
Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS

Adam Hraška

Read-Copy-Update for HelenOS

Department of Distributed and Dependable Systems

Supervisor of the master thesis: Mgr. Martin Děcký

Study programme: Computer Science

Specialization: Software Systems

Prague 2013



First and foremost, I would like to thank my supervisor, Mgr. Martin Děcký, for
giving me the opportunity to pursue a topic I was genuinely interrested in and
the freedom to approach the research problems at hand in my own way.

Secondly, I would like to express sincere gratitude to Paul McKenney whose
wonderful papers on the topics of synchronization and RCU made working on
this thesis an enlightening experience.

Next, I have to give my deepest thanks to my closest family for their un-
matched support and heroic patience.

Last but not least, I would like to thank Růženka for reminding me what is
important in life and for her everlasting encouragements; Jan, for his swift help
with the graphs; and Marcel, who spent a good part of his favorite day of the
week travelling in the public transport of Prague just to make this thesis a reality.



I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 paragraph 1 of
the Copyright Act.

In Amsterdam on 29.07.2013 signature of the author



Název práce: Read-Copy-Update for HelenOS

Autor: Adam Hraška

Katedra: Katedra distribuovaných a spolehlivých systémů

Vedoućı diplomové práce: Mgr. Martin Děcký, Katedra distribuovaných a
spolehlivých systémů

Abstrakt: Rozš́ırenie viacjadrových procesorov zvýšilo záujem o škálovatělné
synchronizačné primit́ıva ako je Read-Copy Update. Zatiǎlčo RCU je populárne
v monolitických kerneloch operačných systémov, doposiǎl nebolo nasadené v
prostred́ı mikrokernelov. V práci navrhneme a implementujeme RCU pre mikro-
kernelový operačný systém HelenOS. Navyše preskúmame možnosti použitia RCU
v HelenOSe and demonštrujeme užitočnosť RCU tak v kerneli ako aj v user space.
Merania ukazujú, že implementované RCU poskytuje lineárnu škalovatělnosť RCU
čitatělov a RCU vyžaduje omnoho nižšiu réžiu pri vstupe do chránenej sekcie ako
bežné zámky a to i v ideálnom pŕıpade pre zámky. RCU sme využili v user
space na 2.6 násobné zrýchlenie tradičných zámkov. V kerneli RCU zabezpečilo
lineárnu škálovatělnosť futexového podsystému.

Kĺıčová slova: RCU, Read-Copy Update, HelenOS, concurrency

Title: Read-Copy-Update for HelenOS

Author: Adam Hraška

Department: Department of Distributed and Dependable Systems

Supervisor: Mgr. Martin Děcký, Department of Distributed and Dependable
Systems

Abstract: Multicore processors have become prevalent and spurred interest in
scalable synchronization mechanisms, such as Read-Copy Update. While RCU is
popular in monolithic operating system kernels it has yet to see an implementation
in a microkernel environment. In this thesis we design and implement RCU
for the microkernel operating system HelenOS. Moreover, we explore potential
uses of RCU in HelenOS and illustrate its utility in both the kernel and user
space. Benchmarks demonstrate that the RCU implementation provides linearly
scalable read-sides and incurs significantly less overhead than traditional locking
even if uncontended. Furthermore, RCU was used in user space to speed up
traditional locking 2.6 times in the common case. In the kernel, RCU ensured
linear scalability of a previously non-scalable futex subsystem.

Keywords: RCU, Read-Copy Update, HelenOS, concurrency



Contents

1 Introduction 1
1.1 Thesis overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 What is Read-Copy Update? 3
2.1 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Example usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Complete interface . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Constraints on implementations . . . . . . . . . . . . . . . . . . . 8

3 Review of RCU algorithms 11
3.1 General purpose user space RCU . . . . . . . . . . . . . . . . . . 11
3.2 Signal based user space RCU . . . . . . . . . . . . . . . . . . . . . 14
3.3 Classic kernel RCU . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 Houston’s RCU . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.5 Podzimek’s RCU . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.6 Sleepable RCU . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.7 Preemptible RCU in Linux . . . . . . . . . . . . . . . . . . . . . . 26
3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Implemented RCU algorithms 30
4.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2 Preemptible kernel A-RCU . . . . . . . . . . . . . . . . . . . . . . 30
4.3 Preemptible Podzimek’s kernel RCU . . . . . . . . . . . . . . . . 37
4.4 User space RCU . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Use of RCU in HelenOS 45
5.1 Resizable concurrent hash table . . . . . . . . . . . . . . . . . . . 45

5.1.1 Existing concurrent hash tables . . . . . . . . . . . . . . . 46
5.1.2 Implemented concurrent hash table . . . . . . . . . . . . . 50
5.1.3 Improving futex subsystem scalability . . . . . . . . . . . . 53

5.2 Upgradable user space futexes . . . . . . . . . . . . . . . . . . . . 53
5.2.1 Futexes in singlethreaded programs . . . . . . . . . . . . . 53
5.2.2 RCU as a waiting mechanism in libc . . . . . . . . . . . . 54

6 Evaluation 57
6.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.2 Read-side scalability . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.3 Write-side overhead . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.4 Hash table lookup scalability . . . . . . . . . . . . . . . . . . . . . 61

v



6.5 Hash table update overhead . . . . . . . . . . . . . . . . . . . . . 62
6.6 Futex kernel subsystem performance . . . . . . . . . . . . . . . . 64
6.7 Libc futex performance . . . . . . . . . . . . . . . . . . . . . . . . 65
6.8 Discussion of results . . . . . . . . . . . . . . . . . . . . . . . . . 65

7 Summary 67
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

A Getting started with HelenOS 70

B Navigating the source tree 72

C Numerical results 74

Bibliography 80



Chapter 1

Introduction

In recent years multicore processors have become entirely ubiquitous. They are

no longer exclusively in the domain of high-end computers but have already over-

taken the low-end computer segment and are now entering the smartphone mar-

ket.

In order to harness the processing power of multicore machines, software has

to run in physically parallel threads. These threads typically synchronize reg-

ularly, e.g. when accessing shared data, by means of standard synchronization

primitives such as mutexes or reader-writer locks. Unfortunately, as the frequency

of synchronization or the number of processing cores increases, standard synchro-

nization primitives may introduce considerable overhead. What is more, without

proper care they start limiting scalability1 of the computation. For example, the

naive approach of protecting a concurrently accessed data structure with a single

mutex may easily lead to negative scaling (section 6.2). As more cores are added

to the computation, the frequency of accesses of the shared data increases and

the repeated locking and unlocking of the mutex from different cores results in

an overall slower computation.

Read-Copy Update, or simply RCU, is a synchronization primitive targeted

at concurrent read-mostly data structures that is scalable by design. It achieves

its scalability by keeping multiple versions of data available – both new and old.

As a result, it may propagate changes to other cpus only gradually and thereby

avoid the expensive operations used in standard synchronization primitives to

immediately make the changes visible on other cpus.

RCU already proved successful in the environment of the monolithic Linux

kernel but has yet to see an implementation in a microkernel operating system.

This thesis aims to bring RCU into the microkernel setting of the research oper-

1Scalability represents the increase in performance as the computation is extended to other
processing cores of the computer.

1



ating system HelenOS. In particular, the following are the goals of the thesis:

� Give a thorough overview of existing RCU algorithms along with their

strengths and weaknesses.

� Provide a prototype implementation of RCU that is suitable for HelenOS.

Due to its microkernel design RCU must be available not only to kernel

components but to user space servers and applications as well.

� Explore potential use of RCU in HelenOS and demonstrate its utility in a

concrete subsystem.

� Evaluate the performance of the prototype.

1.1 Thesis overview

This thesis first describes the semantics of RCU in chapter 2. Next, chapter 3

reviews existing RCU algorithms that are of interest along with their advan-

tages and disadvantages. Chapter 4 introduces the RCU algorithms that were

implemented for HelenOS. Furthermore, chapter 5 explores how RCU was used

in HelenOS. The focus of chapter 6 is experimental evaluation of both the imple-

mented RCU algorithms as well as the use of RCU in HelenOS. Finally, chapter 7

concludes this thesis with a summary and suggests possible future work.

2



Chapter 2

What is Read-Copy Update?

Read-Copy Update is designed to enable scalable concurrent read access to data

that is mostly read, i.e. where the fraction of updates does not exceed 10-40%

of all operations ([13] and section 8.2 of [12]). Quite unlike traditional locking

schemes, such as reader-writer locks, RCU allows readers to execute concurrently

with not only other readers but with updaters as well. While an update is in

progress RCU maintains older versions of the data and ensures readers always

access coherent albeit possibly outdated data. Furthermore, RCU provides facili-

ties to efficiently propagate new versions of objects and to easily defer reclamation

of old objects until they are no longer referenced. As a result, RCU read-side crit-

ical sections incur little overhead and entering them is significantly faster than

locking an uncontended lock.

Examples of data that changes infrequently but may benefit from fast concur-

rent reads include routing tables, security policies or hardware configuration. In

addition, an access pattern suitable for RCU may be observed even in ordinary

data strucutes; e.g. the authors of [31] report that the typical hash table usage

pattern consists of 88% lookup, 10% insert and 2% delete operations.

2.1 Semantics

RCU readers may only reference RCU protected data within a read-side criti-

cal section, or simply a reader section. Read-side critical sections are delimited

by Rcu-Read-Lock and Rcu-Read-Unlock, which are functions that never

block. If a thread is not executing a read-side critical section it is said to be

in a quiescent state, i.e. a state when the thread is not referencing any RCU

protected objects. Any time period such that each thread passes through at least

one quiescent state is called a grace period. By definition, any critical sections

existing at the beginning of a grace period will have completed before the grace

period ends. Moreover, threads continuously entering RCU critical sections do

3



reader A

reader B reader E

reader C reader D reader F

grace periodremoval reclamation

Thread 1

Thread 2

Thread 3

time

Figure 2.1: This figure portrays how grace periods extend at least until the last
thread that is in a read-side critical section at the start of the grace period exits
its critical section, in this case reader A. Notice that overlapping reader sections
do not prolong the grace period.

not prolong a grace period even if the critical sections overlap with sections in

other threads. Provided that critical sections have finite duration, each thread

will eventually pass a quiescent state and a grace period will end.

Figure 2.1 illustrates how a grace period extends at least until all threads exit

their preexisting critical sections, namely A, B and C. Thread 3 is the first to pass

a quiescent state after leaving critical section C, so any further critical sections

D and F do not affect the length of the grace period. Next, thread 2 enters a

quiescent state after exiting B and stays in that state until it reaches E. Finally,

the grace period may complete when thread 1, the last thread to pass a quiescent

state since the start of the grace period, exits its critical section A.

Updaters use grace periods to effect deferred destruction. In particular, to

remove an element from a data structure, an updater first unlinks the element

from the data structure. Next, it invokes Rcu-Synchronize, which waits for

a grace period to elapse. Once Rcu-Synchronize returns all readers using the

element in a critical section at the start of the grace period must have completed.

Because following readers find the element unlinked all readers that may have

been using the element must have completed by the time Rcu-Synchronize

returns. Therefore, it is safe to reclaim or free the unlinked element.

It is important to note that RCU only coordinates the concurrent execution

of a reader with other readers or updaters. However, it in no way synchronizes

updaters with other updaters. Therefore, updaters usually synchronize by other

means, e.g. with locks.

2.2 Example usage

This section demonstrates how to use RCU with an example of working with a

single linked null terminated list.

4



1 typedef struct item {
2 struct item *next ;

3 int value ;

4 } i t em t ;

6 typedef struct l i s t {
7 i t em t * f i r s t ;

8 mutex t update mtx ;

9 } l i s t t ;

Line 6 defines a list whose chain of elements starting with first can be

read in parallel as it is protected by RCU. In this example, RCU protects only

the list’s links next and assumes elements’ contents, value, does not change

after an element is inserted into the list. The list is protected from concurrent

modifications with a single mutex update mtx, defined on line 8.

1 int g e t l a s t v a l u e ( l i s t t * l i s t )

2 {
3 r c u r e a d l o c k ( ) ;

4 i t em t * cur = NULL;

5 i t em t *next = r c u a c c e s s ( l i s t −> f i r s t ) ;

6 while ( next ) {
7 cur = next ;

8 next = r c u a c c e s s ( cur−>next ) ;

9 }
10 int va l = ( cur != NULL) ? cur−>value : 0 ;

11 r cu read un lock ( ) ;

12 return va l ;

13 }

Function get last value() traverses the list and returns the value stored

in the last element or 0 if the list is empty. Before accessing any RCU protected

fields, in this case list->first, the function enters a reader section on line 3.

Next, it reads the protected field list->first via rcu access(). Line 5 ensures

that the compiler does not accidentally change next’s value in background in

the middle of the reader section with compiler optimizations even in the face of

concurrent updates of list->first. In other words, it guarantees next will point

to the same element, i.e. the same version of the data, for the duration of the

reader section as one would expect. Lines 6-9 search for the last element of the

list and again load any RCU protected variables, cur->next, with rcu access()

as RCU requires. Next, last element’s value is copied to val on line 10. However,

reading the element’s cur->value does not require rcu access(). Firstly, in this

example RCU protects only the list’s structure and not the content of individual

5



elements. Secondly, after inserting elements into the list they remain immutable

by convention. Therefore, if an element is accessible by the list’s next pointers

its value is certain to remain the same until it is freed.

Last, the function exits its reader section on line 11. After this point RCU

may notify updaters that it is safe to reclaim elements used in the reader section.

Consequently, the function must not access any elements of the list and it returns

a copy of the last element’s value val instead.

1 void i n s e r t f i r s t ( l i s t t * l i s t , int va l )

2 {
3 i t em t * item = ( i t em t *) mal loc ( s izeof ( i t em t ) ) ;

4 mutex lock(& l i s t −>update mtx ) ;

5 item−>value = va l ;

6 item−>next = l i s t −> f i r s t ;

7 r c u a s s i g n ( l i s t −>f i r s t , item ) ;

8 mutex unlock(& l i s t −>update mtx ) ;

9 }

Function insert first() initializes a new element with value val and in-

serts it at the first position in the list. The list is changed with the mutex

list->update mtx locked only; therefore, updaters always have a consistent view

of the list that cannot change during an update. As a result, line 6 retrieves the

current head of the list without rcu access().

The new element is published for readers to see by means of rcu assign() on

line 7. rcu assign() ensures that the contents of the element, i.e. item->value,

have been completely initialized on weakly ordered architectures before it assigns

item to list->first. Nevertheless, publishing a new element does not imme-

diately make it accessible from the list’s link list->first. It may take on the

order of milliseconds before all new readers learn of the update to the list’s link

and start using the newly inserted element.

1 void d e l e t e f i r s t ( l i s t t * l i s t )

2 {
3 mutex lock(& l i s t −>update mtx ) ;

4 i t em t * t o d e l = l i s t −> f i r s t ;

5 i f ( t o d e l ) {
6 l i s t −> f i r s t = to de l−>next ;

7 mutex unlock(& l i s t −>update mtx ) ;

8 r cu synchron i z e ( ) ;

9 f r e e ( t o d e l ) ;

10 } else

11 mutex unlock(& l i s t −>update mtx ) ;

12 }

6



first

valnext

valnext

first

valnext

valnext

first

valnext

valnext

Figure 2.2: This figure shows how the first item of the example single linked list
is removed and reclaimed with RCU. The left figure is the initial state. First,
an updater removes the first element from the list, i.e. it changes the link from
the list head first to the next element in the list. Next, it initiates a grace
period via Rcu-Synchronize. The middle figure shows that during the grace
period preexisting readers may still see first pointing to the removed element.
Once the grace period ends, Rcu-Synchronize returns and the updater finds
the list in the state depicted in the right most figure. Since no readers reference
the removed element any more, the updater is free to reclaim or free the element.

Function delete first() concludes this example and illustrates deferred de-

struction of the first element in the list. First, it removes the element from the list

on line 6 while holding a mutex. The function only changes the list’s structure but

it does not publish new elements. Therefore, it is not necessary to rcu assign()

the address of the second element to list->first on line 6.

Second, it unlocks the mutex serializing updates of the list on line 7. Again,

the mutex makes changes of the list’s structure immediately visible to other up-

daters so no updaters will access the removed element after line 7. However, it is

important not to modify the element’s contents even after it had been removed

from the list since readers running concurrently with delete first() may still

be reading the element.

Next, rcu synchronize() waits for any readers that may have been accessing

the removed element to complete and ensures that the removal of the first element

is visible to any new readers. Finally, the element may be reclaimed on line 9

because neither other updaters nor any readers are referencing it any longer.

Figure 2.2 depicts the process in further detail.

2.3 Complete interface

The complete RCU interface features the listed functions:

Rcu-Read-Lock delimits the start of a read-side critical section, which may be

nested.

7



Rcu-Read-Unlock marks the end of a read-side critical section.

