni maéd, ktery
umoznuje pouzivat oba protokoly najednou.

Préce popisuje piedchozi stav sitového stacku HelenOS, analyzuje rozdily mezi
IPv4 protokolem a IPv6 protokolem a zduvodnuje jednotlivd strategicka rozhod-
nuti. Posléze popisuje pouzité implementaéni a ladici metody, shrnuje vysledky
prace a srovnava HelenOS s jinymi mikrojadernymi opera¢nimi systémy co do
podpory IPv6.

Klicova slova: HelenOS, IPv6, sitovy

Title: IPv6 for HelenOS

Author: Antonin Steinhauser

Department: Department of Distributed and Dependable Systems
Supervisor:

Mgr. Martin Décky, Department of Distributed and Dependable Systems

Abstract: This thesis extends HelenOS operating system in order to be IPv6
capable. New IPv6 protocol implementation is on the same level as previous [Pv4
protocol implementation. HelenOS networking stack now offers three modes of
networking: IPv4-only, IPv6-only and dual stack mode. Dual stack mode enables
usage of both protocols at once.

The thesis describes previous state of HelenOS networking stack, analyzes dif-
ferences between IPv4 and IPv6 protocols and gives reasons for single strategic
decisions. In fine, it describes used implementation and debugging techniques,
concludes results and compares HelenOS with other microkernel operating system
from the IPv6-capability perspective.

Keywords: HelenOS, IPv6, networking

Contents

1__Introductionl 3
[T Motivationl 3
M2 Goald. o 3
M3 Planl o o 3
(L4 Contents| 3

2__Contextl 5
(2.1 Introduction to TCP/IP| 5

2.1.1 Linklayer| 5)
[2.1.2 Network layer| 6
[2.1.3 Transport layer| 7
2.1.4 BSD socket interfacef 8
(2.2 Differences between [Pv4 and IPv6 8
[2.2.1 Differences on the link layer| 8
[2.2.2 Differences on the network layer| 9
[2.2.3 Differences in network-layer control protocols|. 12
[2.2.4 Differences on the transport layer| 13
2.2.5 Differences in BSD socket mterfacel 14
2.3 Introduction to HelenOSf 16
2.3.1 HelenOSIPCI 16
[2.3.2 HelenOS networking stack introductionl 17
[2.3.3 HelenOS link-layer servers| 17
[2.3.4 HelenOS network-layer server{ 19
[2.3.5 HelenOS transport-layer servers| 23
[2.3.6 HelenOS socket library| 27

3 Analysis 29

[3.1 Strategic decisions| oL 29
(3.1.1 Protocol/task question| L. 29

3.1.2 Data structures common to IPv4 and IPv6 addresses and |

[IPC intertace from inetsrv "up”| 30
[3.1.3 NDP position (link-local addresses) and the rest of IPC |

[intertacel 32
3.2 Interface enhancements/, 33
[3.3 Code upgrades| 36

[3.3.1 Changes in shared libraries (others than socket library) . . 36
[3.3.2 Changes in ethip|. 37
[3.3.3 Changes in loopip| 38
[3.3.4 Changes in inetsrv| 38
[3.3.5 Changes in transport-layer servers|. 41
[3.3.6 Changes in socket libraryl. 42
[3.3.7 Changes in utilities| 43

[4 Implementation|

4.1 Step-by-step development and continuous testing]

[4.2 Debugging methods|
4.3 Testingset|.
[4.3.1 Testing set determination|

[4.3.2 Antecedent bug fixes in previous [Pv4 implementation|

[4.3.3 Final testing set|.
[4.4 Development phases
[4.4.1 Preliminary phases

[4.4.2 Porting to IPv6|

5__FEvaluation
[>.1 Functional aspects|
[>.2 Performance aspects|

[6.1.1 Scopes support and routing

mechanism upgrade|

[6.1.2 Automatic IPv6 address and default router assignment| . .

[6.1.3 Socket library|

[6.1.4 TCMPv6 error messages and M'T'U discovery]

6.2 Related workl
[6.2.1 Hurd IPv6 implementation|
[6.2.2 Minix [Pv6 implementation|

[r__Conclusion|

[Bibliographyi

I FAD] tions

44
44
44
45
45
46
47
48
49
49

54
o4
95

57
o7
o7
58
59
59
99
60
60

61

62

64

1. Introduction

1.1 Motivation

Main goal of this thesis is to extend HelenOS networking stack in order to be
IPv6 capable. IPv4 addresses are already almost exhausted. IPv6 connectivity
gradually starts to be necessary for everyone who wants to use full-value Internet
services. That applies also to HelenOS and to its networking capability.

1.2 Goals

Detailed study of current IPv4 implementation is crucial because HelenOS al-
ready has a passable [Pv4 implementation. [Pv4 and IPv6 are just two versions
of the same protocol though they are mutually incompatible. Both IP protocols
have almost the same purposes. Therefore, if we take current IPv4 implemen-
tation and implement all their features in IPv6, we must get a passable IPv6
implementation too. Usually, such features can be covered exactly the same way
as in IPv4. Sometimes it is necessary to use analogical technology providing the
same feature (e.g. ARP will be replaced with a part of NDP). Features existing
in both IPv4 and IPv6 and lacking in current IPv4 implementation are naturally
optional in IPv6 implementation too. The only question is what to do with IPv6-
exclusive features. Such features include dual-stack sockets, router solicitations,
and router advertisements, address scopes, etc. They could not be evidently in-
cluded in current IPv4 implementation, but they may belong to the reasonable
subset of IPv6 protocol. That subset should be covered already by the prototype
implementation. There might be also some IPv4-only features omitted in basic
IPv6 implementation preserving all IP protocol purposes. Among such features
belong for example checksum calculation and verification in IP datagram headers.

1.3 Plan

In the first phase, we will analyze analogies and differences between [Pv4 and
IPv6 protocols. In the second phase, we will study current IPv4 implementation
in HelenOS. In the third phase, we will decide how to implement IPv6 protocol
covering all its necessary features. The implementation should cover even maxi-
mum of IPv6-exclusive features and should be easily extendable in the future.

1.4 Contents

Chapter Context describes basics of TCP/IP architecture and its particular
layers. It precisely analyzes differences between IPv4 and IPv6 protocols and
explains basics of non-trivial HelenOS multiserver networking stack. Chapter
Analysis determines necessary features of prototype implementation and gives
reasons for single strategic decisions. Chapter Implementation introduces imple-
mentation strategy and tactics, debugging methodology and bug fixing of previ-
ous IPv4 implementation. Chapter Fvaluation describes what properties the new

3

implementation has from the functional and efficiency points of view. Chapter
Future and related work offers future extensions and enhancements of the pro-
totype implementation. It lightly describes also methods how to reach them.
Afterwards it compares HelenOS IPv6 implementation with other well-known
microkernel operating systems. Finally, chapter Conclusion sums this thesis up.

2. Context

2.1 Introduction to TCP/IP

Networking architecture called TCP/IP defines multiple layers of networking.
This architecture has had in recent decades no alternatives among computer
networking technologies. Each of its layers uses the layer underneath and provides
something to the upper one. Data units of the upper one are encapsulated into
data unit payloads of the lower one. The layer underneath can send even some
other data units without payload from the upper one. Those auxiliary data
units are good to assure or enhance its functionality and efficiency (ARP, ICMP,

ICMPv6, etc.).

2.1.1 Link layer

The lowest layer is the link layer. Prevalent link-layer protocol is the Ethernet.
HelenOS did not support any other link-layer protocols except Ethernet and
loopback. Loopback emulates a virtual network interface purely by software.
Any frame going to the output returns back unchanged as its input. During
implementation of this thesis, even Slip link-layer protocol support was added
to HelenOS. Transfer unit of Ethernet is called Ethernet frame. It is composed
of source MAC address (6-byte link-layer address assigned to a certain NIC),
destination MAC address, type of higher protocol and the payload. Payload is
a serialized datagram of the nested protocol. It can be a network-layer protocol
such as IP or an auxiliary link-layer protocol such as ARP.

Some MAC addresses have a special semantics. The first special address is
broadcast (address with all 48 bits true - FF:FF:FF:FF:FF:FF). Datagrams ad-
dressed to this special address are received by all NICs connected to Ethernet
network. Multicasting is good to afflict only a part of Ethernet nodes, but not
only one. Ethernet provides many so-called multicast addresses. Any MAC ad-
dress with the first byte odd is multicast. The rest of addresses (addresses with
the first byte even) are unicast. Unicast addresses can be assigned to one concrete
NIC. Only computers connected to the same local network can communicate over
Ethernet.

Broadcasts and multicasts are essential for Ethernet functionality. These ad-
dresses are used for IP to MAC address translation. The protocol translating
IPv4 addresses to MAC addresses is called ARP (Address resolution protocol).
Translating node sends a query carrying its IPv4 address from its unicast MAC
address to broadcast MAC address. All nodes connected to the same network
receive it. The node with asked IPv4 replies from its unicast MAC address to
unicast sender MAC address. The later communication between the two nodes
is unicast from one to one MAC address. All the other nodes just ignore that
communication (usually already the NIC firmware).

[Pv6 communication over Ethernet does not use ARP. It was replaced by NDP
(Neighbor discovery protocol). NDP is not a part of the link layer but it belongs
to the network layer, concretely to ICMPv6 protocol. The principle of NDP
translation (IPv6 to MAC) is almost the same as how ARP translates IPv4 to
MAC.

2.1.2 Network layer

Network layer is just above the link layer. Network-layer protocol is Internet
protocol (IP). This protocol completely constitutes the Internet. It assigns to
any computer worldwide ideally unique IP address. IP protocol contains many
relatively complicated mechanisms how to route its data units (IP datagrams)
through the whole network (routing tables, subnets, two layers of routing, etc.).

To deliver an outgoing or forwarded datagram, OS networking stack checks its
destination. If the destination belongs to any of its networks (networks imme-
diately accessible over link-layer protocol), OS sends the datagram directly over
link-layer to that destination. Otherwise, it finds the most specific route and
sends the datagram over link-layer to that router. The router forwards it succes-
sively up to the destination. The least specific route is called default route. Its
router accepts all datagrams whose targets are directly unreachable and no better
route does exist. This mechanism ensures final delivery of all correctly addressed
datagrams. Routing table can be edited manually or automatically. Automatic
routing table setting is performed by an address solicitation protocol (DHCP or
NDP) or by a specialized routing protocol (OSPF or BGP).

IP protocol is principally unreliable. Any transport protocol over IP claiming
reliability (e.g. TCP) must provide additional mechanisms to ensure it (packet
numbering, acknowledgements, retransmissions, checksums, etc.). IP protocol
provides only best effort communication. Some datagrams may not be delivered
at all, some may be delivered damaged, some may be delivered in incorrect order
(later sent packet is delivered earlier) and some may be delivered even multiple
times.

This Internet protocol has nowadays two mutually incompatible versions - IPv4
and IPv6. It means there are two de-facto independent internets. Version 4 is used
since early eighties. This version is still prevalent but it has many insufficiencies.
Firstly, its address space is already practically exhausted and there is no regular
possibility how to connect more computers. IPv4 addresses are 32-bit so their
theoretically maximal count is 232. IPv4 addresses were even wasted in the past
due to inappropriate network sizes (in particular 8-bits A-classes networks were
assigned to organizations unable to utilize at least a chief of them).

[Pv4 datagram header has variable length and contains many obsolete items
(such as Type of service). IPv4 protocol widely enables fragmentation. Datagram
can be fragmented not only by the sender, but also by computers routing the
datagram. Loss of one of those fragments implies whole datagram loss. It is
unable to reassemble original datagram without the missing part. Fragmentation

in general is a negative phenomenon and IPv6 practically eliminated it. The
only exception is tunneling IP datagrams in IP datagrams. Because of tunneling
overhead, tunnel MTU must be lower than MTU of the encapsulating protocol.
That is why tunnel MTU cannot reach those 1500 bytes. Next disadvantage of
IPv4 consists in unceasing checksum recalculation. Every IP datagram contains
one-byte Time to live (TTL) value (in IPv6 named Hop limit). Every routing node
decrements datagram TTL and datagrams with zero TTL are discarded to prevent
cyclical routing and congestion of the net. Next item of IPv4 header (in IPv6
missing) is header checksum. Each router must at first decrease the datagram
TTL value and then recalculate its checksum. It is naturally performance wasting.

Eventually, there were many attempts how to solve or bypass mentioned IPv4
defects. Among the others NAT and subnetting are worth noting. Those tech-
nologies enlarged life cycle of IPv4 protocol. Nevertheless, they are also exhaust-
ing their limitations. The only sustainable solution is IPv6 transition.

[P datagram header contains source and destination address (in IPv4 4-byte,
in IPv6 16-byte), time-to-live counter, type of higher-layer protocol (in IPv4
called protocol, in IPv6 called next header) and payload length. There are even
some other not very important items. Time-to-live counter is decremented on
each router. It avoids eternal looping of the datagram in badly routed networks.
Datagram header is followed by datagram body containing a transport protocol
packet or a control protocol packet.

Control protocol for IPv4 protocol is called ICMP. ICMP is widely used for
reachability and unreachability detection in IPv4 networks. IPv6 has a new
protocol called ICMPv6 summing up ICMP, ARP, DHCP and IGMP functionality
inside IPv6 networks.

2.1.3 Transport layer

Transport layer is just above the network layer. Prevalent protocols on the
transport layer are UDP and TCP. Both are supported by HelenOS. There are
even some other transport layer protocols but HelenOS does not yet support
any of them. Both UDP and TCP protocols provide ports. Ports are 2-byte
number identifiers of concrete service on a given computer. UDP ensures non-
reliable, datagram-based and stateless communication. TCP ensures reliable,
stream-based and stateful communication. Both TCP and UDP packets have
a header containing two ports (source and destination), checksum and payload
length. TCP packet header contains additionally many other items to ensure
its functionality (above all the reliability). Each TCP packet has a sequence
number, some flow and congestion control data and flags marking half-open,
open, closing or broken connection. TCP and UDP packet bodies contain data
from the application layer. Application layer is the highest layer of TCP/IP
architecture. TCP protocol offers classical streams such as files or pipes. UDP
packets are typical messages.

2.1.4 BSD socket interface

User applications can take those two protocols (TCP and UDP) by widely
used BSD socket interface. BSD sockets have actually no alternatives among
network communication instruments. BSD socket interface defines socket as a
basic communication medium. It represents one side of the communication pipe
and the communication partner holds the other side. This conception is partially
broken by UDP and datagram-based communication. UDP socket can receive
datagrams from various sources and send them to various destinations.

BSD socket interface defines a set of functions with well-defined semantics.
Applications can use that interface and be completely unaware of network im-
plementation details. HelenOS provides only a subset of BSD socket interface.
Applications communicating over UDP can use socket, bind, sendto, recufrom and
closesocket functions. Application communicating over TCP can use socket, bind,
listen, accept, connect, send, recv and closesocket functions.

2.2 Differences between IPv4 and IPv6

This section describes differences between IPv4 and IPv6 protocols. Although
IPv4 and IPv6 are network-layer protocols, they interfere more or less with all
TCP/IP layers and protocols.

2.2.1 Differences on the link layer

The mayor difference between sending [Pv4 and IPv6 datagrams over Ethernet
consists in completely different MAC address resolution. Translation from IPv4 to
MAC address is provided by ARP protocol as part of the link layer. Translation
from IPv6 to MAC address is provided by NDP protocol. NDP protocol is a
subset of ICMPv6 protocol and it belongs to the network layer.

If the OS networking stack does not know MAC address of an IPv4 destination
or router, it sends an ARP request. ARP datagram is a special payload of an
Ethernet frame not belonging to IPv4 nor to IPv6. It has two possible opcodes -
ARP request or ARP reply. ARP request for an unknown MAC address always
uses broadcast MAC target.

If the networking stack wants to resolve MAC address of an IPv6 destination
or router, it sends a Neighbor solicitation message. It is just an ICMPv6 message
encapsulated in a common IPv6 datagram. Destination IPv6 address of such
datagram is derived from the original target IPv6 address. First 13 bytes are
££02::1:ff and the last three bytes are equal to the last three bytes of the
original target IPv6 address. Very similar mechanism is used to assign target
MAC address for such solicitation. First 2 bytes are constantly 0xCC and the
last 4 bytes are equal to last 4 bytes of the original target IPv6 address. NDP
therefore never uses Ethernet broadcasting but only multicasting.

1. ARP versus NDP

Source IPvd address Destination IPv4 address

Source MAC address 29999999999999999997

ARP ARP datagram

Source MAC address FF-FF.FF.FF.FF FF | Ethernet frame

Source IPvé address Destination IPv6 address

Source MAC address P7INTIII9977707

NDP ICMPv6 packet

Source IPv6 address f102:: 1 £330 3000 [Pv6 datagram

Source MAC address CC QO30S0 | Ethernet frame

Additional difference on the link layer is the upper protocol value (ether-type)
in Ethernet frame header. Ethernet frames carrying IPv4 datagrams have this
value set to 0x0800, frames carrying ARP datagrams to 0x0806 and frames car-
rying IPv6 datagrams to 0x86DD.

2.2.2 Differences on the network layer

Mayor differences between IPv4 and IPv6 protocols occur naturally on the
network layer. First difference is the address length. IPv4 addresses have 4
bytes. IPv6 addresses have 16 bytes. There are even many other differences
between [Pv4 and IPv6 datagram headers.

Version field is set to 4 in IPv4 and to 6 in IPv6 datagrams. IHL field from
IPv4 is obsolete and absenting in IPv6 datagrams. IPv6 header has fixed length
of 40 bytes although additional optional headers can follow. IPv4 header length in
32-bit words is stored in the IHL field. Minimal and usual value of IHL field is 5.
It means the header has 20 bytes. Optional headers of IPv6 datagrams are stored
contrarily as linked list. The next header value may not contain directly the code
of a transport protocol. It may contain also code of an optional header. Each
optional header contains again a next header value pointing to another optional

9

header or to a transport protocol. The last optional header points always to a
transport protocol.

Type of service field was also removed. This field is obsolete even in IPv4. 1Pv4
nodes set it usually to 0 and ignore its value.

Fragmentation parameters identification, flags and fragment offset were moved
from the compulsory part to a special optional header called fragmentation (code
44).

Fragmentation is a technique how to pass datagrams longer than MTU of the
link layer. IPv6 forbids sending datagrams larger than 1500 bytes unless all
nodes on the path explicitly permitted to do so. IPv6 requires MTU at least
1280. Link layer that has MTU less than 1280 is not IPv6 capable. The margin
(between 1280 and 1500 bytes) is necessary for tunneling protocols encapsulating
network datagrams into network datagrams such as 6to4 or Teredo. When a
router forwards an IPv4 datagram over a link with MTU lower than its size,
it breaks the datagram into fragments (if the DF flag is not set). When it
forwards an IPv6 datagram in the same situation, it must discard the datagram
and send back an ICMPv6 Packet too big message. The sender must react to
this message with decreasing the datagram size and sending it again. After the
destination receives all necessary fragments, it reassembles the original datagram.
IPv6 routers can thus never fragment a datagram. Only the sender has the
possibility to do so. The fragmentation in IPv6 should be generally avoided
anywhere possible.

Total length field in IPv4 is replaced by payload length field in IPv6 with a little
different semantics. Total length is length of the whole datagram including its
header. Payload length is its length without those 40 bytes of fix-length header.

Time to live field in IPv4 datagram header was just renamed to hop limit in
IPv6 datagram header. It is decreased always by one not attending to the time.
Nowadays, time to live in IPv4 datagrams has in fact the same semantics. One
second is a terribly long portion of time for present-day computers and networks.

Protocol field from IPv4 was renamed to next header in IPv6. Its semantics
was enhanced. Except encapsulated packet type, it may contain an optional
header code. Each optional header has therefore again a next header field chaining
another optional header or finally defining nested packet type as described above.

Checksum field used in IPv4 was removed in IPv6. It was not necessary because
majority of link layer protocols contain error-detection mechanisms. Similarly,
all transport layer protocols (TCP, UDP and ICMPv6) have own checksums in
their headers. Those checksums cover also so-called pseudoheaders containing
important values copied from IPv6 headers. This additional integrity check on
the network layer was redundant and unwanted due to its recalculation on each
router as explained above.

10

Finally, both source and destination addresses are 4 bytes long in IPv4 data-
gram headers and 16 bytes long in IPv6 datagram headers.

New fields in IPv6 header are traffic class and flow label. Both are used for
QoS and real-time applications. They have no wider usage and majority of their
bits are meanwhile reserved.

Optional headers of IPv6 can contain hop-by-hop options, fragmentation, des-
tination options, routing and some other advanced features. Its support is usually
optional and they are not necessary for basic IPv6 functionality.

2. IPv4 datagram header

. Femained in IPve
. Eemoved in IPvé

. Name and semantics changed 1n IPv6

11

3. IPv6 datagram header

. Adopted from IPv4

. New in IPV6

. Name and semantics changed in IPv6

2.2.3 Differences in network-layer control protocols

ICMP protocol, as a part of IPv4 protocol, was upgraded to ICMPv6 simulta-
neously with IPv4 to IPv6 upgrade. ICMPv6 is not only a new version of ICMP.
It is a completely new protocol. ICMP has code 1 and ICMPv6 has code 58.
ICMPv6 is incompatible with IPv4 as well as ICMP is incompatible with IPv6.
ICMPv6 header is similar to ICMP header. It contains also one byte of type, next
byte of code and two bytes of checksum followed by something what is dependent
on the concrete message type. The semantics of checksum is a little different.
ICMP checksum covers the ICMP packet only. ICMPv6 checksum covers ICM-
Pv6 packet with an artificial pseudoheader containing some items from the IPv6
header. Those items are precisely specified in the next section. The ICMPv6
checksum pseudoheader is equal to TCP/UDP over IPv6 checksum pseudohead-
er.

Types of ICMPv6 messages are also different to ICMP messages with the same
or similar purpose. ICMP FEcho request message has ICMP type 8 and FEcho

12

reply message has ICMP type 0. ICMPv6 Echo request has ICMPv6 type 128
and Echo reply has ICMPv6 type 129.

The most significant innovation of ICMPv6 related to HelenOS is the inte-
gration of previous ARP functionality - the Neighbor discovery protocol (NDP)
as mentioned above. ARP request is replaced with Neighbor solicitation message
(ICMPv6 type 135). ARP reply is replaced with Neighbor advertisement message
(ICMPv6 type 136).

ICMPv6 integrates even some other once independent protocol functionality
such as IGMP. Worth noting is DHCP replacement with Router solicitation (type
133) and Router advertisement (type 134) messages. Stateless mechanism of IP
address and default router assignment is one of the new IPv6 protocol features.

2.2.4 Differences on the transport layer

Transport layer protocols are affected with the IPv6 transition less than network-
layer protocols. The only basic change is different TCP and UDP checksum
calculation. Both TCP and UDP packet headers contain checksum field. In
UDP, the checksum calculation is optional and its value may be set to zero,
but almost every implementation including HelenOS calculates it. The checksum
covers not only the packet but also a pseudoheader containing some values from
the IP datagram header. This pseudoheader is in IPv6 different because source
and destination addresses have different lengths and the packet length field is
expanded from two to four bytes.

4. TCP or UDP over IPv4 checksum pseudoheader

Source IPv4 address

Destination IPv4 address

Zeros Protocol Packet length

13

5. TCP, UDP or ICMPv6 over IPv6 checksum pseudoheader

Source IPv6 address

Destination IPv6 address

Packet length

Zeros MNext

2.2.5 Differences in BSD socket interface

BSD sockets are a very generic instrument. BSD sockets are useful not only for
TCP and for UDP communication. They are useful also directly on the network
layer (so-called raw sockets) or even on the link layer (for receiving and sending
manually constructed Ethernet frames). HelenOS supports by this time only TCP
and UDP sockets. That is why only differences between sockets for UDP/TCP
over IPv4 and sockets for UDP/TCP over IPv6 are to be explained.

Firstly, there is a new family of sockets. Instead of AF_INET for IPv4 com-
munication, it is AF_INET6 family.

[Pv4 and IPv6 protocols are mutually incompatible. However, socket inter-
face ensures backward compatibility of AF_INET6 sockets with IPv4 protocol.
AF_INET sockets can never be used for IPv6 communication but AF_INET6
sockets are useful also for IPv4 communication. It is very important especially
for dual stack servers. Dual stack servers are either TCP servers listening on
both protocols (e.g. webserver) or UDP servers receiving both IPv4 and IPv6
messages (e.g. DNS server).

This mechanism is called IPv4-mapped IPv6 address. It is an IPv6 address
with first 10 bytes (indexes 0 - 9) set to zero, next two bytes (indexes 10 and 11)
to OxFF and the last four bytes (indexes 12 - 15) are equal to the four bytes of
mapped IPv4 address. Such an address is dealt similarly as if it was IPv4 address.

14

It is returned also from accept or recvfrom functions when an AF_INET6 socket
accepts an IPv4 connection or receives an [Pv4 message.

Socket address structure is a little different. The first item called sin_family
resp. sa_family or sin6_family is set to AF_INET6. Both sockaddr_in and sock-
addr_in6 structures get casted to generic sockaddr structure supported by BSD
socket interface. The sa_family value is the only possibility how to differentiate
between socket address families and cast the pointer back to sockaddr_in or to
sockaddr_in6. TCP or UDP port is only renamed (from sin_port to sin6_port).
IP address is larger and it is expressed as a char-array. New item sin6_flowinfo
helps to specify flow label field in IPv6 datagram headers.

6. Socket address for TCP or UDP over IPv4

struct sockaddr_in {
uintl6_t sin family = AF_INET;
struct in_addr sin_addr;
uintl6_t sin_port;

b

struct in addr {
uint32_t s_addr;
b

7. Socket address for TCP or UDP over IPv6

struct sockaddr_in6 {
uintl6_t sin6_family = AF_INET6;
struct in6_addr sin6_addr;
uintl6_t sin6_port;
uint32_t sin6_flowinfo;

I¥

struct in6_addr {
uint8_t s6_addr [16];
%

15

2.3 Introduction to HelenOS

HelenOS is a microkernel, multiserver and general-purpose operating system
written from scratchl]

Microkernel operating systems are minority compared to monolithic operating
systems such as Linux, Microsoft Windows, majority of BSD systems, etc. Mi-
crokernel must be as small as possible. Usually it provides only handlers and
calls for CPU privileged instructions and operations (I/O access, physical mem-
ory management, interrupt handling, etc.), thread scheduling and inter-process
communication (IPC). Everything else should run in userland.

HelenOS processes are called tasks. Each task can have multiple threads. Like
any other operating system, HelenOS provides some services for user applications.
Those services are called servers. Servers, again tasks, are de-facto another com-
mon user applications. That is why HelenOS is called multiserver. Some servers
are privileged tasks exercising privileged operations but running in unprivileged
CPU mode. One of these servers is nic - network interface controller. It interacts
directly with the hardware. The other networking stack servers are unprivileged.

Microkernels have many advantages but also disadvantages. One of the major
advantages is better stability because any userland application can be killed and
eventually restarted without system shutdown and reboot. Fatal problems can
thus arise theoretically only from the kernel code. Kernel code should be small
enough to be carefully tested and debugged. Among disadvantages belongs higher
number of context switches than in monolithic kernels. It causes that process
scheduling takes up relatively higher portion of CPU time.