Rcu-Synchronize blocks for an entire grace period. It waits for any preex-

isting readers, i.e. readers that may be accessing old versions of data,

to complete. Moreover it guarantees any new readers, i.e. readers Rcu-

Synchronize does not wait for, see changes introduced prior to calling

Rcu-Synchronize in the same thread.

Rcu-Call is similar to Rcu-Synchronize. However, instead of blocking Rcu-

Call returns immediately and asynchronously invokes a callback function

when a grace period elapses.

Rcu-Barrier waits for all callbacks queued via Rcu-Call at the time of the

call to Rcu-Barrier to complete.

Rcu-Dereference, Rcu-Access is used to load a pointer to an RCU pro-

tected object within a reader section. It prohibits the compiler to reload

the pointer as part of optimizations. Otherwise the compiler could reload

the pointer with an address to a different object within the same reader

section. In other words, the compiler would unknowingly start referencing

a different object in the middle of the reader section.

Rcu-Assign assigns the address of a new initialized element to an RCU pro-

tected pointer. On weakly ordered architectures1 it ensures that initializa-

tion of the element is visible before it is accessible via the RCU protected

pointer.

Notice that there are no guarantees as to when changes from a read-side

critical section become visible to all other readers unless the critical section is

followed by Rcu-Synchronize or Rcu-Call. Similarly, RCU does not guar-

antee to publish modifications from a reader section even if that reader section is

followed by a grace period initiated with Rcu-Synchronize or Rcu-Call but

in another thread on a different processor.

2.4 Constraints on implementations

McKenney [12] identified the primary sources of the slowdown of tranditional

locking mechanism, i.e. mutexes and reader-writer locks:

� Cache misses due to lock variables.

1More on weakly ordered architectures, i.e. architectures without sequentially consistent
memory models, in section 2.4

8



� Atomic operations.

� Memory barriers delimiting critical section code lead to pipeline stalls.

RCU implementations combat the first two sources of overhead in the perfor-

mance sensitive read-sides with CPU or thread local variables.

Architectures without sequentially consistent memory models, e.g. ARM [1],

IA64 [8], PowerPC [29], SPARC2 [32], and to a lesser extend IA32 [9], are allowed

to aggressively reorder memory accesses. In the next example both CPUs may

load a value of 0 into their registers r1 and r2 when, initially, the memory

locations X and Y contain 0.

CPU1 CPU2

X = 1; Y = 1;

r1 = Y; r2 = X;

The writes to X and Y occur before the loads of the variables in the instruction

stream. In architectures with sequentially consistent memory models one would

correctly expect at least one of the registers to store 1. However, CPUs in weakly

ordered architectures may issue the loads of X and Y before writing the variables.

In particular, both CPUs may first load the initial values 0 of X and Y into the

registers and only then proceed to write the new values to memory.

Weakly ordered architectures provide memory barrier instructions that limit

how memory operations may be reordered. A full memory barrier forces the

CPU to complete any memory operations preceding the memory barrier in the

instruction stream before it starts executing memory operations after the memory

barrier. Locks surround critical section code with memory barriers that prevent

the CPU from issuing loads and stores of protected shared variables outside the

protected region. Without the barriers CPUs would be free to load a shared

variable before a mutex is acquired; or write to a shared variable after a mutex

is released.

RCU algorithms are faced with the same problem but tend to avoid issuing

memory barriers in the performance critical Rcu-Read-Lock and Rcu-Read-

Unlock. Without memory barriers in these functions, the CPU may be refer-

encing RCU protected data even outside of the read-side critical section. As a

consequence, RCU cannot declare that a thread is in a quiescent state just be-

cause it is not executing instructions within Rcu-Read-Lock and Rcu-Read-

Unlock. Therefore, on a weakly ordered architecture a thread may only enter

a quiescent state if it issues a memory barrier. RCU may issue memory barriers

in threads on demand during grace period detection or it may wait for naturally

occurring memory barriers, e.g. those involved in a context switch.

2In relaxed memory order mode.

9



A thorough explanation of the interactions between memory barrier instruc-

tions and CPUs is given in [22].

10



Chapter 3

Review of RCU algorithms

This chapter gives an overview of RCU algorithms that proved to be relevant to

the design of RCU in HelenOS.

It is important to keep in mind that the main resposibility of any RCU is for

Rcu-Synchronize and Rcu-Call to provide these guarantees:

� Both functions must wait for the so called preexisting readers to complete,

i.e. any readers that may have referenced data prior to the start of the

grace period. Preexisting readers complete once they exit their read-side

critical section with Rcu-Read-Unlock and the CPU executed all of their

memory accesses.

� They must ensure that any changes made prior to their invocation are

visible to new readers, i.e. the readers for which the functions do not wait

to complete before declaring the grace period to be over. Therefore, new

readers enter their reader sections after the grace period started.

3.1 General purpose user space RCU

General purpose user space RCU [4], or General URCU, presented in 2012 is an

implementation that tolerates preemption in read-side critical sections and does

not expect any kernel instrumentation whatsoever. Therefore, it is suitable for

user space.

Threads entering a reader section are associated with a reader group that

identifies the thread with either preexisting or new readers once a grace period

starts. Rcu-Synchronize can then separate preexisting from new readers by

changing which group readers entering new critical sections are assigned. A grace

period ends when there are no threads inside a critical section associated with

the previous group.

11



Read-side Each Rcu-Read-Lock increments the thread’s local RCU read-

side critical section nesting counter, nesting-cnt . Moreover the outermost Rcu-

Read-Lock also locally stores cur -reader -group which is a reader group identifier

all new readers are assigned and has the value of either 0 or 1. Next, the function

issues a memory barrier in order to separate the change of nesting-cnt from any

memory references in the following reader section.

In order to atomically both increment nesting-cnt and affiliate the thread with

cur -reader -group in the outermost Rcu-Read-Lock, the two logically distinct

variables are packed in a single thread local word. For example, reader -group may

occupy the lowest order bit while the rest of the word is reserved for nesting-cnt .

Rcu-Read-Lock

1 if thread .nesting-cnt == 0

2 atomically assign packed in a single word:

3 thread .nesting-cnt = 1

4 thread .reader -group = cur -reader -group

5 // Make nesting-cnt visible. Contain memory accesses in critical

6 // section and make changes prior to Rcu-Synchronize visible.

7 Memory-Barrier // L

8 else

9 thread .nesting-cnt++

Similarly, Rcu-Read-Unlock contains late memory references of the reader

section with a memory barrier before it decrements the read-side nesting counter.

This protocol ensures that whenever another CPU notices the outermost decre-

ment of nesting-cnt , i.e. that the thread exited its read-side critical section,

memory operations in the reader section have already completed.

Rcu-Read-Unlock

1 // Separate decrement from the critical section.

2 Memory-Barrier

3 thread .nesting-cnt−−

Write-side Simultaneous invocations of Rcu-Synchronize are serialized with

a mutex. The function first executes a memory barrier which separates changes

made prior to Rcu-Synchronize from the start of a new grace period. Next,

it starts a new grace period by flipping cur -reader -group from 0 to 1, or from

1 to 0. As a result, new readers will associate their nesting-cnt with this new

group. On the other hand, preexisting readers are assigned the previous group.

Once the flip propagates to all CPUs, no new readers will be associated with the

12



previous group and the number of readers in the previous group will decrease.

It eventually reaches zero as the preexisting readers exit their critical sections.

Therefore, the function checks every thread if it belongs to preexisting readers

and polls it until the thread’s nesting count drops to zero.

However, a thread may be preempted before it stores the loaded cur -reader -group

in Rcu-Read-Lock. While the thread is preempted Rcu-Synchronize may

flip cur -reader -group and wait for all preexisting readers to exit. If the thread

resumes afterwards its reader section will be erroneously associated with the pre-

existing reader group even though a grace period is no longer in progress. Should

another Rcu-Sychronize follow immediately, it would not wait for this reader

to complete. To wait for such readers as well, Rcu-Synchronize waits in turn

for preexisting as well as new readers, which prolongs the grace period.

In addition, the same technique applies even if Rcu-Read-Lock were not

preempted but executed between when Rcu-Synchronize issues its first mem-

ory barrier S and flips cur -reader -group and, therefore, is incorrectly assigned the

previous reader.

Rcu-Synchronize

1 with mutex locked

2 // Make prior changes visible in new reader sections.

3 Memory-Barrier // S

4 do twice

5 preexisting-group = cur -reader -group

6 // Separate preexisting and new readers.

7 cur -reader -group = ¬cur -reader -group

8 for each thread t

9 while t .Is-Preexisting-Reader(preexisting-group)

10 Sleep(10 ms)

11 // Separate from following changes.

12 Memory-Barrier

Is-Preexisting-Reader(preexisting-group)

1 return 0 < thread .nesting-cnt

2 and thread .reader -group == preexisting-group

Assessment

General URCU’s strengths:

� Read-side critical sections may be preempted.

13



� First RCU that works in user space without having to explicitly announce

quiescent states in client code [5].

� Simple.

Shortcomings:

� Readers have to issue a memory barrier both when entering and leaving

read-side critical sections.

� Grace period may be twice as long as it needs to be in the common case.

3.2 Signal based user space RCU

Signal based user space RCU [4], or Signal URCU, is similar to General URCU.

Unlike General URCU, Signal URCU does not include memory barriers in its

reader sections. Instead it issues memory barriers on demand and only during

grace periods by means of signals.

Read-side The authors of Signal URCU have noticed that for the purposes of

the RCU algorithm issuing a memory barrier on demand in a signal handler has

the effect of promoting compiler barriers, i.e. constructs that forbid the compiler

from moving code across them, into full memory barriers. To see this imag-

ine a memory barrier is executed in the reader thread after a compiler barrier.

Other CPUs can be sure all accesses prior to the compiler barrier have com-

pleted. Similarly, if the memory barrier is executed before the compiler barrier,

all accesses after the compiler barrier have not yet begun. The net effect is the

same as having a memory barrier in place of the compiler barrier. As a con-

sequence, Signal URCU borrows the implementation of Rcu-Read-Lock and

Rcu-Read-Unlock from General URCU, but replaces memory with compiler

barriers.

Rcu-Read-Lock

1 if thread .nesting-cnt == 0

2 atomically assign packed in a single word:

3 thread .nesting-cnt = 1

4 thread .reader -group = cur -reader -group

5 // Prevent compiler from leaking critical section code.

6 Compiler-Barrier // L

7 else

8 thread .nesting-cnt++

14



Rcu-Read-Unlock

1 // Prevent compiler from leaking critical section code.

2 Compiler-Barrier // U

3 thread .nesting-cnt−−

Write-side Like the read-side, Rcu-Synchronize too is based on General

URCU. The function’s memory barrier S pairs up with the memory barriers

issued on demand in other threads F -L which in turn promote compiler barriers

L to full barriers.

Rcu-Synchronize

1 with mutex locked

2 // Make prior changes visible in new reader sections.

3 Memory-Barrier // S

4 // Make the most current nesting-cnt visible to this CPU.

5 // Ensure new readers see changes prior to Rcu-Synchronize

6 Force-MB-In-Threads // F-L

7 do twice

8 preexisting-group = cur -reader -group

9 // Separate preexisting and new readers.

10 cur -reader -group = ¬cur -reader -group

11 for each thread t

12 while t .Is-Preexisting-Reader(preexisting-group)

13 Sleep(10 ms)

14 // Prevent any late memory accesses of preexisting readers

15 // from leaking past Rcu-Read-Unlock.

16 Force-MB-In-Threads // F-U

On the one hand, if the memory barrier F -L executes in the target thread

while it is outside of a critical section, i.e. before the compiler barrier L in Rcu-

Read-Lock, the memory barrier F -L paired up with S ensures that any reader

section following F -L in the target thread sees all changes made prior to Rcu-

Synchronize. Therefore, Rcu-Synchronize need not wait for such a reader

section.

On the other hand, if the memory barrier F -L executes while the destination

thread is in a reader section, i.e. between L of Rcu-Read-Lock and U of

Rcu-Read-Unlock, F -L makes the thread’s most recent nesting-cnt as well as

its group association reader -group visible to Rcu-Synchronize. As a result,

Rcu-Synchronize will correctly wait for the preexisting reader section due to

having a positive nesting-cnt .

15



Finally, Rcu-Synchronize forces a memory barrier in all threads after all

preexisting readers have exited. The memory barriers that are the result of F -U

follow any compiler barriers U in Rcu-Read-Unlock of the preexisting readers

and restrict their late memory accesses.

Is-Preexisting-Reader(preexisting-group)

1 return 0 < thread .nesting-cnt

2 and thread .reader -group == preexisting-group

Force-MB-In-Threads

1 send a signal to all threads

2 wait for an acknowledgement

Signal-Handler

1 Memory-Barrier

2 acknowledge

3 Memory-Barrier

Assessment

Signal URCU’s advantages:

� Works in user space.

� Light-weight read-side critical sections.

Disadvantages:

� Detecting grace periods disrupts readers.

� Grace period may be twice as long as it needs to be in the common case.

� Requires an implementation of signals, which HelenOS does not provide.

3.3 Classic kernel RCU

In Classic Linux kernel RCU [12] and its hierarchical extension [19] reader sections

only disable preemption and a regular timer tick drives grace period detection.

Rcu-Read-Lock

1 Disable-Preemption

Rcu-Read-Unlock

1 Enable-Preemption

16



The timer tick interrupt detects if a CPU reached a quiescent state, i.e. if

the timer interrupted a thread in user mode, an idle loop or if a contex switch

occurred since the last timer interrupt. As CPUs pass through quiescent states

they are removed from the set of CPUs waiting for the current grace period to

end, wait-for -cpus . The last one removed announces the end of the current grace

period by incrementing the current grace period number, cur -gp. Other CPUs

eventually notice this change – again in the timer handler – and dispatch waiting

Rcu-Call callbacks. To start a new grace period a CPU simply adds all CPUs

to the set wait-for -cpus .

The algorithm tolerates if the CPU reorders memory accesses out of Rcu-

Read-Lock and Rcu-Read-Unlock delimited code because the detected qui-

escent states inherently include a memory barrier. For example a context switch

or a switch to idle loop involve traditional locking which incorporates memory

barriers. Similarly, switching to and from user space typically requires serializing

instructions that act as memory barriers.

Timer-Handler

1 // Check without a lock if wait-for -gp ended.

2 if cpu .wait-for -gp < cur -gp

3 execute callbacks in cpu .cur -cbs

4 // New batch of callbacks is ready.

5 if cpu .cur -cbs == ∅ and cpu .next-cbs 6= ∅
6 move cpu .next-cbs to cpu .cur -cbs

7 with mutex locked

8 // Callbacks batched during cur -gp wait for an entire g.p.

9 cpu .wait-for -gp = cur -gp + 1

10 // Grace period is not in progress.

11 if wait-for -cpus == ∅
12 wait-for -cpus = all cpus

13 if interrupted user mode, idle loop or context switch occurred

14 with mutex locked

15 wait-for -cpus = wait-for -cpus − this-cpu

16 // This was the last cpu to pass through a q.s.

17 if wait-for -cpus == ∅
18 // Announce that this grace period ended.

19 cur -gp++

20 // Start a new g.p. if some other CPU is waiting for it.

21 if cur -gp ≤ max
c∈ cpus

c.wait-for -gp

22 wait-for -cpus = all cpus

17



Although the timer handler Timer-Handler protects concurrent modifi-

cations of cur -gp with a mutex it reads the variable without synchronization.

Consequently, it may load an older value of cur -gp and in the worst case locally

queued callbacks cpu .cur -cbs will be delayed until the next context switch makes

the most recent cur -gp visible to the CPU.

Rcu-Call(callback)

1 append callback to cpu .next-cbs

What is more, Timer-Handler illustrates how to amortize grace period

detection overhead over multiple RCU callbacks added via Rcu-Call. Instead

of initiating a new grace period for each callback, Timer-Handler batches

incomming callbacks while a grace period is in progress in next-cbs and dispatches

all of them at the end of the next grace period.

Assessment

Classic RCU’s advantages:

� Extremely low overhead reader sections that just disable and enable pre-

emption.

� Low overhead grace period detection, which only observes but never forces

context switches, user or idle mode.

� All CPUs detect grace periods in parallel.

Disadvantages:

� Requires a regular sampling tick.

� Read-side critical sections may not be preempted.

� Grace period detection is held back if threads are alloted larger time quanta

that they spend in the kernel.

3.4 Houston’s RCU

Houston’s RCU [7] removes Classic RCU’s reliance on regular timer ticks. In

Classic RCU the timer tick was used to batch callbacks, detect local quiescent

states and dispatch callbacks whose grace periods had ended. Houston moves

these resposibilities to Rcu-Call and Rcu-Read-Unlock. It batches call-

backs in Rcu-Call until a predefined number of queued callbacks is reached. In

18



addition, Rcu-Read-Unlock announces quiescent states if a grace period is in

progress. Both Rcu-Call and Rcu-Read-Unlock detect that a grace period

elapsed but leave it up to a designated thread to invoke callbacks.

For brevity the pseudocode below omits the interaction between Rcu-Call

and the designated background thread. Instead it accurately portraits how the

grace period detection code employs atomic instructions to communicate with

the read-side critical section.

Read-side Before Rcu-Read-Lock allows instructions of the reader section

to execute it marks that the CPU is in a read-side critical section and orders

the two actions with a memory barrier. Likewise, Rcu-Read-Unlock clears

the CPU’s mark with Atomic-Exchange which acts as a memory barrier and

atomically clears the mark and returns its previous value. The previous mark

indicates if a grace period started while the CPU was running a reader section.

In that case, Rcu-Read-Unlock wakes up any threads waiting for the grace

period to end.

Rcu-Read-Lock

1 Disable-Preemption

2 if ++cpu .nesting-cnt == 1

3 cpu .flags = In-CS

4 Memory-Barrier

Rcu-Read-Unlock

1 if −− cpu .nesting-cnt == 0

2 prev -flags = Atomic-Exchange(cpu .flags ,Not-In-CS)

3 if Announce-QS ∈ prev -flags

4 preexisting-readers .Semaphore-Up(1)

5 Enable-Preemption

Write-side Rcu-Synchronize examines each CPU with an atomic compare

and swap instruction. It atomically checks if the CPU is in a read-side critical

section, and if it is it requests that the CPU announce a quiescent state once in

Rcu-Read-Unlock. Finally, the function waits for all preexisting readers to

announce a quiescent state.

19



Rcu-Synchronize

1 with mutex locked

2 cur -gp++

3 preex -cnt = 0

4 for each cpu ∈ cpus

5 prev -flags = CAS(cpu .flags , In-CS, In-CS ∪Announce-QS)

6 if prev -flags == In-CS

7 preex -cnt++

8 preexisting-readers .Semaphore-Down(preex -cnt)

Assessment

Pros of Houston’s RCU:

� No regular sampling tick.

� Low latency grace period end detection.

Cons may be:

� Noticeable overhead of Rcu-Read-Unlock due to the atomic exchange

instruction.

� Still requires a timer albeit an infrequent one.

� Non-preemptible reader sections.

3.5 Podzimek’s RCU

Podzimek’s RCU implementation for the OpenSolaris UTS kernel [30] does not

rely on regular timer ticks to detect naturally occurring quiescent states like

Classic RCU. Instead of sampling reader state each timer tick during grace period

detection, Podzimek’s RCU explicitly requests that the first reader to notice the

start of a new grace period on each CPU announces a quiescent state in Rcu-

Read-Lock or Rcu-Read-Unlock. What is more, read-side critical sections

are non-preemptible and context switches are recognized as naturally occurring

quiescent states. Once all CPUs announce a quiescent state or perform a context

switch the grace period ends.

Read-side Grace period detection starts by incrementing the global current

grace period number cur -gp, i.e. the number of the grace period we are waiting to

complete. To notice that a new grace period started, readers compare the changed

20



cur -gp to a value of it stored locally on each CPU, last-seen-gp. last-seen-gp is

the last grace period number for which the CPU noted and announced a quiescent

state. Readers check for the change of cur -gp in unnested Rcu-Read-Lock and

Rcu-Read-Unlock as these functions represent a quiescent state. In order

to announce that it reached a quiescent state, a reader first executes a memory

barrier that contains memory references within the critical section. Next, it notes

that it passed a quiescent state by updating last-seen-gp to cur -gp.

Rcu-Read-Lock

1 Disable-Preemption

2 Check-QS

3 cpu .nesting-cnt++

Rcu-Read-Unlock

1 cpu .nesting-cnt−−
2 Check-QS

3 Enable-Preemption

Check-QS

1 if 0 == cpu .nesting-cnt

2 if cpu . last-seen-gp 6= cur -gp

3 gp = cur -gp

4 Memory-Barrier

5 cpu . last-seen-gp = gp

Check-QS checks for and announces quiescent states at reader section bound-

aries. It first makes sure it is not invoked from a nested reader section on line

1. Next, line 2 verifies that a new grace period started and avoids issuing a

memory barrier if the CPU is not holding up the current grace period. The mem-

ory barrier on line 4 represents a quiescent state. Firstly, it contains references

to protected data within the critical section. Secondly, it makes changes prior

to Rcu-Synchronize visible in the following critical section. Lastly, it cap-

tures delayed memory accesses from previous critical sections that however Rcu-

Read-Unlock exited without noticing that a new grace period had started.

The function finally acknowledges that it passed a quiescent state by writing to

cpu . last-seen-gp on line 5 for other CPUs to see.

Write-side Rcu-Synchronize waits a while after starting a grace period and

then polls each CPU’s last-seen-gp and context switch counter to see if the CPU

reached a quiescent state in the meantime. If a CPU did not record one, e.g.

21



because it had been running a thread without any read-side critical sections, a

forced context switch is scheduled on that CPU. Once all forced context switches

finish, all CPUs must have passed a quiescent state and the grace period ends.

Rcu-Synchronize

1 // Separates prior changes of shared variables from new grace period.

2 Memory-Barrier

3 with mutex locked

4 // Start new grace period.

5 cur -gp++

6 // Gather CPUs potentially in reader sections.

7 reader -cpus = ∅
8 for each cpu

9 if ¬cpu .idle and cpu . last-seen-gp 6= cur -gp

10 cpu . last-ctx -switch-cnt = cpu .ctx -switch-cnt

11 reader -cpus = cpu ∪ reader -cpus

12 // Give preexisting reader sections a chance to exit.

13 Sleep(10 ms)

14 // Force context switch on CPUs that may not have reached a q.s.

15 for each cpu ∈ reader -cpus

16 may-be-reading = ¬cpu .idle

17 and cpu . last-seen-gp 6= cur -gp

18 and cpu . last-ctx -switch-cnt == cpu .ctx -switch-cnt

19 if may-be-reading

20 force and wait for a context switch on cpu

Rcu-Synchronize and Check-QS read cpu . last-seen-gp and cur -gp re-

spectively without synchronization and rely on cache coherency protocols to prop-

agate updates of these variables to all CPUs. Nevertheless, the algorithm does

not rely on the variables for correctness and only uses them to make grace pe-

riod detection less intrusive. In the worst case, if cache coherence fails to deliver

the most recent cur -gp to a CPU or propagate its write of last-seen-gp back to

Rcu-Synchronize, a context switch is forced on the CPU and the algorithm

continues correctly.

While the above pseudo code captures the main idea of the algorithm, Podz-

imek’s RCU is much more elaborate. First, it implements Rcu-Synchronize on

top of Rcu-Call. Second, it batches multiple RCU callbacks during a grace pe-

riod; therefore, spreading the overhead of detecting a grace period among multiple

callbacks. Third, it processes the callbacks in CPU-bound background reclaimer

22



threads and leaves detection up to a dedicated detector thread. Last, the imple-

mentation is capable of speeding up the detection if a callback is declared to be

expedited.

Assessment

Advantages of Podzimek’s RCU:

� Low overhead read-sice critical sections with at most one memory barrier

issued by each CPU per grace period.

� No regular sampling timer ticks are required.

� Does not needlessly wake idle CPUs up. As a result, it is more power

efficient.

� Works in interrupt handlers.

� No instrumentation of the scheduler or the interrupt dispatching mechanism

necessary.

Disadvantages of the algorithm may include:

� Intrusiveness of the detection depends on cache coherency.

� Read-side critical section may not be preempted.

3.6 Sleepable RCU

Sleepable RCU [10] introduced in the Linux kernel in 2012 allows threads in

reader sections to not only be preempted but also to sleep.

Similarly to General URCU, readers in Sleepable RCU can be associated with

two different reader groups. Once grace period detection starts Sleepable RCU

changes the reader group of which new reader sections should be a member.

Because no new readers will become members of the previous group the number

of readers in that group eventually drops to zero. A grace period then ends as all

preexisting readers must have been associated with the previous reader group.

Read-side Because Sleepable RCU operates in a kernel environment it does not

assign a reader group to individual threads. Instead it maintains two counters

per each CPU tracking the number of readers in each group on that CPU and

modifies the counters with disabled preemption.

23



Rcu-Read-Lock

1 with disabled preemption

2 thread .reader -group = cur -reader -group

3 cpu .reader -cnt [thread .reader -group]++

4 Memory-Barrier // L

5 cpu .cs-seq [thread .reader -group]++

Rcu-Read-Lock associates the upcoming reader section with the current

group with an increment on line 3. Next, it issues a memory barrier L to separate

the increment from code of the reader section. Last, line 5 increases the sequence

number of completed calls to Rcu-Read-Lock on the current processor. The

sequence number enables Rcu-Synchronize to detect new readers that have

been mistakenly associated with the previous readers group.

Rcu-Read-Unlock

1 with disabled preemption

2 Memory-Barrier // U

3 cpu .reader -cnt [thread .reader -group]−−

Rcu-Read-Unlock issues a memory barrier U on line 2 to contain memory

accesses of the reader section before pronouncing the reader section finished with

a decrement on line 3.

Write-side Quite unline General URCU, Sleepable RCU does not require two

group flips per grace period. Exactly as in General URCU, the current reader

group cur -reader -group may be flipped between when Rcu-Read-Lock loads

the value of cur -reader -group on line 2 and associates the thread with the group

on line 3. Such a reader would incorrectly become a member of the previous

reader group although it is a new reader, i.e. it sees all changes prior to Rcu-

Synchronize and will not be waited for.

24



Rcu-Synchronize

1 with mutex locked

2 // Make prior changes visible to new readers.

3 Memory-Barrier

4 delayed -reader -grp = ¬cur -reader -group

5 Wait-For-Readers(delayed -reader -grp)

6 // Do not mix group flip with Wait-For-Readers.

7 Memory-Barrier

8 cur -reader -group = ¬cur -reader -group

9 // Do not mix group flip with Wait-For-Readers.

10 Memory-Barrier

11 preex -reader -grp = ¬cur -reader -group

12 Wait-For-Readers(preex -reader -grp)

Instead of flipping cur -reader -group twice in a row, Sleepable RCU maintains

an invariant that Rcu-Synchronize finds the previous reader group empty upon

entry before flipping the current group. In particular, it explicitly waits for such

readers on line 5 with Wait-For-Readers before flipping the current reader

group on line 8. Then, a grace period elapses when all preexisting readers have

exited their critical sections with line 12.

What is more, given that readers will be assigned an incorrect group only

rarely one can expect that there will be no delayed readers in the previous group

when entering Rcu-Synchronize. Therefore, compared to General URCU the

grace period length is effectively cut in half.

Wait-For-Readers(preex -reader -grp)

1 forever

2 prev -seq-sum =
∑

c∈ cpus

c.cs-seq [preex -reader -grp]

3 Memory-Barrier // A

4 approx -active-cnt =
∑

c∈ cpus

c.reader -cnt [preex -reader -grp]

5 if approx -active-cnt == 0

6 Memory-Barrier // B

7 cur -seq-sum =
∑

c∈ cpus

c.cs-seq [preex -reader -grp]

8 if cur -seq-sum == prev -seq-sum

9 return

10 Sleep(10 ms)

Wait-For-Readers waits for preexisting readers of the group preex -reader -grp

to exit their reader sections. It determines the approximate number of preexist-

25



ing readers in the group preex -reader -grp, approx -active-cnt , on line 4. It first

issues a memory barrier A that pairs up with memory barrier L in Rcu-Read-

Lock. For preexisting readers L happens before A; therefore, the increment of

reader -cnt in Rcu-Read-Lock is incorporated into the sum approx -active-cnt .

Consequently, approx -active-cnt will be positive and Wait-For-Readers will

wait for the preexisting readers to exit their reader sections with line 5.

On the other hand, when L happens after A approx -active-cnt may not reflect

the increment of reader -cnt . However, because A happened before L the reader

will see all changes prior to Rcu-Synchronize and is, therefore, a new reader

that Wait-For-Readers does not have to wait for.

Whereas the function may not see a new reader’s increment in Rcu-Read-

Lock while summing up reader -cnts, it may incorrectly incorporate its decrement

of reader -cnt in Rcu-Read-Unlock into the sum if the new reader is migrated

to a different CPU and immediately invokes Rcu-Read-Unlock while Wait-

For-Readers is adding up reader -cnts. In that case, memory barrier B pairs

up with U . Because changes to the sequence number cs-seq are separated from

decrements of reader -cnt with U , B guarantees the function will see the current

sequence number on line 7. What is more, the previous sum of sequence numbers

on line 2 could not have included the new reader’s update of the sequence because

the change is separated from the sum on line 2 with memory barries A and L.

As a result, if a new reader skews approx -active-cnt with only a decrement of

reader -cnt the sums of sequence numbers before and after line 4, prev -seq-sum

and cur -seq-sum, will differ. Line 8 detects this case and avoids exiting prema-

turely.

Assessment

Advantages of Sleepable RCU:

� Reader sections may be preempted and even sleep.

� Small grace period detection latency.

Disadvantages may include:

� Both entering and existing read-side critical section involves memory bar-

riers.

3.7 Preemptible RCU in Linux

The preemptible Linux kernel RCU [15, 25], or simply Preemptible RCU, allows

readers to be preempted within their reader sections.

26



The algorithm evolved from a complex design [15, 25] to the current simplified

version1. After finishing the implementation of A-RCU, which is our implemen-

tation of RCU in HelenOS, Preemptible RCU moved away from running RCU

callbacks in softirq context [24]. Instead, callbacks are processed in dedicated ker-

nel threads similarly to the design employed in Podzimek’s RCU. Furthermore

[24] introduced another background kernel thread that is responsible for starting

new grace periods and announcing the end of old ones; a concept first presented

by Podzimek’s RCU. What is more, the current version of Preemptible RCU

was inspired by user mode RCU algorithms described in the previous sections

as mentioned in [23, 20]. Although A-RCU was developed independently from

the presented Preemptible RCU, it is based on Signal URCU and concepts of

Podzimek’s RCU. Consequently, Preemptible RCU’s read-side in the most recent

incarnation resembles A-RCU’s read-side.

Read-side Entering and leaving a reader section involves only incrementing or

decrementing the thread’s reader section nesting count, nesting-cnt .

Rcu-Read-Lock

1 thread .nesting-cnt++

2 Combiler-Barrier

Rcu-Read-Unlock

1 if thread .nesting-cnt 6= 1

2 thread .nesting-cnt−−
3 else

4 Combiler-Barrier

5 thread .nesting-cnt = Int-Min

6 Combiler-Barrier

7 if thread .special -unlock -needed

8 Rcu-Read-Unlock-Special

9 Combiler-Barrier

10 thread .nesting-cnt = 0

If a reader section is preempted or RCU wishes to detect the end of a grace

period as soon as possible Rcu-Read-Unlock finds special -unlock -needed set

to true. In turn, Rcu-Read-Unlock-Special records a quiescent state for the

current CPU and clears special -unlock -needed .

In order to avoid a race with interrupt handlers utilizing RCU, the outermost

Rcu-Read-Unlock first sets the nesting count to the smallest integer value

1 Version 3.10.4 released on the 28th of July 2013

27



on line 5. If an interrupt handler were to interrupt the outermost Rcu-Read-

Unlock and execute a reader section the handler’s Rcu-Read-Unlock would

not enter the else branch on lines 3-10 because nesting-cnt would be either neg-

ative or equal to 2 due to line 1 of the handler’s Rcu-Read-Lock. Therefore,

Rcu-Read-Unlock-Special is guaranteed to be invoked only once for each

time special -unlock -needed is set to true.

Write-side Preemptible RCU’s write side resembles the write side of Classic

RCU. It too is driven by a regular clock tick. Firstly, the timer handler is respon-

sible for detecting that a new batch of callbacks is ready and, therefore, a grace

period should be started. The handler wakes up a background kernel thread that

initiates a new grace period if one is not already in progress.

Secondly, the handler samples threads running on the CPU and records that

the CPU passed a quiescent state in a bitmap if the interrupted thread is outside

of a reader section. Because memory accesses are separated from changes of the

nesting count with compiler barriers on line 2 of Rcu-Read-Lock and line 4 of

Rcu-Read-Unlock the interrupted thread or interrupt handler is guaranteed

to be outside of a reader section whenever nesting-cnt is zero.

Thirdly, the timer handler detects that the current grace period had ended. A

grace period ends once all CPUs pass a quiescent state and all threads preempted

in a reader section have exited their reader sections. Then, the timer handler

or Rcu-Read-Unlock-Special wake up the background kernel thread that

started the current grace period to clean up data structures used during the

grace period. Finally, the kernel thread updates the number of completed grace

periods thereby announcing that the current grace period ended.

Lastly, the timer handler instructs another dedicated background kernel thread

to dispatch the relevant callbacks that were queued on the current CPU for grace

periods which had already completed.

All in all Preemptible RCU’s write side is rather intricate as it must handle

CPU hotplugging and tries to avoid interrupting idle CPUs with the regular clock

tick. The resulting design involves instrumentation of interrupt and exception

handling code as well as transitions to the idle mode.