2.3.1 HelenOS IPC

Inter-process communication in microkernel OS is much more important than in
monolithic OS. Prevalent service supplying in monolithic operating systems goes
through system calls. The communication is hierarchical between an unprivileged
application and the privileged kernel. Microkernel operating systems provide
majority of their services through IPC. It means two more-less similar applications
communicate horizontally. The kernel only provides the connection and mediates
their communication. Only if one application unexpectedly terminates, the kernel
handles the connection and correctly informs the other.

HelenOS provides standard message passing framework extended with larger
data block sending and receiving and with memory sharing possibilities. Sending
task passes a message and eventually (or even immediately) waits for its reply.
Receiving task picks up this message and processes it to send the reply. Standard
messages can contain up to 5 integer values in both directions. Limit for larger
data blocks is by then 64 kB. It is large enough to fit all frames, datagrams and
packets. Memory sharing is thus not used anywhere in the networking stack.

'HelenOS, on-line at http://www.helenos.org/

16

http://www.helenos.org/

Interface of IPC is relatively user-friendly thanks to HelenOS asynchronous
library. IPC library creates a fibril for each inter-process connection. Fibrils are
user-space threads, smallest chains of code execution. Difference between threads
and fibrils is that the kernel schedules threads and is unaware of fibrils. Fibrils
enable parallelization of such calls. The state-automata work is encapsulated in
the set of IPC functions.

2.3.2 HelenOS networking stack introduction

HelenOS networking stack runs completely in userland. It consists of six servers
and one public socket library. The only server interacting directly with the hard-
ware is nic - network interface controller. It receives and sends Ethernet frames
and can return own MAC address. It is a device driver and is viewed as a black
box from the point of view of this thesis.

8. IPC between nic and ethip

[PC

received frames

—

query for own MAC

NIC| ¢ o MAC ethip

sending frames

<—

2.3.3 HelenOS link-layer servers

Ethip task communicates over IPC with nic. It implements Ethernet protocol
and stores all Ethernet network interfaces with their IPv4 and MAC addresses.
Ethip implements also the ARP protocol because it is logically tight up with the
Ethernet.

17

Each received Ethernet frame is differentiated by higher protocol type. If the
type is ARP, ethip processes it by itself. If it carries an IP datagram, the
datagram is sent over IPC to inetsrv process.

Ethip receives IP datagrams over IPC from inetsrv. It must resolve MAC
address of the target by ARP protocol. Firstly, it looks into ARP cache. If the
MAC address is cached there, it just packs up the datagram into Ethernet frame
and sends it. Otherwise, it sends an ARP request for the destination MAC address
and the sending fibril waits on a conditional variable. If the ARP reply arrives
in one second, ARP processing thread wakes the sending fibril and the datagram
is packed and sent. If the ARP reply does not come betimes, IP datagram is
discarded.

Inetsrv passes to ethip every IPv4 address setting when an address is added
to or removed from an Ethernet interface. Ethip needs such information for
correct ARP protocol functionality. Ethip, when asked, can also return MTU of
Ethernet link. It is now hard-coded to standard minimal value 1500.

9. IPC between ethip and inetsrv

[PC

recetved datagram

—

query for MTU

MTU

ethip inetsrv
add IPv4 address

remove IPv4 address

<—

sending datagrams

An alternative link-layer server to ethip is loopip. It represents loopback
interface returning any outgoing IP datagram back as incoming. Its interface is
much easier. There is no need of MTU queries, because its MTU can be arbitrarily
increased. Whole interface is emulated purely by software and has nothing to do
with any hardware limitations (perhaps except heap memory allocation). Loopip

18

does neither need to know any IP addresses because there are no MAC addresses
and no ARP protocol.

10. IPC between loopip and inetsrv

IPC

recetved datagram

—

loopip metsrv

sending datagrams

2.3.4 HelenOS network-layer server

Inetsrv server implements the IP protocol. It communicates over IPC, as
client, with link-layer servers (Loopip and ethip). As a server, it provides three
methods of IPC communication (IPC ports) differentiated by the aim of the
second-side application: inet, inetcfg and inetping.

Inetsrv holds list of all network interfaces with their link-layer servers - ethip
or loopip. For each network interface, it stores all IP addresses assigned to it
together with their network masks. It stores routing table as a list of triplets
(network IP address, network mask, router IP address). Each network interface,
IP address or routing table entry has its unique name for better manipulation
through IPC configuration interface.

First IPC port (inet) is the most important. Transport protocol servers (tcp
and udp) use it for communication with inetsrv. Each transport protocol after
connecting to inetsrv registers its protocol number. It must be exactly the same
number which appears in IP headers in protocol or next header field - TCP = 6,
UDP = 17.

19

This registration is necessary for inetsrv to deliver incoming packets of this
protocol correctly. When inetsrv receives an IP datagram (by IPC from a link-
layer server), it checks the protocol number. If the protocol number is ICMP,
inetsrv processes it by itself. Otherwise, it looks to the list of registered proto-
cols, extracts the packet from IP datagram and sends it with both source and des-
tination IP addresses over IPC to matching transport protocol server. If inetsrv
does not find such a protocol, it automatically discards the received datagram.

Transport protocol servers can also ask for source IP address in order to be used
for a given destination IP address. Inetsrv checks if the destination address is
reachable directly from a link-layer interface. If the address is directly reachable,
inetsrv returns own address in the same network as the destination. Otherwise,
it searches the routing table and returns own address in the same network as the
best router.

Finally, transport protocols can send outgoing packets. They must speci-
fy datagram source and destination IP addresses and naturally the payload.
Inetsrv encodes IP datagram and looks where to send it. If the destination
address belongs to network of an interface, inetsrv chooses that interface. Oth-
erwise it looks to the routing table for the most specific router and chooses its
interface. In the end, inetsrv sends the datagram over IPC to the link-layer
server of chosen interface.

11. TPC between inetsrv and transport protocol servers - inet port

[PC

register protocol

receive protocol packets

guery for source address

metsrv| € |tep/udp

source address

—

sending paclets

20

Next IPC port (inetcfg) is used by administration utilities - such as inet in
uspace/apps/inet. This port has the largest number of IPC methods for getting
and setting network configuration entries. It is possible to assign an IP address
with a network mask to any interface - inetsrv returns identifier of just created
address (or more precisely network). The administration utility can also get list
of all address identifiers or to find an address identifier by its name. When it
knows an address identifier, it can delete the address or get its details.

Similar manipulation is allowed with rows in routing table. Administration
utility can create a route (network IP address, network mask and router IP ad-
dress), delete it, get its details, find it by name or get list of all routes. Finally,
there is a possibility to get list of all network interface identifiers or details of any
network interface (read-only).

21

12. IPC between inetsrv and administration utilities - inetcfg port

[PC

create address
IF, mask, NIC, name

new address id
delete address (1d)
<—

get address details (id)

address details
IF, mask, nic, name

get address id lst

<—

list of address ids

find address by name

<—

address id

create route
IP, masl, router, name

new route id

S
delete route (id)

<—

get route details

route details
IP, mask, router, name

inetsrv 1net

get route id list
list of route ids

find route by name

route id

_

get interface id list

<—

list of interface ids

—>

get interface details

<—

interface name

Inetsrv implements partially also ICMP protocol. So far, it supports only
pinging - Echo request and Echo reply messages. It automatically replies to

22

each received Fcho request message with a correct Echo reply message. Inetsrv,
respectively HelenOS as a whole, does not support classical BSD raw sockets for
sending ICMP FEcho request messages and receiving Fcho reply messages.

Application pinging to an IP address connects over IPC to that port. Inetsrv
automatically assigns it an ICMP echo identifier. This identifier is copied from
a static, synchronized and automatically incremented variable to assure always-
unique identifier. Inetsrv uses assigned identifier for all Echo request messages
sent by that application. Contrarily to BSD raw sockets, pinging application in
HelenOS cannot choose its own identifier. Inetping interface even provides no
means how to get the assigned identifier. Pinging application can choose only
the sequence number, IP addresses and packet payload.

When received an ICMP Echo reply message, inetsrv extracts its identifier
and looks for it to the list of applications connected to inetping port. If it finds
an application with the correct ICMP echo identifier, it extracts the payload,
both IP addresses, sequence number and sends the message over IPC to that
application. If the identifier is not found, the reply is discarded and ignored.

13. IPC between inetsrv and pinging applications - inetping port

[PC

register ping client

recetve echo replies

—

guery for source address]
inetstv| €—— [ping
source address

—>

sending echo requests

<—

2.3.5 HelenOS transport-layer servers

Tcp and udp servers both implement equally-named protocols. Tcp server is
probably the most complicated part of HelenOS networking stack because of TCP

23

protocol nature. Deep description of its functionality non-related to network-
layer protocol (it includes primarily reliability provision mechanisms, handshak-
ing, connection states and congestion control) is not necessary for purposes of
this thesis.

Udp server holds a list of associations. It is a list of all sockets. Association is
uniquely defined by four items: local IP address, local port, foreign IP address
and foreign port. Each couple of associations must differ at least in one of these
values or the local port must be set to zero.

User application can create a socket over IPC and bind it to a free port. When
asked for socket creation, udp server creates new association with zero local port
(it means unbound socket ignored during packet receiving). When a user ap-
plication calls bind over IPC, udp server sets local IP address and local port to
requested values. User application can pass over IPC also a sendto command. If
the socket is even unbound, udp server binds it automatically to a free port (looks
for an unprivileged port which is even not set as local in any of the associations),
creates packet header (including checksum calculation with the pseudoheader)
and sends it with both IP addresses over IPC to inetsrv.

On closesocket call, udp server just deletes the association and truncates its
message-queue. The most complicated command is recufrom. If the message-
queue of requested association is not empty, udp server just pops its first message
and passes it over IPC together with foreign port and foreign address to the
application. Otherwise, it orders the application to wait for data until it is notified
with a RECEIVED message to repeat the request.

When udp server receives from inetsrv by IPC a UDP packet with source and
destination IP, it looks for a matching association. Matching association must
have:

1. Local IP address set to INADDR_ANY or to destination IP address of the
packet

2. Local port set to destination UDP port
3. Foreign IP address set to INADDR_ANY or to source IP address of the packet
4. Foreign port set to zero or to source UDP port

If such an association is found, the datagram is inserted into its queue and the
application waiting for data on this socket by recvfrom is eventually woken by
RECEIVED IPC message. Otherwise, the packet is discarded and ignored.

24

14. TPC between udp and user-application using socket library

[PC ﬁ/_

soclket

socket 1d

S

: bind

sendto

<—

udp

recvirom

<—

data 3

closesocket

<—

recv notify
ﬂ

Tcp server holds a similar structure - list of connections. Each connection is
defined by five items: local IP address, local port, foreign IP address, foreign
port and listen flag. If the local port is set to zero, its socket is again unbound
or invalid (after RST packet). Socket with the local port set to zero must be
ignored during packet receiving.

socket library
user application

If the foreign port is not set to zero, it means the socket successfully called
connect or it was created by an accept call. If the listen flag is set, it means
the socket is a listening socket and foreign address with foreign port is ignored.
Otherwise the socket is bound, not listening and not connected.

User application can create a connection by socket IPC message and eventually
bind it. On bind IPC message, tcp server just sets its local port and local 1P
address to wanted values. On connect IPC call tcp server firstly checks if the
socket is already bound. If it is not, tcp server binds it automatically to a free
port. Then it sets foreign IP address and foreign port to wanted values and
performs TCP handshake with the target.

On send TPC message, tcp server checks if the socket is connected or accepted.
If it is not, tcp returns an error. If the socket is connected or accepted, tcp pushes
the data into its dispatch queue to be eventually reliably sent and received by
the other side. On recv IPC call, the server checks again at first validity of the
connection. If its receive-queue is not empty, it just pops at most the wanted
amount of data and sends it over IPC to the application. Otherwise, it blocks the

25

application, waits until some data arrive and then it wakes waiting application
with a RECEIVED notification.

On listen IPC message, tcp server checks if the socket is bound. Listen call
handler never binds it automatically contrarily to connect handler. Secondly it
checks, if the socket is neither connected nor accepted. It means that the foreign
IP address is set to INADDR_ANY and the foreign port is set to zero. If all checks
pass, tcp sets the listen flag to true and initializes its accept-queue. Listen flag
prevents the socket from connecting it. Eventual connect message will be rejected
with an error.

Accept is the relatively most complicated call. On accept TPC message tcp
server checks if the socket is listening. If its accept-queue is not empty, it pops
the first accepted connection, assigns it a number (socket identifier) and returns
it to the calling application. If the accept-queue is empty, tcp server orders the
application to wait until it will be notified with an ACCEPTED IPC message to
repeat the call.

When tcp server receives from inetsrv over IPC a TCP packet with source
and destination IP, it looks firstly for an open connection (it means not listening
connection with all four values set - both addresses and both ports). It there is
a connection, that has:

1. Listening flag set to false

2. Local IP address set to INADDR_ANY or to destination IP address
3. Local port equal to TCP packet destination port

4. Foreign IP address set to source IP address

5. Foreign port set to TCP packet source port

the packet payload is just pushed to its receive-queue. If there is no such a
connection, tcp server looks even for a listening socket. It has a sense only if the
packet has the SYN flag set to true. Such a connection must fulfill these three
requirements:

1. Listening flag set to true
2. Local IP address set to INADDR_ANY or to destination IP address

3. Local port equal to TCP destination port

If such a connection is found, tcp server creates a new connection, pushes
it to accept-queue of the original listening connection, sets both its TCP ports
and IP addresses and waits for an SYN/ACK packet to open it finally. When
ACK packet finally arrives, tcp eventually sends ACCEPTED notification to
the application waiting in an accept call on the listening socket. If nor connect-
ed/accepted nor listening connection is found, tcp server discards the packet and
sends an empty RST packet to the sender.