Assessment

Advantages of Preemptible RCU in Linux:

� Reader sections may be preempted.

� Functions in interrupt and exception handlers.

28



� Low overhead reader sections; Rcu-Read-Lock consists of an increment

while Rcu-Read-Unlock contains only simple instructions and a handful

of conditional statements.

Disadvantages might include:

� Instrumentation of exception and interrupt dispatching is necessary.

3.8 Summary

While other RCU algorithms exist [18, 14, 17, 21, 16] the reviewed algorithms

proved to be relevant to the design of RCU for HelenOS.

Firstly, Podzimek dispatches RCU callbacks in background reclaimer threads

which places little restrictions on the callbacks and does not require interrupt

handler instrumentation. Therefore, we adopted the concept.

Moreover Signal URCU offers read-side critical sections with little overhead.

Consequently, the implemented user space RCU in HelenOS is based on Signal

URCU. What is more, we used the ideas in Signal URCU when designing a

preemptible kernel RCU.

Lastly, the next chapter demonstrates that an invariant of Sleepable RCU can

be applied to Signal URCU as well and remove the need for two counter flips.

29



Chapter 4

Implemented RCU algorithms

4.1 Requirements

Due to the research nature of HelenOS a user space RCU implementation must

take into account the following.

� URCU must not impose design concepts of legacy systems on HelenOS, e.g.

it must not require signals for its operation.

The requirements listed next must guide the implementation of a kernel RCU for

HelenOS.

� First and foremost, a kernel RCU must tolerate reader sections in both

interrupt as well as exception handlers in order to be universally usable.

� Second, it should allow Rcu-Call in interrupt and exception contexts for

the same reason.

� Third, it should not disable preemption for the duration of reader sections

unless such an implementation would incur a high performance penalty.

Otherwise, disabling preemption might unnecessarily limit scheduling la-

tency.

4.2 Preemptible kernel A-RCU

Preemptible kernel A-RCU is based on Signal URCU and the ideas of Podzimek’s

RCU. It meets all the set requirements. Not only does it support reader sections

and Rcu-Calls in interrupt and exception handlers, it also leaves preemption

enabled in reader sections without loss of performance.

Similarly to Signal URCU, A-RCU reader sections do not issue memory bar-

riers and in the common case only increment and decrement a reader section

30



nesting counter. Like Signal URCU, A-RCU drives grace period detection from a

single thread that polls other threads until they have exited their reader sections.

However, A-RCU exploits that it runs in the kernel and that it can keep track

of preempted readers explicitly. Therefore, instead of polling all threads in the

system, A-RCU polls only threads actually running on CPUs and tracks threads

that were preempted in a reader section in a linked list.

Inexpensive tracking of preempted readers In performance sensitive ap-

plications of RCU, one expects a thread to enter many reader sections within a

time slice. Therefore, context switches will preempt relatively few reader sections

and requiring expensive operations when preempted readers exit their reader sec-

tions will not introduce a significant overhead.

As a result, to detect a grace period, A-RCU first samples each CPU to

determine if it passed a quiescent state. Once all CPUs pass a quiescent state

A-RCU checks if there are any preempted readers holding up the current grace

period. If there are it sleeps and requests that the last preempted reader that

is holding up the current grace period wake up A-RCU’s grace period detecting

thread from Rcu-Read-Unlock.

Sampling CPUs for quiescent states A-RCU samples CPUs for quiescent

states somewhat similarly to Classic RCU. Instead of relying on regular timer

interrupts, A-RCU interrupts the sampled CPU with an interprocessor interrupt

(IPI). In the IPI handler of the sampled CPU, A-RCU checks the interrupted

thread’s reader section nesting count and if it finds the thread outside of a reader

section the handler issues a memory barrier. The memory barrier represents a

quiescent state on weakly ordered architectures.

While A-RCU’s IPIs are more intrusive than Classic RCU’s timer interrupts,

A-RCU only interrupts other processors when grace period detection is in progress.

In order to further reduce the overhead of polling other processors, it non-

intrusively detects context switches on other processors and only samples CPUs

that have not yet announced that they performed a context switch. CPUs an-

nounce the event with Podzimek’s protocol of announcing quiescent states. Each

processor locally stores the number of the last grace period for which it entered

a quiescent state, e.g. during a context switch. If the current global grace period

number does not match the locally stored value during a context switch, the CPU

enters a quiescent state by issuing a memory barrier. Then, it announces that

the CPU passed a quiescent state by updating the locally stored value for other

CPUs to read.

31



Tracking preempted readers When a reader section is preempted for the

first time, A-RCU must decide whether the preempted reader is a preexisting

reader and it should hold up the current grace period; or it is a new reader that

may hold up the next grace period if it does not exit its reader section in time.

Because it is the first time the reader was preempted, it only ran on one CPU. If

that CPU had not passed a quiescent state since the start of the grace period the

preempted reader may have started before the grace period did. Therefore, it is

considered to be a preexisting reader and it is placed into a list of such readers.

Otherwise, the CPU noted a quiescent state after the start of the grace period

and the preempted reader will definitely see all changes prior to the grace period.

The reader is, therefore, a new reader. Although the new reader will not hold up

the current period, it is placed into a list of readers that may hold up the next

grace period if they do not exit their reader sections before the next period starts.

It is important to note that A-RCU only waits for preempted readers holding

up the current grace period after all CPUs passed a quiescent state. Since all

CPUs passed a quiescent state all future preempted readers will be associated

with the new reader list. Consequently, the number of threads in the preexisting

reader list will monotonically decrease and once the last reader in the list exits

its reader section the grace period is truly over.

Reclaimer and detector threads A-RCU borrows the concept of Podzimek’s

reclaimer threads. Each CPU has a single bound reclaimer thread that dispatches

batched callbacks in the background. The first reclaimer thread to notice new

locally queued callbacks starts a new grace period and takes on the role of a de-

tector thread. When the grace period is over the detector thread signals the event

to other reclaimer threads. In other words, A-RCU does not have a dedicated

detector thread like Podzimek’s RCU.

Pseudo code

The pseudo code below illustrates the algorithm in greater detail.

Read-side Rcu-Read-Lock and Rcu-Read-Unlock only adjust the level

of nested reader sections. If a reader section is preempted the reader’s nesting

count is marked with a Was-Preempted flag. Rcu-Read-Unlock checks for

this unlikely event and invokes Preempted-Unlock.

Rcu-Read-Lock

1 thread .nesting-cnt++

2 Combiler-Barrier

32



Rcu-Read-Unlock

1 Combiler-Barrier

2 thread .nesting-cnt−−
3 if thread .nesting-cnt == Was-Preempted

4 Preempted-Unlock

Preempted-Unlock

1 if Was-Preempted == Atomic-Exchange(thread .nesting-cnt , 0)

2 with preempt-lock locked

3 remove thread from some preempted list

4 if cpu .cur -preempted is now empty and det-waiting

5 det-sema .Semaphore-Up

Preempted-Unlock atomically clears the flag Was-Preempted which en-

sures that in a race between the thread’s Preempted-Unlock and an interrupt

handler with a reader section only one succeeds in clearing the flag and properly

unlocks the section. On lines 2-6, the function checks if it unlocked the last pre-

empted reader that was holding up the current grace period and if so, notifies the

sleeping detector thread.

Write-side Rcu-Call adds a new callback represented as a linked list node

item-ptr at the end of the arriving callbacks list of the local CPU, arriving-cbs .

It first adjusts the list tail pointer arriving-cbs-tail atomically with respect to

interrupts on the local CPU on line 2. The line ensures Rcu-Call will not

corrupt the list even in the presence of nested Rcu-Calls in exception handlers.

Next, the function attaches the callback’s node to the list on line 3. If this was

the first callback queued locally, line 6 notifies the CPU’s reclaimer thread that

a new batch is ready for processing.

Rcu-Call(item-ptr)

1 with disabled preemption

2 prev -tail = Atomic-Exchange(cpu .arriving-cbs-tail ,&item-ptr .next)

3 ∗prev -tail = item-ptr

4 first-cb = (prev -tail == &cpu .arriving-cbs)

5 if first-cb

6 cpu .cbs-arrived -sema .Semaphore-Up

Reclaimer threads run in a never-ending loop. First, a reclaimer waits for

the current grace period to end with Wait-For-GP-End on line 5. Second,

it makes sure that there are Rcu-Calls that have yet to be dispatched on line

33



2. If there are none Wait-For-Callbacks waits for Rcu-Call to add a new

callback and wake the reclaimer up via a semaphore. Next, the thread runs any

callbacks for the grace period that has just elapsed and, finally, waits for another

grace period to end on line 5.

Reclaimer-Thread

1 forever

2 Wait-For-Callbacks

3 Exec-Callbacks

4 Advance-Callbacks

5 Wait-For-GP-End

A-RCU makes use of three lists of callbacks. cur -gp-cbs represents the func-

tions that should be run after the current grace period ends, i.e. functions that

have been added before the current grace period started. These are the functions

Exec-Callbacks invokes. Furthermore, next-gp-cbs holds Rcu-Calls that

can only be satisfied once the next grace period elapses. Finally, arriving-cbs

contains the callbacks that have been added since the last call to Advance-

Callbacks.

After every grace period Advance-Callbacks moves the items of next-gp-cbs

to cur -gp-cbs and the elements in arriving-cbs to next-gp-cbs . Placing items into

the intermediary list next-gp-cbs is necessary in order to avoid executing callbacks

prematurely. In particular, when the reclaimer calls Advance-Callbacks an-

other reclaimer may have already reached line 5 and started a new grace period.

Therefore, some items of arriving-cbs may have been added when a new grace pe-

riod was already in progress. If the function were to move arriving-cbs directly to

cur -gp-cbs , the callbacks added after the current grace period started but before

it had a chance to complete would be invoked prematurely.

Reclaimer threads wait for a grace period with Wait-For-GP-End. The

function first checks if a grace period is already in progress on line 3 by comparing

the last completed grace period number completed -gp to the current grace period

number cur -gp. If they match, a new grace period is started by incrementing

cur -gp on line 10 and moving readers that were preempted after the previous grace

period started in next-preempted to cur -preempted which is the list of preexisting

readers for the newly initiated grace period.

34



Wait-For-GP-End

1 with gp-lock locked

2 // A grace period is already in progress

3 if completed -gp 6= cur -gp

4 wait for ”end of grace period” signal

5 return

6 else

7 // Start a new grace period

8 with preempt-lock locked

9 move readers in next-preempted to cur -preempted

10 cur -gp++

11 Wait-For-Readers

12 with gp-lock locked

13 completed -gp = cur -gp

14 signal ”end of grace period”

Next, Wait-For-Readers waits for preexisting readers to complete before

Wait-For-GP-End declares the grace period to be over. Wait-For-Readers

first ensures all CPUs reached a quiescent state on lines 2-7. Only then can the

function be sure no future readers will be associated with the list of readers de-

laying the current grace period cur -preempted . Therefore, the list will eventually

become empty and it is safe to wait for the last reader in cur -preempted to notify

Wait-For-Readers that it exited its reader section.

Wait-For-Readers

1 // Poll CPUs until all reach a quiescent state

2 reader -cpus = active cpus

3 while reader -cpus 6= ∅
4 Sleep(10 ms)

5 reader -cpus = reader -cpus ∩ all non-idle cpus

6 where cpu . last-seen-gp 6= cur -gp

7 sample reader -cpus with an IPI

8 with preempt-lock locked

9 // Preempted readers delaying the current g.p. exist

10 if cur -preempted 6= ∅
11 det-waiting = True

12 if cur -preempted was nonempty

13 det-sema .Semaphore-Down

The sampling IPI-Handler checks if it interrupted a thread in a reader

section on a CPU that has yet to note a quiescent state and if not it enters a

35



quiescent state with a memory barrier on line 4. The memory barrier contains

any late accesses of reader sections that have just exited.

IPI-Handler

1 if 0 < thread .nesting-cnt and cpu . last-seen-gp 6= cur -gp

2 // Still in a reader section. Poll again later.

3 else

4 Memory-Barrier

5 cpu . last-seen-gp = cur -gp

The context switch handler Context-Switch marks preempted reader’s

nesting count with the flag Was-Preempted to instruct the reader it may have

to notify a detector waiting for it to complete in Preempted-Unlock. If the

reader was preempted for the first time, Context-Switch associates it with the

preexisting preempted readers list cur -preempted or with new preempted readers

list next-preempted . Acquiring the preempt-lock guarantees Context-Switch

has the most up-to-date value of the current grace period number cur -gp and

associates the preempted reader with the correct list.

Lastly, Context-Switch may record a quiescent state for this CPU on lines

8-11 because a potentially preempted reader was already noted globally in the

proper list.

Context-Switch

1 if 0 < thread .nesting-cnt and

2 Was-Preempted 6∈ AtomicMark(nesting-cnt ,Was-Preempted)

3 with preempt-lock locked

4 if cpu . last-seen-gp 6= cur -gp

5 add thread to cur -preempted

6 else

7 add thread to next-preempted

8 if cpu . last-seen-gp 6= cur -gp

9 gp = cur -gp

10 Memory-Barrier

11 cpu . last-seen-gp = gp

Assessment

Advantages:

� Reader sections may be preempted.

� Functions in interrupt and exception handlers.

36



� Low overhead reader sections.

� Clearly separated from the rest of the system; no need to instrument ex-

ception and interrupt handlers.

� RCU processing is contained in dedicated threads which simplifies keeping

track of the cost of RCU when both detecting grace periods and running

callbacks.

Disadvantages might include:

� Polling CPUs with interprocessor interrupts may become disruptive in large

systems with tens of CPUs.

4.3 Preemptible Podzimek’s kernel RCU

Preemptible Podzimek’s RCU, or simply PP-RCU, is our modification to Podz-

imek’s RCU to make reader sections preemptible. It borrows the mechanism to

track preempted readers from A-RCU. Moreover PP-RCU does not force context

switches on CPUs delaying a grace period. Instead, it requests such CPUs to

wake the detector up when they pass a quiescent state.

Read-side PP-RCU’s read-side is very similar to Podzimek’s RCU. Rcu-Read-

Lock is exactly the same as Podzimek’s but it also enables preemption before

continuing with the reader section code.

Rcu-Read-Lock

1 with disabled preemption

2 if 0 == thread .nesting-cnt

3 Record-QS

4 thread .nesting-cnt++

Unlike in Podzimek’s RCU Rcu-Read-Unlock must first disable preemp-

tion that had been enabled when leaving Rcu-Read-Lock. In addition to Podz-

imek’s original function lines 4-5 check if the reader should signal to a detector

thread that it had exited its critical section.

Rcu-Read-Unlock

1 with disabled preemption

2 if 0 == −− thread .nesting-cnt

3 Record-QS

4 if thread .was-preempted or cpu .is-delaying-gp

5 Signal-Unlock

37



Record-QS

1 if cpu . last-seen-gp 6= cur -gp

2 gp = cur -gp

3 Memory-Barrier

4 cpu . last-seen-gp = gp

Signal-Unlock

1 if true == Atomic-Exchange(cpu .is-delaying-gp, false)

2 remaining-readers .Semaphore-Up

3 if true == Atomic-Exchange(thread .was-preempted , false)

4 with preempt-lock locked

5 remove thread from some list of preempted threads

6 if cpu .cur -preempted is now empty and preempted -blocking-gp

7 preempted -blocking-gp = false

8 remaining-readers .Semaphore-Up

Rcu-Read-Unlock invokes Signal-Unlock if the CPU is delaying the

current grace period or if the thread was preempted while inside a reader section.

In the former case, the function wakes up the detector via a semaphore on line

2 because it has just passed a quiescent state. The latter case is handled in

line with A-RCU. In particular, if the thread was the last thread in the list

of preempted preexisting readers for the grace period, cur -preempted , and the

detector is blocked waiting for the such a thread, Signal-Unlock wakes the

detector up in line 8.

Furthermore the function checks for both conditions with an Atomic-Exchange

in order to execute each of the branches at most once even in the face of a nested

Signal-Unlock running in an exception handler.

Write-side Although PP-RCU employs the same callback batching and dis-

patching mechanism as A-RCU and implements Rcu-Synchronize in terms of

Rcu-Call, we list the pseudocode for Rcu-Synchronize as if all the steps

were invoked in place and not in a detector thread. We hope to highlight PP-

RCU’s algorithmic differences from Podzimek’s RCU and reduce duplication with

A-RCU.

Rcu-Synchronize increments the grace period number cur -gp to start a new

grace period. Incrementing cur -gp instructs readers to note a proper quiescent

state with a memory barrier in Record-QS.

Next, line 8 gives CPUs some time to pass through a quiescent state1 before

proceeding to sample CPUs with interprocessor interrupts. Lines 10-12 interrupt

1 And also to batch callbacks in the actual implementation.

38



those CPUs which may yet have to pass a quiescent state as viewed from Rcu-

Synchronize’s detecting thread.

Rcu-Synchronize

1 // Separates prior changes of shared variables from new grace period.

2 Memory-Barrier

3 with mutex locked

4 // Start new grace period

5 with gp-lock locked

6 cur -gp++

7 move next-preempted to cur -preempted

8 Sleep(10 ms)

9 // Request CPUs without a q.s. to notify us when they reach one.

10 for each cpu

11 if ¬cpu .idle and cpu . last-seen-gp 6= cur -gp

12 Sample cpu with an IPI

13 // Wait for CPU delaying the g.p. to pass a q.s.

14 remaining-readers .Semaphore-Down(delaying-cpu-cnt)

15 // Wait for preempted readers holding up the g.p.

16 with preempt-lock locked

17 // Preempted readers delaying the current g.p. exist

18 if cur -preempted 6= ∅
19 preempted -delaying-gp = True

20 if cur -preempted was nonempty

21 remaining-readers .Semaphore-Down

The interrupt handler IPI-Handler runs on the interrupted CPU. Therefore,

it does not have to rely on cache coherence to determine whether the CPU has

reached a quiescent state. The IPI handlers enter a quiescent state on line 6 if

the CPU is not in a reader section. Otherwise, the handler instructs its CPU

to notify Rcu-Synchronize of a quiescent state as soon as possible, e.g. from

Signal-Unlock right after the reader exits the critical section. In addition, the

handlers determine the number of the CPUs that are delaying the grace period.

When the IPI handlers return, Rcu-Synchronize waits for the CPUs that

have yet to reach a quiescent state to pass one with line 14. After all CPUs have

recorded a quiescent state, lines 15-21 follow A-RCU’s protocol of waiting for the

last preempted reader holding up the current grace period to exit.

39



IPI-Handler

1 if cpu . last-seen-gp 6= cur -gp

2 if 0 < thread .nesting-cnt

3 cpu .is-delaying-gp = true

4 Atomic-Inc(delaying-cpu-cnt)

5 else

6 Record-QS

When a reader section is preempted for the first time Context-Switch adds

its thread to the relevant list of preempted readers copying A-RCU’s approach.

Once the preempted reader has been noted globally, the CPU may record a

quiescent state because it is no longer running any readers. Lastly, Context-

Switch notifies any Rcu-Synchronize waiting on line 14 via a semaphore that

it had passed through a quiescent state.

Context-Switch

1 if 0 < thread .nesting-cnt and ¬thread .was-preempted

2 thread .was-preempted = true

3 Place in appropriate preempted reader list, i.e.

4 lines 3-7 of A-RCU’s Context-Switch

5 Record-QS

6 if cpu .is-delaying-gp

7 cpu .is-delaying-gp = false

8 remaining-readers .Semaphore-Up

Assessment

Advantages:

� Reader sections may be preempted.

� Functions in interrupt and exception handlers.

� Clearly separated from the rest of the system; no need to instrument ex-

ception and interrupt handlers.

� RCU processing is contained in dedicated threads which simplifies keeping

track of the cost of RCU when both detecting grace periods and running

callbacks.

Disadvantages:

� Increases reader section compared overhead to Podzimek’s RCU with one

additional if statement and an Enable-Preemption and Disable-Preemption

pair.

40



4.4 User space RCU

The implemented user space RCU in HelenOS is a variant of Signal URCU. The

implemented algorithm is modified in three ways.

Firstly, it does not signal each thread of the process in order to issue a mem-

ory barrier in the thread on demand. Instead, we introduced a new syscall that

issues memory barriers on CPUs that are running threads of the current process.

As a result, the algorithm does not require the system to schedule and run every

thread of the process just to detect a grace period. Moreover, the syscall is im-

plemented in terms of interprocessor interrupts which are arguably less intrusive

than switching contexts to the desired threads and entering user space.

Secondly, the algorithm is further modified to require a single instead of two

reader group changes per grace period. Signal URCU flips the reader group and

waits for readers of the previous group twice in succession in order to wait for

new readers that were delayed and mistakenly associated with the previous reader

group. If Signal URCU did not flip the reader group twice the following Rcu-

Synchronize could find the now new reader group non-empty and it would

incorrectly avoid waiting for readers in that group. The modified algorithm en-

sures that the new reader group is always empty by explicitly waiting for it to

become empty first, which is an idea adopted from Sleepable RCU. Only then does

it flip the reader group and wait for preexisting readers of the old reader group.

Because the misassociation of readers is expected to be a rare event, waiting for

the new reader group to become empty will almost always end immediatelly.

Thirdly, we introduced the ability for Rcu-Synchronize to exit early with-

out starting a new grace period if a grace period already elapsed while the function

was waiting to acquire the algorithm’s global mutex in order to intiate a new grace

period.

Pseudo code

HelenOS runs user mode code in threads scheduled in user space, so called fibrils,

that execute on top of the kernel provided threads. Therefore, the implemented

algorithm tracks individual fibrils instead of threads.

Read-side The algorithm’s read-side is the same as in Signal URCU but we

include it here again for completeness.

41



Rcu-Read-Lock

1 if fibril .nesting-cnt == 0

2 atomically assign packed in a single word:

3 fibril .nesting-cnt = 1

4 fibril .reader -group = cur -reader -group

5 Compiler-Barrier // L

6 else

7 fibril .nesting-cnt++

Rcu-Read-Unlock

1 Compiler-Barrier // U

2 fibril .nesting-cnt−−

Write-side Simultaneous invocations of Rcu-Synchronize are synchronized

with a global mutex. The function first checks on line 6 whether a complete grace

period elapsed while it was waiting to acquire the mutex. If not it increments the

current grace period number, cur -gp, and starts a new grace period.

Rcu-Synchronize

1 // Contain following load of cur -gp outside of mutex

2 Memory-Barrier // E

3 gp-in-progress = cur -gp

4 with mutex locked

5 completed -gp = cur -gp

6 if completed -gp > gp-in-progress

7 return

8 cur -gp++

9 Memory-Barrier // S

10 // Make the most current nesting-cnt visible to this CPU.

11 Force-MB-In-Threads // F-L

12 Memory-Barrier // A-F-L

13 delayed -reader -grp = ¬cur -reader -group

14 Wait-For-Readers(delayed -reader -grp)

15 Memory-Barrier

16 cur -reader -group = ¬cur -reader -group

17 Memory-Barrier

18 preex -reader -grp = ¬cur -reader -group

19 Wait-For-Readers(preex -reader -grp)

20 Force-MB-In-Threads // F-U

42



Following Signal URCU’s example, Force-MB-In-Threads on line 11 forces

memory barriers in other threads of the process. On the one hand, if the forced

memory barriers are issued inside a reader section, i.e. between compiler bar-

riers L and U , they pair up with A-F -L and make the positive nesting count

visible to Rcu-Synchronize. On the other hand, if the barriers are issued

outside of a reader section, F -L pairs up with S and makes changes prior to

Rcu-Synchronize visible in future readers of such a thread and, therefore, also

its fibrils.

Next, on line 13 the function waits for those readers to complete which have

been mistakenly associated with the non-current reader group as discussed in

section 3.2 and section 3.6. Only then can Rcu-Synchronize flip the current

reader group to separate preexisting from new readers and proceed to wait for

the preexisting readers with Wait-For-Readers on line 18.

The function separates the change of the current reader group from Wait-

For-Readers with memory barriers in order not to intermingle the write of

cur -reader -group with waiting for readers. However, the memory barriers sur-

rounding the group update do not guarantee that new readers will immediately see

the update. Until the readers encounter a memory barrier or a context switch it is

up to cache coherence protocols to gradually make the updated cur -reader -group

visible on all CPUs. As a result, new readers may still associate with the preex-

isting readers group even after the group flip. The situation is, however, benign.

In the worst case Wait-For-Readers will also wait for some of the new readers

to complete.

Finally, Rcu-Synchronize contains any late memory references of preexist-

ing readers’ critical sections with line 20. Then, it unlocks its mutex and the

grace period ends. Another Rcu-Synchronize that has waited for the global

mutex on line 4 during this grace period can now start.

When a grace period ends, another Rcu-Synchronize blocked waiting on

line 4 acquires the global mutex. Right after aquiring the mutex cur -gp repre-

sents the number of the most recently completed grace period, completed -gp. If

that number is greater than gp-in-progress , i.e. the number of the grace period

that was in progress when this Rcu-Synchronize started waiting for the global

mutex, a full grace period must have elapsed while waiting for the mutex. In

turn, the function exits early without initiating another grace period.

Although gp-in-progress reads cur -gp without any locking memory barrier E

guarantees that exiting early is safe. In other words, Rcu-Synchronize exits

via line 7 only if an entire grace period elapsed since we started waiting for the

mutex and all prior changes propagated properly. Consider two executions of

Rcu-Synchronize, A and B, possibly running in parallel. A reaches line 4 first

43



and successfully acquires the mutex whereas B gets blocked. If B is invoked when

A’s grace period is already in progress B’s memory barrier E happens after the

most recent S issued by A. Therefore, gp-in-progress reflects the most recently

incremented cur -gp. When B locks the mutex, completed -gp will be equal to

gp-in-progress and it initiates another grace period instead of exiting early.

However, if A’s barrier S happens after B’s E , E will pair up with A’s F -L

and propagate B’s changes to all the new readers of the grace period that A

has just initiated. As a result, B does not have to wait for another full grace

period and it may exit immediately when A’s grace period ends. In this case,

B’s gp-in-progress most likely does not include A’s increment of cur -gp. When B

finally acquires the mutex it will determine that gp-in-progress is less than cur -gp

and exit early as desired.

Force-MB-In-Threads

1 Issue memory barriers on CPUs with threads of this process via a syscall.

Wait-For-Readers(preex -reader -grp)

1 for each fibril fib

2 while fib .Is-Preexisting-Reader(preex -reader -group)

3 Sleep(10 ms)

Is-Preexisting-Reader(preex -reader -grp)

1 return 0 < fibril .nesting-cnt

2 and fibril .reader -group == preex -reader -grp

Assessment

Advantages:

� Light-weight read-side critical sections.

Disadvantages might include:

� Required the introduction of a new syscall.

44



Chapter 5

Use of RCU in HelenOS

We demonstrate the use of RCU in two different roles – first to improve scalability,

second as a waiting mechanism.

First, we introduce a novel concurrent hash table based on RCU. We incor-

porate the hash table in the kernel futex subsystem to increase its scalability.

Next, we illustrate how to wait for the completion of multiple tasks in a light-

weight manner with RCU. We apply the technique to user space futex locking

and decrease the locking’s impact on performance in singlethreaded applications.

5.1 Resizable concurrent hash table

Instead of applying RCU to a single existing HelenOS subsystem we designed a

high performance RCU concurrent hash table that may be employed throughout

the system. What is more, the microkernel already makes use of a simple non-

resizable hash table that is accessed concurrently e.g. in the futex subsytem or

as a global page hash table and is, therefore, a canditate to be replaced with a

more sophisticated design.

In order for the new concurrent hash table to be useful even in existing con-

texts, it must meet a number of requirements:

� It must be resizable and grow and shrink with the number of elements in

the table.

� It must tolerate interrupts and non-maskable interrupts, e.g. for the hash

table to potentially serve as a global page hash table.

� It should allow concurrent reads ideally with low overhead.

� Preferably, it should allow concurrent inserts and deletes.

45



5.1.1 Existing concurrent hash tables

The implemented RCU concurrent hash table, or CHT for short, combines original

protocols with techniques and algorithms from previous hash tables. The relevant

existing hash tables are described in short for comparison and reference.

Java ConcurrentHashMap

Lea’s Java ConcurrentHashMap [11] is a variation on stripped locking [6]. The

table is partitioned into a small number of independent segments of linked lists.

Each segment is protected by a lock that prevents concurrent updates or resizing

of the segment. Readers never block but traversing a collision chain requires at

least one memory barrier per node. Furthermore, resizing a segment involves

copying certain nodes of the linked lists and relies on garbage collection to ensure

readers always access valid nodes in a bucket list.

Advantages:

� Readers never block and search the table in parallel

� Resizable

Disadvantages:

� Inserts and deletes into the same segment block

� Resizing blocks all updates of a segment until completed

� Reader overhead of one memory barrier per node of a bucket list

� Relies heavily on garbage collection

� Only grows, never shrinks

Michael’s hash table

Michael introduced the first practical lock-free1 single linked list [26] in 2002. He

then built a simple nonresizable hash table with lock-free bucket lists.

Elements in a lock-free list are kept in a fixed order, e.g. sorted by their hash.

The essential idea of Michael’s lists is that a node is first marked as deleted before

it can be unlinked from the list. As a result, it is always safe to insert a new node

after a node that is not marked as deleted or to unlink the successor of such a

1 A data structure is lock-free if one of the many threads attempting to perform an operation
is guaranteed to complete the operation in a finate number of steps. This is a stronger guarantee
than that which is provided by locks. See section 3.7 of [6]

46



node. What is more, checking if a node is marked as deleted and changing its next

pointer if it is not deleted can be performed atomically with a compare-and-swap

operation and leads to a lock-free design.

Michael ensures that traversed nodes remain valid with hazaard pointers

[27, 28]. Therefore, list traversals incur a cost of at least one memory barrier

per node.

Advantages:

� Lock-free table lookups, inserts and deletes

Disadvantages:

� Nonresizable

� Reader overhead of at least one memory barrier per node of a bucket list

due to hazard pointers

Click’s hash table

Click proposes a completely lock-free resizable hash table [2, 3] in Java that

resolves collisions with linear open addressing. Instead of searching and modifying

a linked list upon a collision it probes successive cells of the table.

The core of Click’s hash table is a lock-free protocol to move a word from

one table to another in the presence of concurrent modifications of the word. To

move a value V from A to B:

1. B has to be initialized to an invalid value Vinvalid before the protocol can be

applied.

2. A is atomically marked as immutable2 if it still contains the value V with

a Compare-And-Swap(A, V , V ∪ Immutable). Any delayed concurrent

updaters will detect that the word is being moved with a failing

Compare-And-Swap(A, V , Vnew)

3. Next, we can save V in B by means of Compare-And-Swap(B, Vinvalid,

V ) which guarantees that we do not accidentally overwrite B’s content in

case another thread completed the move in the meantime and has already

updated B to a new value.

2 The flag must be part of the word containing the moved value. As a result, the domain
of values the word may contain must be smaller than number of values the word can actually
store. For example, if the word stores a pointer the flag may be saved in the least significant
bit as it is always zero for memory allocators available in practice.

47



4. Finally, we signal that the word has been moved successfully with a

Compare-And-Swap(A, V ∪ Immutable, Vinvalid ∪ Immutable).

Once the protocol starts the value in A will remain to differ from its original

value V. Therefore, an updater can always detect that a word it wishes to modify

is being moved. Moreover any thread can easily complete moving of a word on

behalf of others at any step of the algorithm.

Advantages:

� Resizable

� Lock-free lookups, inserts, removals and even resize

Disadvantages:

� A cost of at least one memory barrier per visited node

� Linear probing tends to build longer strides of taken cells

� Relies heavily on garbage collection

� Only grows, never shrinks

Split-ordered hash table

Split ordered hash table [31] stores all elements in a single lock-free Michael’s

list. Nodes of the list are sorted so that elements belonging to the same bucket

are grouped together. Therefore, buckets are represented as groups of elements

in the single list and table pointers serve to quickly locate the first element of a

bucket in the list.

What is more, nodes are sorted in a way that guarantees elements do not have

to be moved when the table grows and each bucket has to be split into two. In

particular, the elements are sorted by the reverse of their hash and the bottom

k bits of the hash indicate the bucket where the element resides in a table with

size 2k. As a result of the chosen ordering of nodes in the list, when a bucket

needs to be split elements of the two new buckets are already stored in separate

groups in the list Moreover, nodes of the new bucket with the smaller ordinal

number immediately precede the nodes of the other new bucket. Therefore, when

the table grows it does not have to move any elements and it just adds an entry

to the table pointing to the first node of the other new bucket.

Advantages:

48



� Lock-free lookups, inserts, deletes and resize

� Incremental gradual resize

Disadvantages:

� Overhead of multiple memory barriers in addition to at least one memory

barrier per traversed node

� Space overhead of one dummy node at the beginning of each bucket that

can never be freed

� Extra indirection when accessing elements due to a 2-level main table and

dummy nodes

� Only grows, never shrinks

Relativistic hash table

Triplett et al. built a resizable hash table based on RCU [33] which handles

hash collisions with a separate RCU protected list per bucket. RCU reader sec-

tions enclose list traversals and updaters publish list modifications via Rcu-

Synchronize. What is more, Rcu-Synchronize separates bucket node re-

movals from the nodes’ destruction. Consequently, RCU defers freeing of nodes

until all list traversals involving the node have completed and noone can access

the node. As a result, table lookups are fast and are guaranteed to access only

valid nodes without having to resort to locking, explicit tracking of valid nodes

with e.g. hazard pointers, or issuing memory barriers.