26

15. IPC between tcp and user-application using socket library

socket 1d

—
: bind
E connect

: listen
: accept
th socket 1d \

send

—
recv
data 5

closesocket

<—

recv notify

R N

accept notify
e LN

2.3.6 HelenOS socket library

socket library
user application

Socket library can be linked by any application using BSD socket interface.
It just distinguishes sockets administered by udp server (SOCK_DGRAM) and
sockets administered by tcp server (SOCK_STREAM). Consequently, it connects
to correct transport-layer server and encapsulates the partial BSD socket interface
into IPC communication with the server.

27

16. HelenOS networking stack as a whole

user application

socket

tcp udp
inet inetsrv ping
loopip ethip
default IPC port i
inetcfg IPC port nic
inetping IPC port —

28

3. Analysis

3.1 Strategic decisions

IPv6 is a new protocol. It should be implemented with respect to HelenOS
multiserver architecture. IPv4 and IPv6 protocols are similar but they have some
substantial differences. This section describes how the new IPv6 implementation
would be incorporated into HelenOS networking stack. Coexistence of IPv4 and
IPv6 protocols in one networking stack probably requires even some patches of
current IPv4 implementation.

3.1.1 Protocol/task question

One of principal high-level decisions for HelenOS IPv6 protocol implementation
was the code reuse among existing and eventually some new tasks. It was possible
either to implement IPv6 protocol in a completely new task inet6srv or to use
current task infrastructure and just substantially extend the inetsrv task.

Previous HelenOS networking stack, as described in the Context chapter, re-
spected some rules. Firstly, each protocol was implemented by a separate task.
Secondly, auxiliary protocols such as ARP or ICMP were implemented by the
main protocol task. Ethernet task ethip implemented also ARP protocol and
IP task inetsrv implemented ICMP protocol. There was no exact analogy for
a new version (mutually incompatible with the previous) of an existing protocol.
It was therefore impossible to solve this problem just continuously by an existing
rule.

New task addition would lead to better granularity and modularity of the
networking stack. It would also automatically solve the problem of IPv6-only
and [Pv4-only modes. When the user kills inetsrv task, he enters automatically
[Pv6-only operating mode. Similarly, he enters IPv4-only mode when he Kkills
inet6srv task. Both inetsrv and inet6srv tasks running denote dual-stack
mode and both killed mean a special mode of completely prohibited networking.

However, that solution equally demanded modifications in the other tasks
(mainly tcp, udp, ethip and loopip). Their interfaces with inet6srv would
be similar to their interfaces with inetsrv but not equal. There would be dif-
ferences alone for different address lengths. The networking stack would become
less arranged. Transport servers (tcp and udp) are already the most complicated
part of the networking stack. They would need to interact with two different
network-layer servers through two different interfaces and to store two different
address types.

The main reason for integration of both IP-version addresses and protocols into
one existing task inetsrv came right from transport-layer servers. Majority of
POSIX systems offer sockets of AF_INET6 family with IPV6_V6ONLY option

turned off by setsockopt (if not turned off by default). Such a socket is dual stack

29

and it can take both versions of IP protocol. If it is a TCP listening socket bound
to inbaddr_any, it accepts not only IPv6 connections, but also IPv4 connections.
If it is a UDP socket, it receives not only IPv6 packets but also IPv4 packets.
Dual stack UDP socket can send IPv4 packets by sendto using IPv4-mapped IPv6
address. When an IPv4 connection or packet arrives, recvfrom and accept return
[Pv4-mapped IPv6 addresses too.

There are some other POSIX OS not supporting dual stack sockets - in par-
ticular OpenBSD. It would imply that dual stack sockets are just a voluntary
feature of IPv6 implementation. Such an objection is not relevant to HelenOS
because HelenOS lacks select and pool functions. If an OpenBSD TCP or UDP
server (e.g. webserver or DNS server) wants to listen on both address families, it
just creates two sockets (one AF_INET and one AF_INETG6) and selects on both
of them. When a notification comes, it eventually accepts on the right socket and
works with created sockets uniformly. HelenOS provides neither select nor pool
functions. Without dual stack sockets it would be impossible to run a dual stack
TCP or UDP server. That fact would naturally significantly degrade benefits of
HelenOS IPv6 capability.

Therefore, if IPv4 and IPv6 protocols were implemented by different tasks, tcp
and udp servers would have to integrate them by itself relatively chaotically on
the transport layer. That is why we decided to integrate network-layer protocols
systematically on the network layer in inetsrv task. These two network-layer
protocols are in fact two versions of just one protocol. Their implementing codes
more merge than alternate. Completely different is just their PDU encoding,
PDU decoding and MAC address resolution. The other parts are equal or very
similar. My solution thus does not add any new tasks. It just significantly extends
the inetsrv task and partially also the others.

3.1.2 Data structures common to IPv4 and IPv6 address-
es and IPC interface from inetsrv ”up”

Integration of IPv4 and IPv6 in inetsrv was intended to keep unique IPC
interface between transport-layer servers (tcp and udp) and inetsrv process.
Inetsrv, tcp and udp servers hold data structures containing IP addresses -
routing table, network interface list, list of UDP associations, list of TCP connec-
tions, etc. Forking all those IPC interfaces and data structures into IPv4 versions
with IPv4 addresses and IPv6 versions with IPv6 addresses would be very un-
suitable and unwanted. It was necessary to unify addresses of both families to be
expressed and transferred as one single data type.

First possibility was to create a structure including one byte of address family
and a union with both addresses - together 17 bytes (20 bytes with first-item
alignment). Such a solution would be possible but it would require indispensable
workaround in network masking mechanisms. Network masking mechanism is
naturally used in interface network detection and in route selection. The other
fork of code would be necessary in socket library translations between sockaddr_in
and sockaddr_in6 structures.

30

Much better solution offered the IPv4 to IPv6 address mapping as described
above. There is a trivial one-to-one mapping between IPv4 and IPv4-mapped
IPv6 addresses. To translate IPv4 network mask to IPv4-mapped IPv6 network
mask (and back) it is necessary to add (or respectively subtract) 96 bits. IPv6
addresses have 128 bits, [Pv4 addresses have only 32 bits and 96 is the difference.
Common data type is thus simply an IPv6 address of 16 bytes. Native IPv6
addresses will be used unchanged and IPv4 addresses will be mapped into IPv6
by this mechanism. This mechanism prevents ambiguity because the range for
[Pv4-mapped IPv6 addresses is reserved and no address from it can be ever
assigned for a colliding purpose.

This solution has two important implications. All data structures (logically)
bearing both IPv4 and IPv6 addresses will represent them uniformly as IPv6
addresses (and some or all of them may be IPv4-mapped). The IPC among
single networking stack servers will use also only IPv6 addresses (which may be
again IPv4-mapped).

Applications that really must work with IPv4 addresses will need a translation
and mapping-detection mechanisms. Among those applications belong adminis-
tration utilities (such as uspace/apps/inet) because the user must be able to
set and read both IPv4 and IPv6 addresses in their native formats. Another cat-
egory is formed by pinging applications (e.g. uspace/apps/ping) because they
also take raw addresses from users.

Finally, there are non-ignorable differences in BSD socket interface. AF_INET
sockets use sockaddr_in structure for binding and connecting sockets. AF_INET6
sockets use sockaddr_in6 structure. Socket library must remember family of the
socket by itself and each time check if the socket address was provided in corre-
sponding format.

The transfer of such functionality to transport-layer servers is again unwanted.
Those servers have no knowledge of socket families. Transferring local checks to
foreign servers yields only higher costs and harder error detection.

Thence it follows that both translation mechanisms between sockaddr_in and
sockaddr_in6 address should be implemented already in the socket library. IPC
interface should be as simple as possible and it should support just one type of
IP address - IPv6. Translation code in transport-layer servers would be even
redundant in udp and tcp because there are no differences. The TPC between
socket library and transport-layer servers will thus use only sockaddr_in6 socket
address format.

The only difficulty disallowing complete IPv6 transparency of tcp and udp
servers are AF_INET sockets bound to INADDR_ANY. Those socket may accept
connections (or receive packets) from any IPv4 address and not only from the
one mapped address which is moreover invalid. INADDR_ANY has a special
semantics which is similar to in6addr_any. The only difference is that in6addr_any
matches all and INADDR_ANY only IPv4-mapped addresses.

31

Tcp and udp servers will hence work only with IPv6 addresses. All their IPC
interfaces (both to inetsrv and to socket library) will use only IPv6 addresses
too. The only two patches to ensure IPv4 compatibility will consist in INAD-
DR_ANY -mapped IPv6 address check and in checksum calculation.

3.1.3 NDP position (link-local addresses) and the rest of
IPC interface

Interfaces and data structures among network-layer server, transport-layer ser-
vers and socket library are practically solved and clear. IPv4 addresses will be
completely replaced with IPv6 addresses and eventually mapped. Possible trans-
lation to native IPv4 addresses will be performed by ”end nodes” of the network-
ing stack. End nodes are socket library, administration utilities and pingers. All
components will be necessarily patched to fulfill IPv4 specialties intrinsically in-
compatible with IPv6 (such as pseudoheader checksum calculations). Much more
complicated is the bottom part of HelenOS networking stack. It means from
inetsrv server down.

Inetsrv itself must distinguish between native and IPv4-mapped addresses
thought they all would be stored uniformly. PDU encoding will be completely
different for IPv4 and for IPv6 datagrams. IPv6 datagram fragmentation and
reassembling is much less necessary if the outgoing datagrams will obey the min-
imal MTU of 1280 bytes. All NICs will naturally accept the maximum of 1500
bytes for incoming datagrams.

Probably the main difference between IPv4 and IPv6 networking stack archi-
tecture consists in completely different MAC address resolution. IPv4 uses ARP
as a part of link-layer Ethernet protocol. IPv6 uses NDP. NDP is a part of
network-layer ICMPv6 protocol.

There were two possibilities but none of them was backward compatible with
the previous implementation and its principles. Inetsrv was previously unaware
of MAC addresses. NDP is a part of IP protocol and therefore it should be
implemented by the IP server.

First possibility was to implement NDP protocol in ethip process. Ethip would
be aware of all IPv6 addresses assigned to a particular interface. It would recog-
nize and intercept every Ethernet frame carrying NDP packet and process it by
itself. Advantages of that approach include IPC interface preservation (only IPv4
to IPv6 changes). Disadvantages include complete breakdown of protocol/process
conception together with chaotic and redundant processing and creation of IPv6
headers, ICMPv6 headers and even NDP bodies and options in a task originally
processing just Ethernet frames.

Second possibility was to enhance IPC interface between inetsrv and link-
layer servers (loopip and ethip) by MAC address passing. It means that ethip
returns on demand MAC address of a particular NIC and inetsrv can send a

32

datagram with a pre-set target MAC address. MAC address resolution of IPv6
datagrams would be moved into inetsrv task. Advantages of this approach
include mainly protocol/process conception compatibility. Disadvantages include
non-trivial IPC interface upgrade needs.

Finally, the second possibility was chosen because of respect to HelenOS mul-
tiserver architecture. It is a much more systematic solution though it modifies
and complicates interfaces.

New IPC commands are MAC address query and the possibility to send a data-
gram with already pre-set target MAC address. Whole ICMPv6 including NDP
will be processed directly in inetsrv task analogically to ICMP. NDP will form
a separate module of inetsrv with a conception very similar to ARP. Configura-
tion module of inetsrv will pass only IPv4 addresses to link-layer servers. Ethip
and loopip stay unaware of IPv6 addresses because ARP does not need them.
IPC between inetsrv and link-layer servers preserves IPv4 communication (4-
bytes addresses) because no IPv6 addresses can go through it. Ethip task will
distinct IPv4 and IPv6 datagrams by their ether-type and send them to inetsrv
by different IPC commands.

3.2 Interface enhancements

IPC interface between nic and ethip servers remains untouched. IPC between
ethip and inetsrv servers will be significantly upgraded by adding and removing
some [PC message types. Ethip will recognize frames encapsulating IPv4 data-
grams and IPv6 datagrams by their ether-type field. It will send their payloads
by different IPC commands to inetsrv to be sooner distinguished. Inetsrv will
reciprocally use two IPC commands for sending I[Pv4 and IPv6 datagrams. What
is more, those two IPC messages will have very different parameters. The first
sends source IPv4 address, target IPv4 address and serialized IPv4 datagram.
The second sends just target MAC address and serialized IPv6 datagram. IPv6
MAC address resolution is performed already by inetsrv. The last IPC inter-
face upgrade between ethip and inetsrv is the own MAC address query which
is very similar to MTU query.

33

17. Changes in IPC between ethip and inetsrv

[PC

received [Pvd datagram
—

received [Pvd datagram
—

recewved datagram

—
query for MTU

LTU
—>
. query for MAC |
ethip| <= [inetsrv
S
add IPv4 address

remove [Pvd address

sending datagrams

<—

sending [Pvi datagrams
<—
sending [Pvd datagrams

<—

W preserved IPC messages
B new IPC messages
¥ removed IPC messages

Separate problem is the loopip process. Its IPC interface with inetsrv should
be similar to ethip/inetsrv interface but loopback has no MAC addresses. The
patch is simple. Loopip will always return zero MAC address of loopback (MAC
address with all bits set to zero) and inetsrv consequently turns off NDP for
such interface. It sets target MAC address of every outgoing datagram (through
that interface) to zero too. Loopip just pops that zero MAC address and flags
the datagram as IPv6 to be correctly "received” and returned back as IPv6 to
inetsrv. It similarly stamps IPv4 datagrams to emulate the ether-type mecha-
nism in ethip.