Furthermore, the hashing scheme ensures that when the table grows elements

of a bucket in the old table are divided between exactly two buckets of the new

larger table. Both of the buckets of the new larger table initially point to the same

original bucket containing elements of both new buckets. Next, a background re-

sizing thread adjusts the next pointer of the first element of the first new bucket

to skip any following elements of the other new bucket and point directly to the

second element of the first new bucket. The process is repeated one node of the

original bucket at a time until the bucket is unzipped into two.

Advantages:

� Near zero overhead of lookups even when resizing because readers never

synchronize and need not issue memory barriers

� Resizable, grows and shrinks

49



Disadvantages:

� Inserts and deletes synchronize by means of locks; therefore, block

� All updates are blocked until a resize completes

� Resize requires a number of grace periods to elapse which results in a longer

time to completely resize the table

5.1.2 Implemented concurrent hash table

The implemented concurrent hash table in HelenOS, CHT, has a structure similar

to Triplett’s relativistic hash table. CHT also resolves hash collisions with sepa-

rate RCU protected bucket lists. Moreover, CHT too defers freeing list nodes by

means of RCU, namely Rcu-Call. Therefore, walking the lists in RCU reader

sections guarantees that any nodes reachable by following the next pointers are

valid.

Quite unlike Triplett’s hash table, CHT organizes its bucket lists as Michael’s

lock-free lists. What is more, CHT’s lock-free lists do not require hazard pointers

because RCU already ensures nodes remain valid for as long as they might be

accessed3. Therefore, CHT’s lock-free lists do not incur the cost of issuing at

least one memory barrier per visited node.

The combination of RCU with lock-free buckets results in near zero overhead

concurrent lookups all the while allowing concurrent modifications of the table.

In addition, the table tolerates nested concurrent modifications from interrupt

and exception handlers due to the lock-free property of its buckets.

Resizing algorithm In short the table resizes in three main steps. Firstly, it

moves pointers to the first nodes of buckets, or simply bucket heads, to a new

bucket head array. Next, CHT splits or joins the buckets of the new array so that

the table can make use of the extra bucket head slots in the new array. Lastly,

the new array replaces the original bucket array.

CHT grows or shrinks by a factor of two. Because it assigns buckets to

elements based on the top k bits of their hash, when the table grows each bucket

is split into two buckets and all elements of the two new buckets come from a

single bucket in the original table. Furthermore, bucket nodes are sorted by their

elements’ hashes much like nodes of a split ordered hash table. While elements at

3 RCU also prevents the ABA problem (section 10.6 of [6]) when an atomic compare and
swap of a pointer fails to notice a change of the pointer and mistakenly succeeds. Consider this
scenario: the pointer is first updated from A to B; next, the object at A is freed; finally a new
object at A is constructed and the pointer is set to point to A again although it represents a
different object.

50



the beginning of the original bucket fall into the first new bucket the remaining

elements will end up in the second new bucket. Therefore, there is a single link

where to split the original linked list into two correctly sorted linked lists of the

new buckets.

With a single split point CHT can resize the table in parallel with lookups and

lock-free updates also in a lock-free manner. A single background thread guides

resizing of the table. However, if an updater detects that the bucket it is about

to access is resizing, i.e. its head is moving or it is waiting to be split or joined,

the updater steps in and completes the head move or bucket split on behalf of

the resizing thread.

In particular, the background resizing thread increases the size of the table as

follows:

1. First, the resizer allocates a new bucket head array that is twice the size

of the original one. Next, it marks the bucket heads as invalid as Click’s

lock-free move protocol requires. Then, it waits for a grace period to elapse

to ensure all updaters see the array properly initialized.

2. Second, the resizer moves the bucket heads from the original array to the

new array with Click’s lock-free protocol. The original bucket heads remain

marked as immutable. In addition, owing to the selected ordering of list

nodes elements at the beginning of the moved list are exactly the elements

that should be stored at the new bucket head. The rest of the list contains

elements that still have to be linked to the new additional bucket head in

the second half of the array, which remains marked as invalid.

3. Third, CHT splits the buckets in the new array. It attaches the first node

that does not belong in the new bucket, F, to the correct new additional

bucket head. Then, CHT severs the link between F and the node immedi-

ately preceeding it, L, to complete splitting of the bucket. L is also the last

node that should be stored at the new bucket head. In greater detail:

(a) The resizer marks L as join follows similarly to how Michael marks

nodes of lock-free lists as deleted. Marking a node as join follows

ensures that updaters unaware that the table is resizing do not succeed

in inserting new nodes between L and F. What is more, it guarantees

that such updaters unlink neither L nor F.

(b) Next, the table marks F as join node.

(c) Then, CHT points the correct bucket head, which is still marked in-

valid, to F. Because L also links to F, F is now part of two buckets

51



and cannot be unlinked atomically from both lists. However, F is a

join node which indicates the node may only be marked deleted but

must not be unlinked.

(d) The resizer waits one grace period for all updaters to see that all new

bucket heads are valid. Therefore, future updaters will not retry steps

(a)-(c) in order to split a bucket on behalf of the resizer. Consequently,

the resizer can safely unlink F from L and also atomically remove L’s

mark join follows.

(e) Another grace period makes it visible that the link between L and F

has been broken. As a result, F is no longer part of two lists and its

join node label is removed.

4. Next, the resizer initiates another grace period to make all participants

aware that the table is now free of any node follows or join node marks.

5. Last, the resizer replaces the old bucket head array with the new one and

publishes the change with a Rcu-Synchronize. Finally, the old bucket

head array may be freed.

The table shrinks with a similar protocol.

Assessment

Advantages:

� Near zero overhead of lookups even when resizing because readers never

synchronize and need not issue memory barriers

� Resizable, grows and shrinks

� Inserts and deletes are lock-free even in the face of a resize

� No space overhead of additional dummy nodes or multi-level main table

Disadvantages:

� Resize requires four grace periods to elapse which results in a longer time

to completely resize the table

� Algorithm complexity

52



Technical details The actual implementation extends the algorithmic descrip-

tion above with a number of practical improvements. Firstly, CHT handles in-

sertions of multiple equivalent items. Secondly, the table memoizes hashes and

terminates buckets with a single global sentinel node to further improve perfor-

mance. Thirdly, user generated hashes are mixed to guard against hashes not

suitable for a power of two table. Lastly, the table manages to encode six differ-

ent marks of the next pointer into the four values available in the two lower order

bits of the pointers, namely deleted, join follows, join node, invalid, immutable

and normal.

5.1.3 Improving futex subsystem scalability

The original futex kernel subsystem employed a single hash table protected with

a global passive mutex. The kernel made use of the table to look up a kernel

object that is associated with the futex and is necessary to perform operations

on the futex.

In order to improve the subsystem’s scalability, we modified the implementa-

tion to instead use CHT. Therefore, the global passive mutex no longer represents

a performance bottleneck when operating on distinct futexes.

5.2 Upgradable user space futexes

5.2.1 Futexes in singlethreaded programs

HelenOS runs user space code in fibrils which are threads implemented entirely in

user space. The user space library, libc, schedules fibrils cooperatively on top of

ordinary kernel-level threads. For example, whenever a program calls printf()

the fibril manager in libc may schedule a different fibril to run in the current

kernel-level thread.

While HelenOS4 supports concurrent execution in user space with both fibrils

and threads the existing user space servers and programs are predominantly sin-

glethreaded. Only two5 user space drivers add new threads via thread create()

and only a limited number6 of user space programs create additional fibrils ex-

plicitly via fibril create().

However fibrils are allowed to execute on top of multiple threads. As a result,

fibril synchronization as well as entering the fibril manager involve futexes to

4As of version 0.5.0; in particular revision r1723
5Keyboard drivers for Ski and Niagara
6Applications kbd, nterm, trace, vuhid, klog, ping; drivers xtkbd, ps2mouse, usb stack;

servers devman, remcons, isdv4 tablet, networking stack

53



ensure thread-safety in future multithreaded programs. Nonetheless, the use of

futexes introduces unnecessary overhead to singlethreaded programs in terms of

memory barriers and atomic instructions.

1 void f i b r i l a d d r e a d y ( f i d t f i d )

2 {
3 f i b r i l t * f i b r i l = ( f i b r i l t *) f i d ;

4 f u t e x l o c k (& f i b r i l f u t e x ) ;

5 i f ( ( f i b r i l −>f l a g s & FIBRIL SERIALIZED ) )

6 l i s t a p p e n d (& f i b r i l −>l i nk , &s e r i a l i z e d l i s t ) ;

7 else

8 l i s t a p p e n d (& f i b r i l −>l i nk , &r e a d y l i s t ) ;

9 fu t ex un lo ck (& f i b r i l f u t e x ) ;

10 }

For example, the function fibril add ready() protects its internal struc-

tures with a futex as it notifies the fibril manager that a fibril is ready to be

scheduled. The function does not enter the fibril manager with an acquired futex

and, therefore, cannot be switched with another fibril. As a result, accessing the

internal data is atomic in singlethreaded programs even without the use of the

futex. What is more, the function unlocks the futex before it allows the fibril to

enter the fibril manager and switch to a different fibril. As a consequence, any

fibril in the singlethreaded program will always find the futex unlocked.

In general whenever futexes are employed with mutex semantics in singlethreaded

programs the futexes may be removed. Given that all fibrils run in a single thread

they must always find each futex unlocked. Otherwise the fibril attempting to

acquire a locked futex would block the single thread. Because the program would

have no more runnable threads it would not be able to schedule the fibril holding

the futex to run and unlock the futex. Consequently, the entire application would

come to a halt.

Ideally, only multithreaded programs would include futexes with mutex se-

mantics and singlethreaded programs would utilize an empty futex implementa-

tion in order to minimize overhead.

5.2.2 RCU as a waiting mechanism in libc

We exploited that if libc is deadlock free in singlethreaded programs it always

finds futexes unlocked even when running with multiple fibrils. We modified

libc to start programs with an empty futex implementation. Only once the first

additional thread is created the futex implementation is switched dynamically

to the thread-safe original version. However before the new thread can run all

54



critical sections protected with the empty futex implementation must first exit.

RCU allows us to cheaply wait for all existing futex critical sections to exit and

to instruct future critical sections to make use of the thread-safe futex version.

Locking and unlocking upgradable futexes The functions Futex-Lock

and Futex-Unlock illustrate how to choose between a thread-safe and an empty

futex implementation in a light weight manner.

Futex-Lock(futex)

1 Rcu-Read-Lock

2 futex .upgraded = Rcu-Access(use-thread -safe-futexes)

3 if futex .upgraded

4 Futex-Down(futex )

Futex-Unlock(futex)

1 if futex .upgraded

2 Futex-Up(futex )

3 Rcu-Read-Unlock

The functions enclose the entire futex critical section in an RCU reader section.

Futex-Lock first reads the global RCU protected variable use-thread -safe-futexes

to decide if it should fall back on the thread-safe version represented by the call

to Futex-Down. Furthermore, it notes in futex .upgraded on line 2 how the

futex was locked so that Futex-Unlock can do the inverse.

When a program starts use-thread -safe-futexes is set to false and locking and

unlocking a futex is equivalent to entering and exiting an RCU reader section and

evaluating two if statements. On the other hand, the reader section and the two

branches represent an additional overhead introduced to multithreaded programs

that previously invoked the thread-safe Futex-Down and Futex-Up directly.

Section 6.7 shows that the additional overhead results in a 15% performance

penalty in multithreaded programs whereas the change speeds up futex locking

2.6 times in the more common singlethreaded case.

Waiting for locks to upgrade Before the thread entry function Thread-

Entry executes the user supplied thread function it waits for Upgrade-All-

Futexes-And-Wait to upgrade all futexes to a thread-safe version.

Thread-Entry

1 // ... fibril and thread setup

2 Upgrade-All-Futexes-And-Wait

3 // Run the desired thread function

55



Upgrade-All-Futexes-And-Wait

1 Futex-Down(upgrade-and -wait-futex )

2 if ¬use-thread -safe-futexes

3 Rcu-Assign(use-thread -safe-futexes , true)

4 Rcu-Synchronize

5 Futex-Up(upgrade-and -wait-futex )

Upgrade-All-Futexes-And-Wait first checks if futexes have already been

upgraded on line 2. Next, it instructs Futex-Lock to start using a thread-safe

implementation on line 3. Due to futex critical sections being enclosed in RCU

reader sections, Rcu-Synchronize waits for all existing critical sections that

may have been using an empty futex implementation to exit. Moreover, line 4

publishes the assignment to use-thread -safe-futexes on line 3 to future RCU read-

ers and, therefore, ensures all future calls to Futex-Lock see the assignment

and switch to the thread-safe version.

What is more, the function protects use-thread -safe-futexes from simultaneous

access from multiple threads that are starting up with an always thread-safe futex

upgrade-and -wait-futex .

Technical details HelenOS libc exposes futex variables with semaphore se-

mantics via futex down() and futex up(). We extended the futex libc interface

with futex lock() and futex unlock(). These functions make it explicit that

mutex semantics apply to a given futex. In particular, the futex must be unlocked

in the same fibril where it was locked. In addition, a futex unlock() may never

precede a futex lock().

Whereas futex lock() and futex unlock() implement upgradable futexes

futex down() and futex up() retained their original properties.

The following futexes in libc were converted to upgradable futexes:

� fibril futex in uspace/lib/c/generic/fibril.c

� ipc futex in uspace/lib/c/generic/ipc.c

� malloc futex uspace/lib/c/generic/malloc.c

The futexes listed below, however, could not be converted because they unlock

the futex from a different fibril:

� async futex in uspace/lib/c/generic/async.c

56



Chapter 6

Evaluation

The proposed RCU algorithms as well as their use were evaluated experimen-

tally. Section 6.1 details the methodology of running the experiments and the

hardware setup used. First, section 6.2 focuses on the scalability of the each

of the implemented RCU algorithms’ read-side. Second, section 6.3 examines

RCU’s write-side overhead and compares it with the overhead introduced by a

spinlock. Third, section 6.4 and section 6.5 compare the performance of our novel

RCU based concurrent hash table to a traditional scalable lock based hash table.

Next, section 6.6 evaluates the scalability of the original and the RCU improved

futex kernel subsystem Last, section 6.7 contrasts the performance of upgrad-

able futexes with plain thread-safe futexes in a singlethreaded and multithreaded

setting.

6.1 Methodology

The algorithms were benchmarked on a computer with an Intel Core i7 920 2.67

GHz processor that includes four physical cores each with two hyper-threading

logical cores.

All benchmarks were run for at least ten seconds. Moreover each benchmark

was repeated twenty times after five initial warm-up runs. Unless noted otherwise,

the graphs that follow include error bars at a distance of one standard deviation

from the mean1. However, the variance of the measured runs was negligible and,

therefore, the error bars are not visible in the graphs with the naked eye.

What is more, the system was rebooted as rarely as possible in order to

mitigate the effects of slightly different clock tick calibration. In fact the system

was only rebooted if the next series of benchmarks required recompilation of the

source codes.

1The standard deviation of the underlying distribution (not the deviation of the mean) was
estimated with an unbiased sample standard deviation.

57



In order to measure RCU’s read-side scalability and write-side’s overhead we

simulated situations where operations are short and frequent but still require

synchronization, e.g. searching a routing table. In such settings synchroniza-

tion contributes noticeably to the operations running time. We chose protecting

traversals of a five element list as a representative workload. While walking the

entire list is quick it is already an example of a real world workload which is

similar to searching a rather long hash table bucket. Furthermore, if we were

to measure performance with a long critical section the length of the critical

section alone would dominate the cost of the operation independent of the used

synchronization mechanism and hide the performance characteristics in question.

Moreover we compared RCU to spinlocks and not reader-writer locks because

for shorter critical sections spinlocks outperform reader-writer locks, see [4, 13]

and section 2.2.8 of [12]. Reader-writer locks are best suited for longer critical

sections where the primary cost of synchronization is due to contention and not

cache misses on the lock variables. In addition, HelenOS does not provide a

performant implementation of reader-writer locks.

Next, although HelenOS offers passive mutexes we opted for spinlocks. The

implementation of spinlocks consistently outperformed passive mutexes by a large

margin in every test we tried.

Lastly, all benchmarks but one were limited to a maximum of four cores to

avoid skewing results with hyper-threading.

6.2 Read-side scalability

We used a five element linked list to benchmark the scalability of RCU read-side

critical sections. The same list was traversed in a tight loop by up to four CPU

bound threads. Although the list was not modified during the benchmark, each

list traversal was protected in a reader section or a spinlock for comparison.

Figure 6.1 shows that both A-RCU and the preemptible version of Podzimek’s

RCU scale linearly. While both algorithm implementations demonstrate optimal

linear scaling to more processors A-RCU fares better than PP-RCU. A-RCU

achieves 74% and PP-RCU 37% of the ideal number of list traversals, i.e. when

no synchronization is used whatsoever.

What is more, A-RCU introduces significantly lower overhead compared to

an uncontended spinlock. Even when running in a single thread, A-RCU allows

2.6 times more operations to complete that an uncontended spinlock.

Finally, enclosing list traversals in a spinlock protected critical section dis-

plays negative scaling. As expected, the loss of parallelism and the extensive

interprocessor communication severely degrade performance and the more pro-

58



 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 1.2e+09

 0  1  2  3  4  5

Li
st

 tr
av

er
sa

ls
 / 

se
co

nd

Threads

ideal
a-rcu

podzimek-rcu
spinlock

Figure 6.1: The graph shows the scalability of RCU read-side critical sections.
y-axis indicates the total number of traversals of a five element list with respect
to the number of threads walking the same list in parallel. Nothing, A-RCU,
PP-RCU and a spinlock protect each traversal respectively although the list is
only read and never modified. ideal represents walking the list without any
synchronization whatsoever.

cessors were involved in the benchmark the less total number of operations was

completed in a second.

6.3 Write-side overhead

RCU provides facilities to efficiently publish new versions of RCU protected data

but it does not deal with coordination of updaters themselves. Updaters typically

employ traditional locking to avoid data structure corruption from concurrent

modifications. In order to measure the overhead introduced by RCU’s grace

period detection on top of the synchronization between updaters, we compared

the performance of a spinlock protected list with a list where only updates were

synchronized with a spinlock and reading the list involved only an RCU reader

section.

Again we used a five element list. Updates of the list consisted of replacing

the first element with a new one. Each thread had its own list of preallocated

free elements; therefore, allocating a new element did not require any locking and

did not involve malloc().

Figure 6.2 depicts the total number of completed operations in four threads

as the fraction of updates on the total number of operations varies. For read

mostly data RCU’s light weight and scalable reader sections clearly outweigh

59



 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 3e+08

 3.5e+08

 4e+08

 4.5e+08

 5e+08

 0  10  20  40  60  80  100

O
pe

ra
tio

ns
 / 

se
co

nd

% of updates

a-rcu + spinlock
podzimek-rcu + spinlock

spinlock

Figure 6.2: The figure illustrates RCU write-side overhead with the total num-
ber of operations performed on a five element list from four threads running in
parallel with respect to the fraction of updates. a-rcu + spinlock and podzimek-
rcu + spinlock guard walking the list with A-RCU and PP-RCU respectively but
coordinate updates with a single spinlock. spinlock test runs access the list with
an acquired spinlock when both reading and updating the list.

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 5  10  20  40  60  80  100

O
pe

ra
tio

ns
 / 

se
co

nd

% of updates

a-rcu + spinlock
podzimek-rcu + spinlock

spinlock

Figure 6.3: This figure details the point when the speed of RCU read-sides no
longer outweighs RCU write-side overhead. It discards data points of figure 6.2
with low fraction of updates in order to make the crossover point visible.

60



 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 0  1  2  3  4  5

Lo
ok

up
s 

/ s
ec

on
d

Threads

cht/a-rcu
ht/bkt-locks
ht/spinlock

Figure 6.4: The figure illustrates hash table lookup scalability of CHT run
in conjunction with A-RCU, cht/a-rch, a hash table with a dedicated spinlock
per each bucket, ht/bkt-locks, and a hash table guarded by a single spinlock,
ht/spinlock.

the overhead of grace period detection. As the fraction of updates increases

performance quickly degrades.

Figure 6.3 shows that eventually the overhead incurred by grace period de-

tection is greater than the benefits of fast read-side sections. A-RCU again fares

better that PP-RCU and the crossover point for A-RCU and PP-RCU is 60%

and 40% of updates respectively.

6.4 Hash table lookup scalability

In this section we compare lookup scalability of our novel concurrent hash table

with ordinary spinlock guarded hash tables. The test consisted of searching for

keys in tables with an average load factor of four elements per bucket. Half

of the lookups were searching for keys present in the table; the other half was

for nonexistent keys. In addition, each thread searched for a separate group of

keys. Therefore, any contention was purely the result of protecting the tables’

internal structure in anticipation of updates and was not inherent in the lookup

pattern. Consequently, in the ideal case the hash tables should have introduced

no contention.

In particular, figure 6.4 compares:

cht/a-rcu CHT that uses 128 buckets and A-RCU. To index a bucket CHT first

mixes the bits of the user supplied hash and then takes the most significant

7 bits.

61



ht/bkt-locks A non-resizible hash table with 127 buckets which are each guarded

by a distinct spinlock. To index a bucket the table calculates the remainder

of the user supplied hash after division by the number of buckets.

ht/spinlock A hash table similar to ht/btk-locks that however guards the entire

table with a single spinlock.

Note that CHT was set up with a resize triggering load factor high enough for

CHT to never resize. However, CHT was still tracking the number of elements in

the table and still checking if it should resize – quite unlike the spinlock protected

tables that are not resizable and, therefore, do not need to track the number of

elements nor check if a resize is in order.

What is more, the hash tables use different hash functions. While CHT’s

design forces it to mix user supplied hashes to produce a good hash, spinlock

based hash tables divide user hashes by a prime number and use the remainder

as the final bucket index. This influences both the distribution of elements in

the buckets as well as the time to actually compute a hash. Keys were selected

to favor traditional hash tables which achieved an optimal element distribution,

i.e. exactly four element in each bucket. On the other hand, in CHT buckets

contained from 0 to 9 items. Furthermore, the hash mixing function employed

by CHT was approximately 10% slower than diving by a prime.

Figure 6.4 contrasts the reading scalability of the hash tables. As expected, the

naive approach to guarding a table with a single lock leads to negative scaling.

On the other hand, both CHT and the hash table with per bucket spinlocks

display near linear scaling. Nonetheless, CHT outperforms the spinlock based

table by 66% when accessing the table concurrently from four processors thanks

to fast RCU protected read-side code paths. Moreover CHT performs slightly

better than both spinlock based hash tables in the base case of running on a

single processor core.

The results show a larger performance increase in all hash tables tested when

adding a second processor to the benchmark than when adding a third processor.

We can only speculate about the source of the anomaly, especially because each

processor core has a dedicated L2 cache and can only share data via a single L3

cache.

6.5 Hash table update overhead

In order to evaluate the behavior of CHT in presence of concurrent updates we

let four CPU bound threads update the table with a varying probability and

compared the results with hash tables with per bucket spinlocks or a single table

62



 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 0  10  20  30  40  50  60  70  80

O
pe

ra
tio

ns
 / 

se
co

nd

% of updates

cht/a-rcu
ht/bkt-locks
ht/spinlock

Figure 6.5: The graph captures the gradual decline in performance of hash
tables with the increase in the fraction of concurrent updates. Four threads were
accessing the same table in parallel and the y-axis represents the total number
of operations completed. cht/a-rcu used CHT with A-RCU. ht/bkt-locks denotes
a hash table with a spinlock per each bucket and ht/spinlock is a hash table
protected with a single spinlock.

spinlock. When updating the table a thread selects a key from a universe of keys

that is twice as large as the desired number of elements in the table. If the key

already resides in the table the associated element is removed; otherwise a new

element with such a key is inserted. Threads keep track of inserted keys in thread

local bitmaps in order to quickly determine if a new key should be inserted or an

existing removed.

Having a universe of keys with twice the desired number of keys in the table

produces variantions in the number of elements in the table but leads to the tar-

getted average number of keys in the table throughout the run of the benchmark.

If more keys are stored in the table removals become more probable. Similarly,

as the element count drops below the targetted average inserts become more

prevalent.

The test setup si similar to the ones used before. Firstly, the benchmark

starts with a table with the desired average load. Secondly, each thread utilizes

a separate space of the universe of keys. Lastly, unlike in previous benchmarks

elements are not preallocated in order to model the effects of increased memory

consumption due to delays in memory reclamation by RCU.

Figure 6.5 shows that CHT significantly outperforms hash tables with per

bucket spinlocks in read mostly scenarios where the fraction of updates does not

exceed 10%. RCU grace period detection overhead as well as the complexity

63



 0

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 1.2e+08

 1.4e+08

 1.6e+08

 1.8e+08

 0  1  2  3  4  5  6  7  8  9

F
ut

ex
 o

ps
 / 

se
co

nd

Threads

cht cache
ht spinlock

Figure 6.6: The figure captures the scalability of the kernel futex subsystem.
The graph portaits the total number of futex syscalls completed in a tight loop
depending on the number of user space threads in use. cht cache is the new futex
subsystem that incorporates CHT while ht spinlock denotes the modified version
of the original futex subsystem that had passive mutexes replaced with spinlocks.

of CHT’s updates gradually lower its performance. At 20% updates CHT is no

different that a hash table with per bucket spinlocks.

6.6 Futex kernel subsystem performance

We also evaluated the scalability and performance of the futex kernel subsystem

based on CHT and compared it with the previous design. We varied the number

of user space threads that each invoked the futex syscalls in a tight loop. Each

of the threads operated on a different futex variable to avoid contention of the

benchmarking threads.

The original design employed passive mutexes to exclude concurrent accesses

of a single system global hash table of kernel futex objects. Unfortunately, the

subsystem performed abysmally in our benchmark and the number of syscalls

completed per second copied the x-axis. Consequently, we benchmarked a mod-

ified version of the original design where we replaced the passive mutexes with

spinlocks.

Figure 6.6 clearly shows that the previous locking scheme employed in the

futex kernel subsystem limited its scalability and performance. After adding

two processor cores the performance improves only marginally with additional

processors. For example, utilizing six more cores to a total of eight cores, i.e. an

increase of 300% in computing power, increases the total number of futex syscalls

64



Figure 6.7: This figure compares the performance of a light weight upgradable
futex with that of an ordinary futex in both a singlethreaded setting as well
as when used from two threads. The y-axis is the number of futex operations
executed in a single thread per second.

by only 82% over two processor cores.

On the other hand, not only does the CHT based futex backend demonstrate

linear scalability, it also improves single threaded performance of the subsystem.

Furthermore, the figure also includes a sudden performance bump when going

from one to two processors, which was already mentioned in section 6.4.

6.7 Libc futex performance

In order to gauge the performance benefits of light weight upgradable futexes,

one and two user space threads locked and unlocked distinct futexes in a loop.

Next, the experiment was repeated with ordinary futexes that always use atomic

instructions.

The number of operations completed per thread is depicted in figure 6.7.

Upgradable futexes offer 2.6 times the performance of ordinary futexes in the

singlethreaded case. In multithreaded programs light weight futexes are upgraded

to use atomic instruction just like ordinary futexes but have to check if a futex

was upgraded or not. The incurred additional overhead over ordinary futexes is

however only 15%.

6.8 Discussion of results

The benchmark results of this chapter clearly demonstrate that RCU was suc-

cessfully used to significantly improve scalability in HelenOS (section 6.6). What

is more, it markedly speeds up fibril locking in HelenOS’s singlethreaded user

space programs (section 6.7).

65



Moreover, section 6.2 and section 6.3 establish that the implemented RCU

algorithms exhibit the expected performance characteristics consistent with ex-

isting RCU algorithms [12].

Lastly, section 6.4 and section 6.5 prove that RCU allowed us to build a

concurrent hash table that dramatically outperforms the best lock based hash

table designs in read mostly situations.

66



Chapter 7

Summary

7.1 Conclusion

The primary goal of this thesis was to design and implement an RCU algorithm

suitable for the microkernel operating system HelenOS. Secondly, the thesis aimed

to explore some of the possible uses of RCU within HelenOS. Last but not least,

the thesis was to give an overview of the relevant RCU variants.

Firstly, we briefly described the semantics of RCU along with an example

usage.

Secondly, the thesis gave an extensive review of relevant RCU algorithms.

Reviews included pseudocode of the algorithms that exemplified their main ideas.

What is more, we highlighted the strengths and weaknesses of the individual RCU

variants.

Thirdly, we focused on designing RCU algorithms suitable for HelenOS and

implemented three RCU algorithms. One of the kernel algorithms, A-RCU, builds

on the ideas of previously existing user space RCU and exploits the kernel en-

vironment to provide a novel algorithm. Furthermore, the thesis extends the

non-preemptible Podzimek’s kernel RCU into a fully preemptible RCU with the

techniques developed for A-RCU. What is more, we combined the existing user

space Signal URCU algorithm with an idea introduced by the kernel Sleepable

RCU to shorten grace period detection duration in the common case and imple-

mented the resulting user space algorithm.

Fourthly, the thesis examined the potential uses of RCU in HelenOS and em-

ployed RCU both to increase scalability of the kernel as well as a cheap waiting

mechanism in user space. In addition, it mentions that RCU allowed us to in-

troduce a novel resizable concurrent lock-free hash table, CHT. CHT successfully

replaced the original kernel futex subsystem design which resulted in dramatic

67



scalability improvements and even reduced the subsystem’s singlethreaded base

cost. Moreover we note that HelenOS’s user space programs currently do not

utilize multithreading. As a result, they do not represent ideal candidates for

RCU to increase their scalability. We exploited this fact to speed up fibril locking

with the help of user space RCU, this time in the role of a light weight waiting

mechanism.

Next, the thesis includes a thorough experimental evaluation of the imple-

mented work. First, we analyzed RCU’s read-side scalability and write-side over-

head and determined that A-RCU offers the best performance. Second, we com-

pared the speed of lookups and updates of CHT with a lock based hash table

that is the least prone to contention – a table that includes one spinlock per

each bucket. We concluded that CHT significantly outperforms the lock based

hash table in read mostly situations, as is expected of an RCU protected data

structure. Next, we explored the scalability of the new CHT based kernel futex

subsystem. The presented results demonstrate that the new futex subsystem is

linearly scalable which is a substantial improvement over the previous design.

Furthermore, the new futex subsystem proved to be faster in the singlethreaded

uncontended base case. Last but not least, we determined that RCU allowed us

to considerably speed up fibril locking of singlethreaded user programs.

Lastly, we provided testing code of not only the RCU implementations and

CHT but also of other new utility components.

In summary, the goals of the thesis were fulfilled. We provided high perfor-

mance RCU prototype implementations and successfully employed and evaluated

RCU within HelenOS.

7.2 Future work

There are multiple ways in which the current work may be extended.

Firstly, HelenOS could possibly benefit from other RCU variants, e.g. an RCU

implementation that is specifically optimized for single processor machines like

Linux’s TinyRCU [21]; or an RCU variant that allows sleeping in the read-side

critical section should such a need arise.

Secondly, the current implementation of kernel RCU algorithms uses a single

lock to protect global RCU data. The single lock is involved in grace period

processing and in turn limits write-side scalability to tens of processors. Should

HelenOS support larger number of processors, current RCU’s write-side scalabil-

ity could be improved with hierarchical locking [19].

Thirdly, selected user space servers could be converted to a multithreaded

68



design in order to make use of RCU’s properties.

Lastly, an interesting avenue for future research is to encapsulate the use of

RCU in other concurrent data structures that are arguably easier and less error

prone to use than intricate custom made RCU designs.

69



Appendix A

Getting started with HelenOS

In order to start HelenOS, first check out the source files (or use the pregenerated

cd-rom images in images/):

$ bzr co lp:~adam-hraska+lp/helenos/cht-bench

Second, build the cross compiler necessary to build HelenOS itself:

$ cd cht-bench

$ ./tools/toolchain.sh ia32 amd64

Third, build the HelenOS sources (substitute amd64 for ia32 if you are running

a 32 bit x86 machine):

$ make PROFILE=amd64

Now you can boot the generated image in e.g. qemu:

$ qemu-system-x84_64 -cdrom image.iso -smp 4

After a while the system boots and the user is presented with a graphical user

interface. To enter the kernel console, type:

$ kcon

When in the kernel console, the user may display statistics gathered by the

added components, i.e.

$ rcu

$ workq

What is more, the kernel console allows testing the individual components,

e.g.run:

70



$ test smpcall1

$ test workqueue

$ test rcu1

$ test cht

Moreover, you can run benchmarks in the kernel console. See the following

command’s output to determine how to run a specific benchmark:

$ chtbench 0 0 0

Finally, you can exit the kernel console:

$ continue

When in the regular console, you can user space benchmarks. Consult the

output of:

$ app/rcubench

71



Appendix B

Navigating the source tree

Kernel RCU The implementation of A-RCU and PP-RCU can be found in:

� kernel/generic/include/synch/rcu.h

� kernel/generic/include/synch/rcu types.h

� kernel/generic/src/synch/rcu.c

� kernel/test/synch/rcu1.c

CHT The comments in CHT’s source codes explain handling of various edge

cases:

� kernel/generic/include/adt/cht.h

� kernel/generic/src/adt/cht.c

� kernel/test/cht/cht1.c

User space RCU For more information about URCU consult these source

codes:

� uspace/include/lib/urcu/rcu.h

� uspace/lib/urcu/rcu.c

� kernel/generic/include/synch/smp memory barrier.h

� kernel/generic/src/synch/smp memory barrier.c

72



Upgradable futexes In order to view the implementation of upgradable fu-

texes navigate to these files:

� uspace/lib/c/include/futex.h

� uspace/lib/c/generic/futex.c

� uspace/lib/c/generic/thread.c

Work queues To support CHT we extended HelenOS with work queues, which

are automatically expanding thread pools that support insertions of new work

items without blocking.