34

18. Changes in IPC between loopip and inetsrv

[PC

recewved [Pvd datagram
—

recewved [Pvd datagram

recewved datagram

—

loopip metsrv

sending datagrams

sending [Pvi datagrams

<—

sending [Pvd datagrams

<—

W new [PC messages
® removed IPC messages

IPC between inetsrv and transport-layer servers will be upgraded very simply.
All TPv4 address (4-byte values) appearances will be replaced by IPv6 addresses
(16-byte values). IPC larger data block transfers will be necessary for IPv6 ad-
dress transporting. Basic IPC messaging supports at most 5 integer values which
is not enough for two IPv6 addresses on 32-bit computers.

Interface between socket library and transport-layer servers will be upgraded
also simply. IPC messages bind, connect, sendto, accept and recyfrom will no more
use sockaddr_in structure (16-byte value) but exclusively sockaddr_in6 structure
(28-byte value).

35

19. Structure of HelenOS networking stack interface upgrade

user application

socket

tcp udp

NS

inet inetsrv ping

/ N\

loopip ethip

Upgraded from [Pv4 (4-bytes) to IPvS (16-bytes) addresses
Upgraded from socladdr_in to socladdr_iné

B

Some IPC conunands changed (described abowve) nic

—_— . [PC interface completely preserved i

3.3 Code upgrades

This section contains already the low-level specification of required code changes.
It should be as detailed as possible in the Analysis phase.

3.3.1 Changes in shared libraries (others than socket li-
brary)

Shared libraries contain features demanded by multiple applications (OS servers,
utilities, user-applications). With IPv6 capability of HelenOS come new needs of
conversion functions, appropriate data types and constants.

It was necessary to define standard structures sockaddr_in6, in6_addr and con-
stants in6addr_any and in6addr_loopback. Special constant injaddr_any, which is
in fact INADDR_ANY -mapped to IPv6, is useful for transport-layer servers and
for the socket library. In6addr_multicast_all nodes represents ££02::1 address,
universal link-local destination. All nodes are obliged to accept datagrams des-
tined to there. Finally, it was necessary to define newly useful standard macro

36

values such as IP.PROTO_ICMPV6, ETH_P_IPV6, ICMPV6_ ECHO_-REQUEST,
ICMPV6_NEIGHBOR_SOLICITATION, etc.

Among standard conversion functions, it was necessary to implement correct in-
et_pton and inet_ntop functions. Their implementation was casuistically switched
to IPv4 and IPv6 version (by family parameter). These functions have the same
abilities as their correlates in GNU C library. They accept IPv4 abbreviated no-
tation (e.g. 127.1is 127.0.0.1) and both accept and return IPv6 abbreviated
notation (e.g. ::1 is 0000:0000:0000:0000:0000:0000:0000:0001).

Auxiliary function is_mapped has one parameter (IPv6 address). It returns
true if the address is IPv4-mapped and false if it is not. Function ipv4_to_ipv6
converts [Pv4 address to IPv4-mapped IPv6 address. Ipv6_to_ipvj function is
reversion of ipv4_to_ipv6 converting it eventually back. In6addr_equal compares
two IPv6 addresses for equality because C-language provides no means how to
compare two 16-byte arrays directly.

Inner libraries for IPC communication from transport-protocol servers with
inetsrv (inet.h), for pingers with inetsrv (inetping.h), for administration util-
ities with inetsrv (inetcfg.h), for inetsrv with link-layer servers (iplink.h) and
for link-layer servers with inetsrv (iplink_srv.h) were upgraded just to use new
IPC interfaces as described in previous chapter.

3.3.2 Changes in ethip

Ethernet protocol implementation must newly accept MAC address multicasts.
At least IPv6 multicast (MAC addresses beginning with 33:33:) are necessary.
Except that, ethip must only adapt new IPC interface towards inetsrv.

Ethip must newly recognize FTH_P_IPV6 frames and send their payload to
inetsrv by IPLINK_EV_RECV_IPV6 IPC command. It will continue in self-
processing ETH P_ARP frames and in forwarding ETH_P_IP frames by
IPLINK EV_RECV_IPV4 IPC command to inetsrv.

Implementation of new IPC message IPLINK_GET_HWADDR will not be com-
plicated. Ethip just reads MAC address from interface’s ethip nic_t structure,
splits it into two 4-byte numbers (first two bytes to one integer and the rest to
another one) and return these two integers by IPC response to inetsrv.

IPLINK SEND_IPV, will be implemented the same way as previous
IPLINK_SEND IPC message. IPLINK_SEND_IPV6 implementation just reads
two integers (parameters of this IPC-message type) and joins them into target
MAC address value. Source MAC address will be read from ethip nic_t struc-
ture and the frame is to be immediately sent without any ARP resolution and
other complications.

37

Finally, ethip will be affected by moving MAC address headers and utilities to
a shared library because the same functions will be used by NDP stack in inetsrv
server. This appertains to mac48_addr_t data type, MAC4S8_BROADCAST macro
and to mac48_encode and mac48 _decode functions. Those functions will be de-
clared in net/ether.h file and moved to uspace/lib/c/generic/net/ether.c
library.

Ethip supports ——ipv4-only and --ipv6-only command-line arguments. With
the first one, ethip enters IPv4-only mode ignoring all Ethernet frames with IPv6
datagrams and blocking all IPLINK_SEND_IPV6 TPC messages from inetsrv.
With the second one, it enters IPv6-only mode ignoring all Ethernet frames with
IPv4 or ARP datagrams and blocking all IPLINK_SEND_IPV/ TPC messages.

3.3.3 Changes in loopip

Loopip only needs (analogically as ethip) to ensure distinction between IPv4
and IPv6 datagrams. The receiving interface is strongly-typed. IPv4 datagrams
arrive by [IPLINK_SEND_IPVj message. IPv6 datagrams arrive by
IPLINK_SEND_IPV6 message. Loopip thus suffices with a new member in
loopback-queue item storing IP version of the datagram. Value of that member
will be checked after consuming the item from loopback queue. Matching payload
will be returned over IPC by [IPLINK EV_RECV_IPV} or by
IPLINK_EV_RECV_IPV6 message back to inetsrv.

3.3.4 Changes in inetsrv
Address representation

All data structures representing IPv4 addresses will be replaced with unified
IPv6 representation - structure in6_addr. Data type expressing an IPv4 address
with its netmask (used in addrobj module to express IP address assigned to a
particular interface and in sroute module as a route destination) will be replaced
by IPv6 address with netmask. New couple of conversion function will be im-
plemented. Function converting IPv4 network to the new data type converts
[Pv4 address to IPv4-mapped IPv6 address (using ipv4_to_ipv6 function) and
increases the netmask by 96 bits. Backward conversion calls ipv6_to_ipv4 to the
address and it subtracts 96 bits from the netmask.

Netmasking mechanism will be completely rewritten because of new IP address
representation but its principle remains the same. Checking function will have
just two parameters. First parameter contains IPv6 address with netmask to
express network range. Second parameter contains IPv6 address to be checked
whether it belongs to the network range or not. The function just generates
netmask as 16-byte array, masks both addresses and then checks their equality.

Inetsrv must also anew convert IPv4-mapped [Pv6 addresses added by inetcfg
IPC port to IPv4 before they are forwarded to ethip. The IPC interface between
inetsrv and ethip preserves IPv4 addresses contrarily to inetcfg. Native IPv6

38

addresses added by inetcfg will not be naturally passed to ethip because ethip
does not need them as explained above.

New destination IPv6 addresses

Inetsrv will accept IP datagrams destined to multiple addresses. Classical uni-
cast addressing known from IPv4 remains. Solicited-node multicast addressing
accedes because Neighbor solicitation messages are necessary for MAC address
resolution and they are destined only that way. Universal link-local multicast ad-
dresses (such as ££02::1) will be partially supported but their implementation
may not be complete. Neither [Pv4 implementation does accept IP datagrams
destined to broadcast IPv4 addresses. There must be defined a new constant vari-
able solicited-node multicast mask (££02::1:££00::/104) for netmasking IPv6
destination addresses. New couple of functions converting target [IPv6 address to
[Pv6 multicast solicited destination (ndp_solicited_node_multicast_address) and to
MAC target of its encapsulating Ethernet frame (ndp_solicited_node_mac_address)
will be introduced.

ICMPv6 protocol implementation

New protocol ICMPv6 will be implemented directly by inetsrv task in a new
file icmpu6.c. Inet_recv_dgram local function will not check only ICMP. It will
check also ICMPv6 value before searching in available transport protocols. It will
process ICMPv6 packets by itself forwarding them to icmpv6 _recv function.

ICMPv6 implementation will be independent from current ICMP implementa-
tion. Their architectures will not have many substantial differences. The check-
sum calculation is different. ICMP does not use pseudoheaders while ICMPv6
does. Matching ICMP and ICMPv6 message types use different numbers. Stan-
dard ICMPv6 headers and constants are defined in icmpv6_std.h file. Both ICMP
a ICMPv6 will be connected to Inetping module. Inetping module resolves what
IP protocol version is going to be used and chooses matching control protocol
version for any outgoing FEcho request message. This distinction is performed
naturally by is-mapped function. Inetping IPC interface consisting in automat-
ic assignment of ICMP(v6) echo identifier will remain.

ICMPv6 stack will support four message types - Echo request, Echo reply,
Neighbor solicitation and Neighbor advertisement. Neighbor solicitation and Neigh-
bor advertisement messages will be redirected to NDP module implemented in
ndp.c file. Inetsrv automatically replies every received ICMPv6 Echo request
message. [CMPv6 Echo reply message will be passed to Inetping module and
then perhaps to a pinging application with the matching ICMP(v6) echo identi-

fier.

MAC address resolution

New IPC interface demands inet_link_t structure extension by MAC address
of the interface (48 lower bits of 64-bit number). MAC address value will be
received from the link-layer server by the IPC call in two message arguments

39

during NIC opening in inet_link check new. Since then, inetsrv knows MAC
address of every interface and NDP module can successfully read it.

Neighbor solicitation and Neighbor advertisement ICMPv6 messages will be
passed from ICMPv6 module to NDP module. NDP module is in turn similar
to ARP implementation in ethip. The module holds its main data structure -
unsorted linked-list of pairs containing IPv6 addresses and matching MAC ad-
dresses.

NDP module extracts message sender MAC and IPv6 address, ICMPv6 type
and destination IPv6 address. Then it always saves sender pair of MAC and IPv6
address to the list. It must save it even if it is a Neighbor solicitation message to
avoid endless solicitation looping. If it is a Neighbor solicitation message destined
to one of IPv6 addresses assigned to incoming NIC, it replies with correct Neighbor
advertisement message. NDP PDU encoding and decoding routines will be im-
plemented in pdu.c file together with IP datagram PDU routines. These routines
are technically relatively complicated. Each Neighbor advertisement message will
have set OVERRIDE and SOLICITED flags because HelenOS will send only
solicited advertisements. Neighbor solicitation messages use naturally no flags.

For principally each IPv6 datagram before it is send (passed to ethip by IPC)
inetsrv must resolve its target MAC address. There are two exceptions to
this rule. First exception is formed by NDP messages as described later. Second
exception is represented by datagrams that will be send from NIC with zero MAC
address (it means loopback). NDP-message datagrams will have their target MAC
address pre-set by NDP module. Loopback datagrams target MAC address will
be set constantly to zero because loopip anyway ignores it.

Either already the destination IP (if the destination is directly in the net-
work of outgoing address) or the first-hop router will be used as target IPv6
address. Inetsrv looks to IPv6-MAC pair list for the target IPv6 address. If the
lookup is successful, inetsrv just assigns found target MAC address and sends
the datagram. Otherwise, it builds correct Neighbor solicitation message (in-
cluding correct multicast IPv6 target and multicast MAC target), sends it and
waits until correct Neighbor advertisement message comes. If the advertisement
does not arrive in one second, inetsrv gives up waiting and discards the outgoing
datagram.

Neighbor advertisement and Neighbor solicitation messages never use recursive-
ly NDP MAC address resolution. They bypass it using inet_link send dgram
function directly. Target MAC addresses of both message types are defined by
ICMPv6 protocol specification. They are derived from destination IPv6 address
or equal to solicitation source MAC address. No MAC address resolution is need-
ed to send them. NDP messages neither use routing mechanisms because their
target is always in a network of the outgoing interface. NDP will thus remem-
ber only the outgoing NIC and use it for related NDP messages instead of their
routing. Outgoing NIC of a Neighbor advertisement message is the NIC what the

40

Neighbor solicitation message came from. Outgoing NIC of a Neighbor solicita-
tion message in the NIC where the datagram with unknown target MAC address
will be sent.

NDP module will use ether.h library for MAC address manipulation and stor-
age. It was set apart from ethip task to a shared library. IPv4 datagrams will
continue in ARP resolution implemented in ethip. Inetsrv only passes their
source and target IPv4 addresses over IPC to ethip and ethip performs the
ARP lookup.

Other changes of inetsrv

PDU implementation will be completely forked to IPv4 and IPv6 versions be-
cause they have not much in common. I[Pv4 version remains as it is and IPv6
implementation will be added. It will be simpler than IPv4 fork because of miss-
ing internet-layer checksum calculation and simpler fragmentation rules. IPv6
PDU decoding routine firstly decodes IPv6 datagram header ignoring deprecated
header fields of IPv4 datagrams such as type of service, checksum, identifier, offset
and fragmentation flags. Only if the next header is fragmentation, fragmentation
parameters will be eventually assigned. PDU module will include NDP message
encoding and decoding. Standard header data-types (IPv6 datagram header,
NDP message skeleton and NDP option format) will be defined in inetsrv.h and
in ndp.h files.

Automatic setting of constant IPv4 addresses will be erased with no replace-
ment. Contrariwise, IPv6 link-local address automatic assignment will be intro-
duced. Link-local address is derived from the MAC address by mac_to_link local
function. If MAC address of a NIC will be zero, then ::1/128 (loopback defini-
tion) link-local address will be automatically assigned. Loopback will be auto-
matically assigned also with wide-known 127.0.0.1/8 IPv4 address.

Inetsrv launched with --ipv4-only argument forbids passing IPv6 datagrams

over IPC to link-layer servers and receiving them. It disables
IPLINK EV_RECV_IPV6 and IPLINK SEND_IPV6 1PC messages. Thus, it
completely blocks IPv6 communication. --ipv6-only argument does

the same with IPv4 datagrams. It disables IPLINK_EV_RECV_IPVj and
IPLINK_SEND_IPV, IPC messages. Using one of those arguments HelenOS net-
working stack enters [Pv4-only or IPv6-only mode. Ethip arguments -—ipv4-only
and --ipv6-only are just an opportune optimization.

3.3.5 Changes in transport-layer servers

Transport-layer servers need only three minor updates. The first difference is
different format of associations and connections. IPv4 addresses will be replaced
with IPv6 addresses and those addresses will be directly used in both ways of IPC
communication. The second update is forked pseudoheader checksum calculation
because format of TCP/UDP over IPv4 and TCP/UDP over IPv6 checksum
pseudoheader is different as described in Context chapter. The last change is

41

matching of local address to destination IP address and foreign address to source
IP address. Universal value will be changed from INADDR_ANY to inbaddr_any.
Injaddr_any (as defined above) will additionally match even all IPv4-mapped
addresses but not the others.

3.3.6 Changes in socket library

Socket library must newly ensure and implement socket address conversions.
It must also check compatibility between socket family and socket address family.

Each socket structure will contain new item called family storing to what family
the socket belongs. So far, AF_INET and AF_INET6 families are supported. The
item will be assigned by socket function from its family argument or by accept
function copying family of the parent listening socket.

Inside connect, bind and sendto functions, socket library must check and let
go only two alternatives. First alternative is that both socket and socket address
families are AF_INET and the socket address length is exactly 16 (size of sock-
addr_in structure). Second alternative is that both socket and socket address
families are AF_INET6 and the socket length is exactly 28 (size of sockaddr_in6
structure). Any other combination is invalid and affected function must hence
immediately return an error.

If the socket family was AF_INET, socket library must create a new struc-
ture sockaddr_in6. It copies the port number directly from provided sockaddr_in
structure. New IPv6 address will be obtained calling ipv4_to_ipv6 on sin_addr
IPv4 address. Resulting sockaddr_in6 structure will be send through IPC to cor-
responding transport-layer server. If the socket family was AF_INET6, socket
library may omit this workaround and immediately send provided sockaddr_in6
structure by IPC to the transport-layer server.

A little more complicated are accept and recufrom calls. Such functions let
pass again only two variants. Either both socket and socket address families are
AF_INET and the socket address length is at least 16, or both socket and socket
address families are AF_INET6 and the socket address length is at least 28. Any
other combination of parameters will not pass through.

If that check passes, socket library receives always a sockaddr_in6 structure by
IPC from transport-layer server. If the socket family was AF_INET6, it just fills
prepared buffer by that address, the length by 28 (size of sockaddr_in6 structure)
and successfully returns.

If the socket family was AF_INET, it must at first convert received sockad-
dr_in6 structure to sockaddr_in. Socket library converts received IPv6 address by
ipv6_to_ipv4 and assigns the result to sin_addr item of the prepared buffer. It
copies sin6_port of received structure to sin_port. AF_INET constant is assigned
to sin_family item and 16 (size of sockaddr_in structure) to the socket address
length.

42

3.3.7 Changes in utilities

New utility is to be introduced - ping6. Its functionality is analogical to ping.
It works only with IPv6 addresses while ping works only with IPv4 addresses.
Naturally, it connects over inetping IPC port to inetsrv and converts textual
representation of IPv6 address to in6_addr_t structure.

Old ping utility admits only one change. It must convert IPv4 addresses to
[Pv4-mapped IPv6 addresses because inetping IPC interface counts only with
[Pv6 addresses.

Inet utility will integrate both IP protocol versions. It will introduce new
function for distinction between IPv4 and IPv6 address textual representation
to know with what address family to call inet_pton. Inet will recognize also
received IP addresses from inetcfg IPC by is_mapped function. IPv4-mapped
IPv6 address it converts firstly to native IPv4 and prints the result by inet_ntop.
Native IPv6 address it prints directly with inet_ntop.

43

4. Implementation

4.1 Step-by-step development and continuous test-
ing

Overall implementation strategy consisted in wide salami-tactics usage and in
modular development. It was necessary to define a reasonable subset of testing
impositions and charges (testing set). This set had to be correctly working under
previous IPv4 implementation. New implementation continued gradually. All
those tests were performed after each partial improvement. If something had
broken in the foregone development phase, it should not be difficult to find the
bug after the phase in the last diff. In the worst case, it was possible to rollback
the foregone phase.

First strategic step was to prepare networking stack infrastructure to use IPv6
addresses in all data structures and in all IPC interfaces. Second step was to
implement distinction mechanisms (between native IPv6 and IPv4-mapped IPv6
addresses) and to fork implementations of divergent modules. Only the last step
was working with the real IPv6 (respectively dual stack) traffic. IPv4 communi-
cation should be working correctly during whole implementation process.

4.2 Debugging methods

Operating systems are generally hard to debug. Contrarily, the development
of separate userland tasks is much easier than kernel development thanks to all
security checks of user-application programming. HelenOS multiserver architec-
ture provides IPC interfaces. IPC interfaces are very useful as inner interfaces
to perform modular development. Tasks can be considered as modules and their
inputs and outputs are defined by their IPC. The only swinging charge is the
precise definition of all affected IPC interfaces. This definition must be unam-
biguous. It must cover exactly all necessary features and capabilities. After that
definition, the rest is a pure example of modular development.

HelenOS lacks advanced testing utilities such as Valgrind. The only useful
general-purpose debugging techniques are logging and control outputs. Network-
ing applications can be moreover debugged by network sniffing tools listening on
TAP interface such as Tepdump or Wireshark. These tools are able to check
integrity and correctness of outgoing frames, datagrams and packets. We used
this possibility very often when introducing new features of the networking stack.
Specific instrument is debugging directly by Linux kernel networking stack. Lin-
ux kernel detects some parameter errors (e.g., payload length of IPv6 datagram
with M fragment flag set must be divisible by eight) and eventually replies it
with a correct ICMPv6 error message. Wireshark cannot detect directly those
parameter errors but it can capture the ICMPv6 error message, sent by Linux
kernel, on its way back to HelenOS.

44

4.3 Testing set

Testing set is intended to be perfectly working under the previous implemen-
tation to use the salami-tactics. This set must also cover all non-trivial features
of networking stack. Choice of such features and preparation of such tests is thus
very important. Outer interface of HelenOS networking stack will be explored
to get list of features. Each found feature can have moreover many procedurally
different variants and the testing set must cover all of them.

4.3.1 Testing set determination

Outer interface of previous HelenOS networking stack provides these features:

1.

S
_ O

12.

S A A e R

Socket interface (subset for UDP and subset for TCP)
Ping user interface

Inet (administration utility) user interface

Ethernet frames encoding and decoding

ARP datagrams encoding and decoding

Automatic replies on ARP requests

ARP translations

IPv4 datagrams encoding and decoding

ICMP packets encoding and decoding

Automatic replies on Echo request messages

. DNS translations

Sending and receiving IPv4 datagrams over loopback

After IPv6 implementation this interface will be extended by:

13.

14.
15.
16.
17.
18.
19.
20.
21.
22.

AF_INET6 sockets, sockaddr_in6 addresses, mapping IPv4 to IPv6 any-
where possible

Ping6 user interface

Inet (administration utility) user interface - complete IPv6 address support
IPv6 datagrams encoding and decoding

ICMPv6 packets encoding and decoding

Automatic replies on ICMPv6 Echo request messages

Automatic replies on ICMPv6 Neighbor solicitation messages

NDP translations

DNS IPv6 servers and AAAA records

Sending and receiving IPv6 datagrams over loopback

45

Inet user interface can be easily covered with create, delete, add-sr and del-sr
commands. Ping interface has three procedurally different variants. First variant
of pinging is pinging to loopback (covering also points 8, 10 and 12). Second
variant is pinging to a computer in the same Ethernet network (covering also
points 4, 5, 7, 8 and 9). The third variant is pinging to a computer in a foreign
network covering the same points but checking also the routing mechanism. Point
10 can be covered by pinging to HelenOS from another computer over Ethernet
(covering also points 4, 5, 6, 7, 8 and 9). DNS translations are covered by dnscfg
set-ns and dnsres commands.

The most complicated part of outer interface is the socket interface - point
one. UDP socket implementation in HelenOS library supports socket, bind, send-
to, recufrom and closesocket functions. TCP socket implementation supports
socket, bind, listen, accept, connect, recv, send and closesocket functions. All
those functions must be included into tests. At first only AF_INET sockets and
addresses must be working, later also AF_INET6 sockets with AF_INET6 native
and AF_INET6 TPv4-mapped addresses. Covering of this point is described in
the next subsection.

Points with numbers 13 and following are to be covered eventually after ap-
propriate features will be implemented. Their covering is described in subsection
Final testing set.

4.3.2 Antecedent bug fixes in previous IPv4 implementa-
tion

Covering supported part of BSD socket interface with appropriate tests was
relatively complicated. Testing tools were missing or broken. In uspace/apps
directory were some network testing tools (netecho, nettestl, nettest2 and
nettest3) covering all supported functions of BSD socket interface. None of
them was correctly working in the mainline revision 1841 we came from.

Those tools did not obey HelenOS coding-style and their code was (and is)
overall not well arranged. That was why we looked firstly for some alternatives.
There was a working web server (in uspace/apps/websrv) covering socket, bind,
listen, accept, recv, send and closesocket functions for TCP sockets. It missed
only the connect function. DNS IPC server dnsr (in uspace/srv/net/dnsr) used
UDP sockets and covered socket, sendto, recufrom and closesocket functions. Only
the bind function for UDP sockets was missing.

We decided to put in order the nettest2 tool and execute it against a remote
TCP ECHO server. It was necessary for connect function testing. Nettest2
used sendto and recvfrom calls on TCP sockets. It was naturally invalid because
TCP communication is stateful. Except that, they did not initialize receive buffer
length. The first recufrom call thus always failed even on UDP. After nettest?2
was working on both TCP and UDP, we made also the netecho tool working,
but only under UDP protocol.

46

With those two fixes, we finally covered all functions of partial BSD socket
interface. Nettest2 supported TCP socket, connect, recv, send and closesocket
functions. Netecho covered socket, bind, recvfrom and sendto functions on UDP
sockets. We used the netcat utility to test netecho UDP server from another
computer over Ethernet. Finally, we could run even nettest2 against netecho
on loopback (using UDP because nettest2 works already on both transport
protocols).

It was possible to check also fragmentation and reassembling in inetsrv with
netecho UDP server. Reassembling is the biggest irregularity in IP datagrams
processing. Netecho buffer has been enlarged from 1024 to 4096 bytes in order
to overrun Ethernet MTU. Then we could send 3500-byte UDP messages with
netcat to HelenOS and print its answers.

During that phase of preparation became known previous HelenOS implemen-
tation of IPv4 fragmentation and reassembling was never tested. Some bugs could
appear later with the new implementation of linked-lists. Linked-list stores par-
tial datagrams divided into fragments. Many bugs were, however, so serious that
the implementation could not be working ever before. Among such bugs belongs
unique assignment of identifiers to single fragments (not to whole datagrams).
It caused that no two fragments could have the same identifier. Any operations
adding received fragments to the partial datagram list was even missing. Received
fragments always leaked and the list remained empty.

After IPv4 fragmentation and reassembling bug fixes, the testing set had com-
pletely covered outer interface of HelenOS networking stack. It included all major
procedural variants of all single features. All their tests passed without errors.
Previous implementation and its testing set were thus ready for IPv6 develop-
ment.

4.3.3 Final testing set

Testing set thus contains:

1. Ping to loopback

2. Ping to a computer in the same network

3. Ping to a computer in a foreign network

4. Replies to ICMP Echo request messages from another computer

5. Creation, deletion and printing IPv4 networks and routes by inet tool
6. Setting IPv4 recursive DNS server by dnscfg

7. Translation of hostname to IPv4 address

8. Websrv on IPv4 correct functionality

9. Nettest2 against a remote TCP ECHO server

47

10.

11.
12.

Netcat from remote computer against netecho on HelenOS under UDP
(Datagram size under MTU)

Nettest2 against netecho under UDP on loopback

Netcat from remote computer against netecho on HelenOS under UDP
(Datagram size over MTU)

and will be enlarged with:

13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.

25.

26.

27.
28.

29.

Ping6 to loopback

Ping6 to a computer in the same network

Ping6 to a computer in a foreign network

Replies to ICMPv6 Echo request messages from another computer
Creation, deletion and printing IPv6 networks and routes by inet
Setting IPv6 recursive DNS server by dnscfg

Translation of hostname to IPv4 by IPv6 recursive DNS server
Translation of hostname to IPv6 by IPv4 recursive DNS server
Translation of hostname to IPv6 by IPv6 recursive DNS server
Websrv on IPv6 correct functionality

Nettest2 against a remote TCP over IPv6 ECHO server

Nettest?2 against a remote TCP over IPv4 ECHO server using PF_INET6
sockets (mapping)

Netcat from a remote computer against netecho on HelenOS under UDP
over IPv6

Netcat from a remote computer against netecho on HelenOS under UDP
over IPv4 using PF_INETG listen socket (mapping)

Nettest2 against netecho under UDP over IPv6 on loopback

Nettest2 against netecho under UDP over IPv4 using PF_INET6 sockets
(All three variants of mapping - only nettest2, only netecho and both)

Netcat from a remote computer against netecho on HelenOS under UDP
over IPv6 (Datagram size over MTU - IPv6 fragmentation)

4.4 Development phases

Development phases are steps transferring HelenOS networking stack from one
consistent state to another one. The new state must be naturally nearer to
the final implementation. Between two development phases, the state must be
consistent. It means that actual testing set must be perfectly working.

48

4.4.1 Preliminary phases

First few phases were used just for accommodation of previous IPv4 implemen-
tation to be more easily transferrable to final IPv6-capable implementation. We
changed all IPC transfers of IPv4 addresses to use IPC interface for passing larger
data blocks. IPv4 addresses had only 4 bytes and were thus perfectly suitable as
parameters of simple messages. Data blocks were, however, easily substitutable
with 16-byte data blocks carrying already IPv6 addresses.

Secondly, we completely wiped out the addr library placed in
uspace/lib/c/generic/net/addr.c and replaced it with correct implementa-
tion of standard inet_pton and inet_ntop functions. Only the inet tool needed to
parse IP addresses with their netmasks. We implemented functions for parsing
and printing IP addresses with netmasks there locally. All other occurrences of
addr_parse and addr_print functions were replaced with matching inet_ntop and
inet_pton calls.

In the third phase we unified IPv4 address representation. Before that each
task had used its own IPv4 address representation (socket library used in_addr_t,
tcp used netaddr_t, inetsrv used inet_addr_t, ethip used iplink_srv_addr_t, etc.).
We replaced all those data types with standard in_addr_t structure containing one
wint32_t member s_addr. Simultaneously we defined macro value INADDR_ANY
and replaced all other macros and numbers representing the same value.

In the fourth phase, we unified also the endianity of IPv4 addresses. IPv4
addresses had been previously stored in native endian format competing with
intended IPv4 to IPv6 mapping. Since then, all IPv4 addresses were stored
classically in big endian (network byte order) and no byte-order conversion of IP
addresses was ever since needed.

4.4.2 Porting to IPv6

In the fifth phase we defined constants such as in6addr_any, macros and utilities
described in the Analysis chapter. Then we ported tcp task to use and process
IPv6 addresses. Both IPC interface handlers (with inetsrv and with socket
library) used conversions back from and to IPv4. In the next phase, we did the
same with the udp task.

49

20. HelenOS networking stack after the 6th Phase

[Pv6 compatible parts ‘U.SE:I' prhcﬁtlo'l’l‘

& Convertors SDCkﬂt

/N

tcp udp

N

inet inetsrv ping

v N\

loopip ethip

— default IPC port
— 1netcfg IPC port nic
— 1netping IPC port

Consequently, we modified the inet tool to be IPv6 capable. It automatically
covered testing point 15 as described in the previous section. Then we changed
interfaces of inetsrv IPC ports inet, inetcfg and inetping to use everywhere
16-byte IPv6 addresses. Inetsrv itself was even not IPv6 capable but it per-
formed the conversions from IPv4-mapped IPv6 addresses to IPv4 by itself. Ping
utility was accommodated to use new inetping interface with IPv6 addresses.

50

21. HelenOS networking stack after the 9th Phase

[Pv6 compatible parts ‘user application‘

® Convertors

socket

/N

tcp udp

inet * inetsrv * ping

v N\

loopip ethip

nic

Next phase brought the largest changes. It was necessary to replace all IPv4
data structures in inetsrv task with their IPv6 alternatives. Later we added
IPv6 PDU processing, distinction mechanisms, ICMPv6 processing and NDP
protocol implementation. Immediately after that, we enhanced IPC interface
between inetsrv and ethip as described in the Analysis chapter. Finally, we
added IPv6 support also to ethip.

In that moment it was possible to let IPv6 traffic into the HelenOS networking
stack and to start processing it. This processing began with receiving NDP solic-
itations and sending solicited NDP advertisements. First significant complication
became known when the NIC driver did not accept any multicast-addressed Eth-
ernet frames. We had to temporarily hack the elk driver and in fact turn on
multicast promiscuous mode to receive IPv6 traffic. Neighbor solicitation mes-
sages do not ever manage without multicast Ethernet addressing.

When solicited NDP advertisements were working correctly, we added ping6
utility with the same behavior as ping just using IPv6 and ICMPv6 protocols.

o1

It enlarged the testing set to cover all features of the final outer interface except
points 13, 21 and 22.

22. HelenOS networking stack after the 13th Phase

[Pv6 compatible parts ‘us&r application‘

® Convertors

socket

7N

tcp udp

ping6
inet Inetsrv _
png

loopip ethip

nic

When ping6 worked actively and HelenOS correctly replied ICMPv6 Echo
request messages, we made loopip compatible with IPv6 too. The next goal was
socket library adaptation. Socket library was extended with new socket families,
socket address families, conversions and compatibility checks. Socket library did
not act correctly when sending data blocks larger than 4096 by recv or send
functions. Error detection was almost missing and deadlock-prone. Nevertheless,
socket library worked enough to test the new IPv6 implementation. Its rewrite
was neither intended nor inevitable during this project.

We patched websrv application in order to test socket library IPv6 support
using dual stack listening socket. Netecho and nettest2 utilities supported
AF_INET6 sockets and socket addresses already since earlier.

When websrv, netecho and nettest2 were working with both native IPv6
addresses and IPv4-mapped IPv6 addresses, we started to modify the DNS stack.

52

Three modifications were necessary:
1. Communication with IPv6 DNS servers
2. AAAA record support

3. Enhancement of lookup interface to differentiate IPv4 (A record) and IPv6
(AAAA record) lookups

Lastly we implemented the IPv6 fragmentation and reassembling capability.
We introduced strong typing of socket families. Socket family assigned by socket
function or inherited by accept function should be equal to socket address family
used by connect, bind or sendto functions.

93

5. Evaluation

Neither special testing nor debugging phase was needed because of continual
testing thanks to salami-tactics use. We did only some measurements verifying
that the new implementation does not drag behind the original IPv4 implemen-
tation from the performance point of view.

5.1 Functional aspects

New networking stack recognizes Ethernet frames carrying IPv6 datagrams.
It can assign IPv6 addresses with their netmasks to single interfaces and list or
delete them. Also the assignment of IPv6 routing table lines is possible but the
router IP must be in the same network as the source IP of outgoing datagrams.
[Pv6 implementation supports correct receiving of IPv6 datagrams destined to
one of local unicast addresses or to solicited-node multicast addresses. It correctly
sends and routes outgoing datagrams. Echo request, Echo reply, Neighbor solici-
tation and Neighbor advertisement ICMPv6 messages are correctly processed. It
includes automatic replies, pinging and NDP translations.

TCP over IPv6, UDP over IPv6 and socket interface providing AF_INET6
sockets and socket addresses are also supported. SOCK_DGRAM sockets pro-
vide socket, bind, sendto, recvfrom and closesocket functions. SOCK_STREAM
sockets provide socket, bind, listen, accept, connect, send, recv and closesocket
functions. Their features include all features of AF_INET sockets. Inetsrv task
supports even full IPv6 fragmentation and reassembling. DNS resolution is able
to use IPv6 DNS servers and to resolve AAAA records (hostname to IPv6 address
translation). Loopback interface also supports IPv6 communication on the same
level as Ethernet interfaces.

IPv6 implementation supports dual stack sockets with IPv4-mapped IPv6 ad-
dresses. Link-local addresses are automatically assigned to each NIC during start-

up.

For day-to-day use, HelenOS IPv6 stack still lacks IPv6 address scoping and
related features. All IPv6 addresses (together with all IPv4 addresses) belong
to one global scope. It means they are valid and supposed to be unique every-
where. Link-local addresses are not differentiated and their destinations are thus
ambiguous when more NICs are present. Finally, routers are stored using their
IPv6 addresses and not their MAC addresses and NIC interfaces which is usual.

To be working correctly and usually, OS networking stack must support at least
three IPv6 address scopes: link-local, site-local and global scope. Link-local IPv6
addresses (derived from MAC address and assigned automatically) should also
enforce concrete network interface to be specific enough. All link-local addresses
belong to the same network. If no concrete interface of a link-local address is
defined, OS has in fact no idea what interface to use. Ping6 utility should support

o4

% operator separating destination IPv6 address and NIC identifier. Standard OS
users can set a link-local address as their default router. HelenOS is missing that
feature by now. If a link-local address represents a router, HelenOS automatically
uses its own link-local address as the source IP in outgoing datagrams. Global
[Pv6 destinations are naturally unable to route such traffic back. HelenOS users
must use a global IPv6 address as their default router if they want to communicate
over Internet.

5.2 Performance aspects

As prototype implementation, HelenOS IPv6 stack uses almost no optimiza-
tions. Its performance is therefore relatively low in comparison with IPv6 stacks
of other operating systems. When compared with HelenOS IPv4 stack, HelenOS
IPv6 stack achieves practically the same performance. It implies that the new
code probably does not contain any substantial performance defects.

95

23. Performance comparison

HelenOS IPv4 stack

HelenOS IPv6 stack

Qemu-x86_64, E1000 TAP on Linux

Qemu-x86_64, E1000 TAP on Linux

Webserver - flow test
http://10.0.2.15:8080/test
Downloading 300kB file with wget
11,9K=25s
12,9K=23s
12,0K=25s
11,6 K=26s
11,2K=27s
11,6 K=26s
12,5K=24s
10,4K=29s
12,1K=25s
13,8 K=22s
13,1K=23s
13,4K=22s
12,3K=24s
11,3K=27s
12,5K=24s
10,7K=28s

R I e

9.

10.
11.
12.
13.
14.
15.
16.

Min: 10,4kB/s
Avg: 12,0kB/s
Max: 13,8kB/s

Webserver - flow test
http://[fc02::2]:8080/test
Downloading 300kB file with wget
12,2K=25s
10,4K=29s
11,6 K=26s
12,8K=23s
11,4K=26s
12,6 K=24s
12,9K=23s
10,4K=29s
12,0K=25s
13,6K=22s
13,8K=22s
10,4K=29s
10,3K=29s
11,5K=26s
10,4K=29s
12,7K=24s

R I e

9.

10.
11.
12.
13.
14.
15.
16.

Min: 10,3kB/s
Avg: 11,8kB/s
Max: 13,8kB/s

Ping - latency test

PING 10.0.2.15 56(84) bytes of data.
— 10.0.2.15 ping statistics —

256 packets transmitted,

256 received, 0% packet loss,

time 255277ms

rtt min/avg/max/mdev =
16.485/26.702/40.263/4.575 ms

Ping - latency test

PING fc02::2 56 data bytes

— fc02::2 ping statistics —

256 packets transmitted,

256 received, 0% packet loss,
time 255350ms

rtt min/avg/max/mdev =
18.319/26.403/42.662/4.811 ms

56

6. Future & related work

6.1 Future work

How to proceed with the development was described in the previous chapters.
Among immediate goals belong refactoring the socket library, adding regular
support of Ethernet multicasting to all NIC drivers (not only to E1000), IPv6
address scoping and routing by MAC addresses. There are even many others
IPv6 features that are not very complicated to implement. HelenOS IPv6 stack
is well designed, logically structured and highly distributed. Its future extensions
are to be smooth and awaited.

6.1.1 Scopes support and routing mechanism upgrade

Scopes implementation should be trivial. The in6_naddr_t structure will be ex-
tended with another integer expressing IP address scope. If not set alternatively,
fe80::/10 addresses belong to link-local scope, £c00::/7 addresses belong to
site-local scope, ::1/128 to host-local scope and any other address belongs to
global scope. Inet_get_srcaddr function will nevermore derive source IP address
from the first-hop router IP. It just determines concrete NIC in the network of
the first-hop router and chooses IP address belonging to the same scope as the
destination.

57

Inet_sroute_info_t structure will look as follows:

24. New routing table row format

/** Static route info */
typedef struct {
/** Destination network address */
in6_naddr_t dest;
/** Static route name */
char *name;
/** Router family */
uintl6_t family;

/** Router definition */
union {
/** Router IPv4-mapped IPv6 address */
in6_addr_t vé4router;
struct {
/** Router MAC address */
uint64_t hwaddr;
/** Router link name */
char * link name;
} v6;
}

} inet_sroute_info_t;

[Pv4 routers will be still defined by their IP addresses. IPv6 routers will be
defined by their MAC addresses and NIC interfaces.

6.1.2 Automatic IPv6 address and default router assign-
ment

Next concrete goal, following scopes support and routing table upgrade, is
the automatic configuration of routers. NDP module should receive even Router
advertisement messages (ICMPv6 type 135) and eventually send Router solici-
tation messages (ICMPv6 type 134). Router advertisement messages should be
processed in order to assign global IPv6 address to the interface that received the
message. Newly assigned IPv6 address should be derived from received routing
prefix (first 64 bits) and from the tail of the link-local address (last 64 bits).
Router MAC address should be taken directly from the advertisement message.
It is not necessary to resolve it by NDP again.

The networking stack could be in two states (with the state stored as a global
synchronized boolean variable). Either it is configured or it is not. If it already

58

has set an address and a router, it does not send any Router solicitation mes-
sages and ignores all Router advertisement messages. Otherwise, it periodically
sends Router solicitation messages and is able to process a Router advertisement
message with an immediate change of its state.

6.1.3 Socket library

Networking modes, ipv4-only and ipv6-only, should be propagated up to the
socket library. Socket library should enforce already the socket function to fail
when called with prohibited socket family. Similarly it should immediately de-
tect and forbid IPv4-mapped IPv6 addresses in sockaddr_in6 structure (in bind,
connect and sendto functions) if the IPv4 traffic is prohibited. That propagation
will lead to better error detection.

Next good feature of PF_INET6 sockets is the IPV6_V60ONLY option set by
setsockopt and read by getsockopt functions. After the socket library refactoring,
such option can be easily introduced modifying just tcp_socket match function
in tcp task and udp_socket match function in udp task.

6.1.4 ICMPv6 error messages and MTU discovery

ICMPv6 error messages are generally more important than ICMP error mes-
sages. It is caused by fragmentation restrictions. Each router that cannot forward
an [Pv6 datagram sends appropriate Packet too big message back to the sender
and discards that datagram. The sender must process such message and perform
Path MTU discovery (PMTUD) to shrink all next datagrams sent to the same
destination.

Path MTU discovery in IPv6 networks is much more important than in IPv4
networks. IPv6 packet sender must strictly follow maximal MTU of sent data-
grams. No routers along the way can fragment its datagrams. Datagrams bigger
than maximal path MTU must be necessarily discarded by the specification of
the IPv6 protocol.

ICMPv6 module should therefore recognize and accept also Packet too big mes-
sages and hold a list with destination IPv6 addresses and their MTU values. This
list should contain all IPv6 destination addresses if their path MTU is lower than
1500 bytes. IPv6 PDU encoding must obey the new MTU and create fragments
of correct sizes.

6.2 Related work

This section compares HelenOS with two other well-known microkernel oper-
ating systems from the IPv6 capability point of view.

99

6.2.1 Hurd IPv6 implementation

GNU Hurd is a microkernel operating system. It is still in development and
it is even older than HelenOS (since 1998). GNU Hurd has completely different
approach of its networking stack. Its networking stack is concentrated in one
process (system service) called pfinet. Pfinet contains completely adopted
networking stack with its IPC adapter. The networking stack is adopted from
the Linux kernel, concretely from deprecated 2.4.x releases.

Comparison of Hurd and HelenOS IPv6 implementations is therefore almost
impossible because of completely different approach. Hurd IPv6 stack is adopted
from Linux kernel. Linux is a monolithic OS naturally not honoring separation of
system servers. It integrates whole code together to be executed originally even
in kernel processor mode. It is able to enuntiate that HelenOS implementation
of IPv6 is much more faithful to microkernel methodology of OS development.
Hurd has contrarily more IPv6 features because of Linux-kernel code adoption.

6.2.2 Minix IPv6 implementation

Minix is also a microkernel OS. It provides multiple variants of networking. The
main variant is the inet service integrating (similarly to Hurd) whole networking
stack into one process (including all Ethernet, loopback, TCP and UDP). Inet
service does not support IPv6 at all.

Alternative technology to native Inet service is the 1wIP stack. Actually, 1wIP
can use either [Pv4 or IPv6 but not both. Dual stack operation mode is not yet
supported’] In these days, all Internet users inevitably need IPv4 connectivity.
Majority of servers providing Internet content are not yet IPv6 connectable. It
means that [Pv6 connectivity without IPv4 connectivity is unavailing. It is good
at best for testing purposes. HelenOS is thus much more IPv6 capable than
Minix.

Pv6 IwIP Wiki, on-line at http://lwip.wikia.com/wiki/IPv6

60

http://lwip.wikia.com/wiki/IPv6

7. Conclusion

HelenOS finally supports IPv6 protocol and related technologies on the same
level as IPv4 protocol. The two protocols have various differences described in
previous chapters. Features of both implementations are analogous. New im-
plementation respects microkernel multiserver architecture of HelenOS. It allows
three networking modes - dual stack (which is the default), IPv6 only and IPv4
only.

All goals set for this thesis have been achieved. Some minor IPv6-related de-
fects surviving in the networking stack from earlier became known. NIC drivers
do not accept multicast frames. The socket library error-detection is buggy and
deadlock-prone. Socket library is to be refactored as a whole later. Implemen-
tation of IPv6 and related technologies is of course multiplatform. Networking
stack in HelenOS is a relatively high-level part of the operating system. The only
portability problem was the endianity of network ports and of other multi-byte
items in packet-, datagram-, fragment- or frame-headers.

[Pv6 implementation still lacks address-scopes support. The routing mecha-
nism does not obey address-scopes, which is a non-fatal complication. Link-local
addresses are not differentiated by network interfaces. It causes incomplete sup-
port of multiple NICs connected to one computer. All these insufficiencies can
be relatively smoothly resolved and the IPv6 implementation as a whole is well
prepared to be extended by new features in the future.

61

Bibliography

1]

2]

[16]

[17]

[18]

[19]

Berkeley sockets, on-line at https://en.wikipedia.org/wiki/Berkeley_
sockets

Broadcast, on-line at https://en.wikipedia.org/wiki/Broadcast_
address

HelenOS documentation, on-line at http://www.helenos.org/
documentation
HelenOS NIC framework documentation, on-line at http://www.helenos.

org/doc/helnet.pdf

HelenOS, on-line at http://www.helenos.org/

IPC for dummies, on-line at http://trac.helenos.org/wiki/IPC

IPv6 IwIP Wiki, on-line at http://lwip.wikia.com/wiki/IPv6
Localhost, on-line at http://en.wikipedia.org/wiki/Localhost

MAC address, on-line at http://en.wikipedia.org/wiki/MAC_address

Microkernel, = wiki, on-line at |http://en.wikipedia.org/wiki/
Microkernel

Multicast, on-line at https://en.wikipedia.org/wiki/Multicast_
address

Network interface controller, on-line at http://en.wikipedia.org/wiki/
Network_interface_controller

Requirements for Internet Hosts - Communication Layers, RFC 1122, on-line
at http://tools.ietf.org/html/rfc1122

TCP/IP tutorial, RFC 1180, on-line at http://tools.ietf.org/html/
rfc1180

Path MTU discovery, RFC 1191, on-line at http://www.ietf.org/rfc/
rfcl1191.txt

Definition of a socket, RFC 147, on-line at http://tools.ietf.org/html/
rfcldy

The IP Network Address Translator (NAT), RFC 1631, on-line at http:
//www.ietf.org/rfc/rfcl1631.txt

Variable Length Subnet Table For IPv4, RFC 1878, on-line at http:
//tools.ietf.org/html/rfc1878

Address Allocation for Private Internets, RFC 1918, on-line at http://
tools.ietf.org/html/rfc1918

62

https://en.wikipedia.org/wiki/Berkeley_sockets
https://en.wikipedia.org/wiki/Berkeley_sockets
https://en.wikipedia.org/wiki/Broadcast_address
https://en.wikipedia.org/wiki/Broadcast_address
http://www.helenos.org/documentation
http://www.helenos.org/documentation
http://www.helenos.org/doc/helnet.pdf
http://www.helenos.org/doc/helnet.pdf
http://www.helenos.org/
http://trac.helenos.org/wiki/IPC
http://lwip.wikia.com/wiki/IPv6
http://en.wikipedia.org/wiki/Localhost
http://en.wikipedia.org/wiki/MAC_address
http://en.wikipedia.org/wiki/Microkernel
http://en.wikipedia.org/wiki/Microkernel
https://en.wikipedia.org/wiki/Multicast_address
https://en.wikipedia.org/wiki/Multicast_address
http://en.wikipedia.org/wiki/Network_interface_controller
http://en.wikipedia.org/wiki/Network_interface_controller
http://tools.ietf.org/html/rfc1122
http://tools.ietf.org/html/rfc1180
http://tools.ietf.org/html/rfc1180
http://www.ietf.org/rfc/rfc1191.txt
http://www.ietf.org/rfc/rfc1191.txt
http://tools.ietf.org/html/rfc147
http://tools.ietf.org/html/rfc147
http://www.ietf.org/rfc/rfc1631.txt
http://www.ietf.org/rfc/rfc1631.txt
http://tools.ietf.org/html/rfc1878
http://tools.ietf.org/html/rfc1878
http://tools.ietf.org/html/rfc1918
http://tools.ietf.org/html/rfc1918

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Guidelines for creation, selection, and registration an Autonomous System
(AS), on-line at http://tools.ietf.org/html/rfc1930

Internet Protocol version 6, specification, RFC 2460, on-line at http://
tools.ietf.org/html/rfc2460

Transmission of IPv6 Packets over Ethernet Networks, RFC 2464, on-line at
http://tools.ietf.org/html/rfc2464

Basic Socket Interface Extensions for IPv6, RFC 2553, on-line at http:
//www.ietf.org/rfc/rfc2553.txt

Application Aspects of IPv6 transition, RFC 4038, on-line at http://tools.
ietf.org/html/rfc4038

IP Version 6 Addressing Architecture, RFC 4291, on-line at http://tools.
ietf.org/html/rfc4291

Internet Control Message Protocol (ICMPv6) for the Internet Protocol
Version 6 (IPv6) Specification, on-line at http://tools.ietf.org/html/
rfc4443

Neighbor Discovery for IP version 6 (IPv6), RFC 4861, on-line at http:
//tools.ietf.org/html/rfc4861

[Pv6 Stateless Address Autoconfiguration, RFC 4862, on-line at http://
tools.ietf.org/html/rfc4862

[Pv6 Node Requirements, RFC 6434, on-line at http://tools.ietf.org/
html/rfc6434

User Datagram Protocol, RFC 798, on-line at http://www.ietf.org/rfc/
rfc768.txt

Internet Protocol, RFC 791, on-line at http://www.ietf.org/rfc/rfc791.
txt

Internet Control Message Protocol, RFC 792, on-line at http://tools.
ietf.org/html/rfc792

Transmission Control Protocol, RFC 793, on-line at http://www.ietf.org/
rfc/rfc793.txt

An Ethernet Address Resolution Protocol, RFC 826, on-line at http://
tools.ietf.org/html/rfc826

A Standard for the Transmission of IP Datagrams over Ethernet Networks,
RFC 894, on-line at http://tools.ietf.org/html/rfc894

63

http://tools.ietf.org/html/rfc1930
http://tools.ietf.org/html/rfc2460
http://tools.ietf.org/html/rfc2460
http://tools.ietf.org/html/rfc2464
http://www.ietf.org/rfc/rfc2553.txt
http://www.ietf.org/rfc/rfc2553.txt
http://tools.ietf.org/html/rfc4038
http://tools.ietf.org/html/rfc4038
http://tools.ietf.org/html/rfc4291
http://tools.ietf.org/html/rfc4291
http://tools.ietf.org/html/rfc4443
http://tools.ietf.org/html/rfc4443
http://tools.ietf.org/html/rfc4861
http://tools.ietf.org/html/rfc4861
http://tools.ietf.org/html/rfc4862
http://tools.ietf.org/html/rfc4862
http://tools.ietf.org/html/rfc6434
http://tools.ietf.org/html/rfc6434
http://www.ietf.org/rfc/rfc768.txt
http://www.ietf.org/rfc/rfc768.txt
http://www.ietf.org/rfc/rfc791.txt
http://www.ietf.org/rfc/rfc791.txt
http://tools.ietf.org/html/rfc792
http://tools.ietf.org/html/rfc792
http://www.ietf.org/rfc/rfc793.txt
http://www.ietf.org/rfc/rfc793.txt
http://tools.ietf.org/html/rfc826
http://tools.ietf.org/html/rfc826
http://tools.ietf.org/html/rfc894

List of Abbreviations

A-class network - network with 8-bit netmask containing thus 22* IPv4
addresses

ACK - TCP acknowledgment flag

ARP - Address Resolution Protocol

BGP - Border Gateway Protocol

BSD - Berkeley Software Distribution

CPU - Central Processing Unit

DHCP - Dynamic Host Configuration Protocol
EINVAL - Invalid value Error

I/O - Input/Output

ICMP - Internet Control Message Protocol (for IPv4)
ICMPv6 - Internet Control Message Protocol version 6 (for IPv6)
IGMP - Internet Group Management Protocol
IP - Internet Protocol

[Pv4 - Internet Protocol version 4

[Pv6 - Internet Protocol version 6

IPC - Inter-process communication

MAC - Media Access Control

MTU - Maximum transmission unit

NAT - Network Address Translation

NDP - Neighbor Discovery Protocol

NIC - Network interface controller

OS - Operating system

OSPF - Open Shortest Path First

PDU - Protocol data unit

PMTUD - Path MTU Discovery

POSIX - Portable Operating System Interface

QoS - Quality of Service

64

RST - TCP reset flag

SYN - TCP synchronization flag
TCP - Transmission Control Protocol
TTL - Time to live

UDP - User Datagram Protocol

65

	Introduction
	Motivation
	Goals
	Plan
	Contents

	Context
	Introduction to TCP/IP
	Link layer
	Network layer
	Transport layer
	BSD socket interface

	Differences between IPv4 and IPv6
	Differences on the link layer
	Differences on the network layer
	Differences in network-layer control protocols
	Differences on the transport layer
	Differences in BSD socket interface

	Introduction to HelenOS
	HelenOS IPC
	HelenOS networking stack introduction
	HelenOS link-layer servers
	HelenOS network-layer server
	HelenOS transport-layer servers
	HelenOS socket library

	Analysis
	Strategic decisions
	Protocol/task question
	Data structures common to IPv4 and IPv6 addresses and IPC interface from inetsrv "up"
	NDP position (link-local addresses) and the rest of IPC interface

	Interface enhancements
	Code upgrades
	Changes in shared libraries (others than socket library)
	Changes in ethip
	Changes in loopip
	Changes in inetsrv
	Changes in transport-layer servers
	Changes in socket library
	Changes in utilities

	Implementation
	Step-by-step development and continuous testing
	Debugging methods
	Testing set
	Testing set determination
	Antecedent bug fixes in previous IPv4 implementation
	Final testing set

	Development phases
	Preliminary phases
	Porting to IPv6

	Evaluation
	Functional aspects
	Performance aspects

	Future & related work
	Future work
	Scopes support and routing mechanism upgrade
	Automatic IPv6 address and default router assignment
	Socket library
	ICMPv6 error messages and MTU discovery

	Related work
	Hurd IPv6 implementation
	Minix IPv6 implementation

	Conclusion
	Bibliography
	List of Abbreviations