� kernel/generic/include/synch/workq.h

� kernel/generic/src/synch/workq.c

� kernel/test/synch/workq-test-core.h

� kernel/test/synch/workqueue2.c

� kernel/test/synch/workqueue3.c

SMP calls Instead of dealing with interprocessor interrupts directly, we encap-

sulated the functionality with SMP calls. The facility allows invoking functions

on specific CPUs via IPIs.

� kernel/generic/include/smp/smp call.h

� kernel/generic/src/smp/smp call.c

� kernel/generic/include/cpu/cpu mask.h

� kernel/generic/src/cpu/cpu mask.c

� kernel/test/smpcall/smpcall1.c

Benchmarks Benchmarking source codes:

� kernel/generic/include/bench/cht bench.h

� kernel/generic/src/bench/cht bench.c

� uspace/app/rcubench/rcubench.c

73



Appendix C

Numerical results

74



R
ea

d
-s

id
e

sc
al

ab
il
it

y
L

is
t

tr
av

er
sa

ls
/s

ec
on

d
v
s

th
re

ad
s

(m
ea

n
±

st
d
.

d
ev

ia
ti

on
)

id
ea

l
a-

rc
u

p
p
-r

cu
sp

in
lo

ck
1

29
50

90
25

79
±

57
39

54
21

69
38

57
79
±

26
78

17
11

14
57

40
29
±

17
48

20
1

82
86

63
39

8
±

38
38

19
2

56
62

88
71

16
±

81
10

24
8

41
34

54
82

75
±

53
85

80
7

21
16

33
17

65
±

57
35

11
0

26
12

33
04

9
±

11
59

01
7

3
85

01
67

07
07
±

33
50

13
14

62
16

02
40

64
±

11
33

06
22

32
00

67
76

42
±

29
25

86
7

17
05

11
56

4
±

17
69

33
4

11
36

72
32

30
7
±

34
49

21
82

90
29

08
92
±

59
30

63
93

42
73

95
28

49
±

44
22

14
14

89
89

54
2
±

55
26

4

75



W
ri

te
-s

id
e

ov
er

h
ea

d
O

p
er

at
io

n
s/

se
co

n
d

v
s

u
p

d
at

e
fr

ac
ti

on
(m

ea
n
±

st
d
.

d
ev

ia
ti

on
)

a-
rc

u
+

sp
in

lo
ck

p
p
-r

cu
+

sp
in

lo
ck

sp
in

lo
ck

0
45

06
39

95
39
±

89
60

89
4

20
80

58
48

52
±

16
99

21
96

00
36

86
±

57
38

2
5

58
69

99
39

8
±

17
45

01
6

49
40

56
29

5
±

14
81

44
7

82
57

53
60
±

45
29

94
10

31
08

76
56

9
±

68
19

10
27

05
34

24
6
±

14
73

08
5

80
31

43
68
±

30
30

91
20

16
33

09
15

8
±

29
38

17
14

33
57

10
9
±

17
31

12
2

76
95

23
71
±

40
96

21
30

11
34

29
70

8
±

38
31

35
99

20
93

92
±

41
02

79
72

90
88

00
±

26
97

69
40

89
83

66
32
±

31
87

18
76

57
71

04
±

43
73

64
71

03
91

68
±

32
37

94
60

65
18

86
59
±

33
84

96
54

84
17

76
±

42
17

72
65

81
12

51
±

23
68

98
10

0
46

76
64

89
±

38
85

76
40

46
15

06
±

54
61

31
73

81
31

96
±

45
30

47

76



H
as

h
ta

b
le

lo
ok

u
p

sc
al

ab
il
it

y
L

o
ok

u
p
s/

se
co

n
d

v
s

th
re

ad
s

(m
ea

n
±

st
d
.

d
ev

ia
ti

on
)

ch
t/

a-
rc

u
h
t/

b
k
t-

lo
ck

s
h
t/

sp
in

lo
ck

1
19

70
79

85
9
±

12
60

61
15

98
68

51
8
±

80
34

51
18

45
88

69
7
±

44
35

19
2

37
90

99
54

5
±

14
31

77
7

25
54

46
22

0
±

45
49

91
14

96
71

11
6
±

30
87

85
3

43
89

47
02

0
±

39
15

74
28

33
25

23
5
±

50
21

10
84

56
76

54
±

26
45

90
4

62
69

69
80

4
±

65
10

86
37

69
36

85
7
±

48
06

96
90

75
42

52
±

85
44

8

77



H
as

h
ta

b
le

u
p

d
at

e
ov

er
h
ea

d
O

p
er

at
io

n
s/

se
co

n
d

v
s

u
p

d
at

e
fr

ac
ti

on
(m

ea
n
±

st
d
.

d
ev

ia
ti

on
)

ch
t/

a-
rc

u
h
t/

b
k
t-

lo
ck

s
h
t/

sp
in

lo
ck

0
60

11
61

72
8
±

33
92

71
33

99
35

23
2
±

15
08

75
86

57
30

56
±

29
30

8
5

41
23

52
51

2
±

14
84

58
2

23
94

03
00

8
±

12
26

06
61

60
38

40
±

35
89

5
10

31
43

76
19

2
±

91
33

59
22

09
21

85
6
±

54
83

1
55

70
56

00
±

46
34

0
20

18
72

36
35

2
±

61
83

13
2

18
98

57
79

2
±

85
44

8
46

07
18

08
±

29
30

8
30

13
83

33
38

8
±

21
11

64
2

16
65

92
51

2
±

35
89

5
43

64
69

76
±

65
53

6
40

10
75

57
68

3
±

22
89

73
0

14
82

94
86

0
±

34
49

21
38

78
42

04
±

71
79

1
60

75
27

46
49
±

47
39

48
12

11
89

17
1
±

18
18

55
34

28
84

35
±

85
44

8
10

0
59

32
31

87
±

86
37

33
10

22
88

58
8
±

25
55

06
31

45
72

80
±

65
53

6

78



F
u
te

x
ke

rn
el

su
b
sy

st
em

p
er

fo
rm

an
ce

F
u
te

x
op

er
at

io
n
s/

se
co

n
d

v
s

th
re

ad
s

(m
ea

n
)

ch
t

ca
ch

e
h
t

sp
in

lo
ck

1
40

84
05

0
18

77
75

6
2

79
18

15
8

30
32

34
3

3
11

97
08

98
29

24
54

5
4

16
31

07
13

25
43

49
7

6
19

12
61

15
20

42
17

2
7

23
80

36
51

16
64

98
6

79



Bibliography

[1] ARM Limited. ARM Architecture Reference Manual: ARMv7-A and

ARMv7-R Edition, 2010.

[2] Cliff Click. A lock-free hash table. In JavaOne Conference, 2007.

[3] Cliff Click. Towards a scalable non-blocking coding style. In JavaOneSM

Conference, 2008.

[4] Mathieu Desnoyers, Paul E. McKenney, Alan Stern, Michel R. Dagenais, and

Jonathan Walpole. User-level implementations of read-copy update. IEEE

Transactions on Parallel and Distributed Systems, 23:375–382, 2012.

[5] Thomas E. Hart, Paul E. McKenney, Angela Demke Brown, and Jonathan

Walpole. Performance of memory reclamation for lockless synchronization.

J. Parallel Distrib. Comput., 67(12):1270–1285, December 2007.

[6] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming.

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2008.

[7] Jim Houston. [RFC&PATCH] alternative rcu implementation]. Available:

https://lkml.org/lkml/2004/8/30/87 [Viewed 30.11.2012], August 2004.

[8] Intel, Santa Clara, CA, USA. Intel Itanium Architecture Developer’s

Manual, Volume 2: System Architecture, May 2010. Available: http://

www.intel.com/content/dam/www/public/us/en/documents/manuals/

itanium-architecture-software-developer-rev-2-3-vol-2-manual.

pdf [Viewed 30.11.2012].

[9] Intel, Santa Clara, CA, USA. Intel 64 and IA-32 Architectures Software

Developer’s Manual Volume 3A: System Programming Guide, Part 1, June

2012. Available: http://download.intel.com/products/processor/

manual/253668.pdf [Viewed 30.11.2012].

[10] Lai Jiangshan. [RFC PATCH 5/5 single-thread-version] implement per-

domain single-thread state machine call srcu(). Available: https://lkml.

org/lkml/2012/3/6/586 [Viewed 30.11.2012], March 2012.

80

https://lkml.org/lkml/2004/8/30/87
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/itanium-architecture-software-developer-rev-2-3-vol-2-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/itanium-architecture-software-developer-rev-2-3-vol-2-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/itanium-architecture-software-developer-rev-2-3-vol-2-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/itanium-architecture-software-developer-rev-2-3-vol-2-manual.pdf
http://download.intel.com/products/processor/manual/253668.pdf
http://download.intel.com/products/processor/manual/253668.pdf
https://lkml.org/lkml/2012/3/6/586
https://lkml.org/lkml/2012/3/6/586


[11] Doug Lea. java.util.concurrent.concurrenthashmap. http://gee.cs.

oswego.edu/cgi-bin/viewcvs.cgi/jsr166/src/main/java/util/

concurrent/ConcurrentHashMap.java?revision=1.118, 2012. Revi-

sion 1.118.

[12] Paul E. McKenney. Exploiting Deferred Destruction: An Analysis of Read-

Copy-Update Techniques in Operating System Kernels. PhD thesis, OGI

School of Science and Engineering at Oregon Health and Sciences Uni-

versity, 2004. Available: http://www.rdrop.com/users/paulmck/RCU/

RCUdissertation.2004.07.14e1.pdf [Viewed 30.11.2012].

[13] Paul E. McKenney. RCU vs. locking performance on different

CPUs. In linux.conf.au, Adelaide, Australia, January 2004. Available:

http://www.linux.org.au/conf/2004/abstracts.html#90 http://www.

rdrop.com/users/paulmck/rclock/lockperf.2004.01.17a.pdf [Viewed

30.11.2012].

[14] Paul E. McKenney. Sleepable RCU. Available: http://lwn.net/Articles/

202847/ Revised: http://www.rdrop.com/users/paulmck/RCU/srcu.

2007.01.14a.pdf [Viewed 30.11.2012], October 2006.

[15] Paul E. McKenney. The design of preemptible read-copy-update. Available:

http://lwn.net/Articles/253651/ [Viewed 30.11.2012], October 2007.

[16] Paul E. McKenney. Priority-boosting RCU read-side critical sections. Avail-

able: http://lwn.net/Articles/220677/ Revised: http://www.rdrop.

com/users/paulmck/RCU/RCUbooststate.2007.04.16a.pdf [Viewed

30.11.2012], February 2007.

[17] Paul E. McKenney. QRCU with lockless fastpath. Available: http://lwn.

net/Articles/223752/ [Viewed 30.11.2012], February 2007.

[18] Paul E. McKenney. Using Promela and Spin to verify parallel algorithms.

Available: http://lwn.net/Articles/243851/ [Viewed 30.11.2012], Au-

gust 2007.

[19] Paul E. McKenney. Hierarchical RCU. Available: http://lwn.net/

Articles/305782/ [Viewed 30.11.2012], November 2008.

[20] Paul E. McKenney. [patch rfc -tip 4/4] merge preemptable-rcu functionality

into hierarchical rcu. Available: https://lkml.org/lkml/2009/7/23/303

[Viewed 30.11.2012], July 2009.

81

http://gee.cs.oswego.edu/cgi-bin/viewcvs.cgi/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java?revision=1.118
http://gee.cs.oswego.edu/cgi-bin/viewcvs.cgi/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java?revision=1.118
http://gee.cs.oswego.edu/cgi-bin/viewcvs.cgi/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java?revision=1.118
http://www.rdrop.com/users/paulmck/RCU/RCUdissertation.2004.07.14e1.pdf
http://www.rdrop.com/users/paulmck/RCU/RCUdissertation.2004.07.14e1.pdf
http://www.linux.org.au/conf/2004/abstracts.html#90
http://www.rdrop.com/users/paulmck/rclock/lockperf.2004.01.17a.pdf
http://www.rdrop.com/users/paulmck/rclock/lockperf.2004.01.17a.pdf
http://lwn.net/Articles/202847/
http://lwn.net/Articles/202847/
http://www.rdrop.com/users/paulmck/RCU/srcu.2007.01.14a.pdf
http://www.rdrop.com/users/paulmck/RCU/srcu.2007.01.14a.pdf
http://lwn.net/Articles/253651/
http://lwn.net/Articles/220677/
http://www.rdrop.com/users/paulmck/RCU/RCUbooststate.2007.04.16a.pdf
http://www.rdrop.com/users/paulmck/RCU/RCUbooststate.2007.04.16a.pdf
http://lwn.net/Articles/223752/
http://lwn.net/Articles/223752/
http://lwn.net/Articles/243851/
http://lwn.net/Articles/305782/
http://lwn.net/Articles/305782/
https://lkml.org/lkml/2009/7/23/303


[21] Paul E. McKenney. Re: [patch fyi] rcu: the bloatwatch edition. Avail-

able: http://lkml.org/lkml/2009/1/14/449 [Viewed 30.11.2012], Jan-

uary 2009.

[22] Paul E. Mckenney. Memory barriers: a hardware view for software hackers,

June 2010.

[23] Paul E. McKenney. Simplicity through optimization. In linux.conf.au

2010, Wellington, New Zealand, January 2010. Available: http:

//www.rdrop.com/users/paulmck/RCU/SimplicityThruOptimization.

2010.01.21f.pdf [Viewed 30.11.2012].

[24] Paul E. McKenney. The new visibility of rcu processing. Available: http:

//lwn.net/Articles/518953/ [Viewed 30.11.2012], October 2012.

[25] Paul E. McKenney, Dipankar Sarma, Ingo Molnar, and Suparna Bhat-

tacharya. Extending RCU for realtime and embedded workloads.

In Ottawa Linux Symposium, pages v2 123–138, July 2006. Avail-

able: http://www.rdrop.com/users/paulmck/RCU/OLSrtRCU.2006.08.

11a.pdf [Viewed 30.11.2012].

[26] Maged M. Michael. High performance dynamic lock-free hash tables and

list-based sets. In Proceedings of the fourteenth annual ACM symposium on

Parallel algorithms and architectures, SPAA ’02, pages 73–82, New York,

NY, USA, 2002. ACM.

[27] Maged M. Michael. Safe memory reclamation for dynamic lock-free objects

using atomic reads and writes. In Proceedings of the twenty-first annual

symposium on Principles of distributed computing, PODC ’02, pages 21–30,

New York, NY, USA, 2002. ACM.

[28] Maged M. Michael. Hazard pointers: Safe memory reclamation for lock-free

objects. IEEE Trans. Parallel Distrib. Syst., 15(6):491–504, June 2004.

[29] Motorola and IMB Corporation. PowerPC microprocessor family: the pro-

gramming environments, 1994.

[30] Andrej Podzimek. Read-copy-update for opensolaris. Master’s thesis,

Charles University in Prague, 2010. Available: https://andrej.podzimek.

org/thesis.pdf [Viewed 30.11.2012].

[31] Ori Shalev and Nir Shavit. Split-ordered lists: Lock-free extensible hash

tables. J. ACM, 53(3):379–405, May 2006.

82

http://lkml.org/lkml/2009/1/14/449
http://www.rdrop.com/users/paulmck/RCU/SimplicityThruOptimization.2010.01.21f.pdf
http://www.rdrop.com/users/paulmck/RCU/SimplicityThruOptimization.2010.01.21f.pdf
http://www.rdrop.com/users/paulmck/RCU/SimplicityThruOptimization.2010.01.21f.pdf
http://lwn.net/Articles/518953/
http://lwn.net/Articles/518953/
http://www.rdrop.com/users/paulmck/RCU/OLSrtRCU.2006.08.11a.pdf
http://www.rdrop.com/users/paulmck/RCU/OLSrtRCU.2006.08.11a.pdf
https://andrej.podzimek.org/thesis.pdf
https://andrej.podzimek.org/thesis.pdf


[32] Inc. SPARC International. The SPARC architecture manual (version 9).

Upper Saddle River, NJ, USA, 1994. Available: http://www.sparc.org/

standards/SPARCV9.pdf [Viewd 30.11.2012].

[33] Josh Triplett, Paul E. McKenney, and Jonathan Walpole. Resizable, scalable,

concurrent hash tables via relativistic programming. In Proceedings of the

2011 USENIX Annual Technical Conference, pages 145–158, Portland, OR

USA, June 2011. The USENIX Association.

83

http://www.sparc.org/standards/SPARCV9.pdf
http://www.sparc.org/standards/SPARCV9.pdf

	Introduction
	Thesis overview

	What is Read-Copy Update?
	Semantics
	Example usage
	Complete interface
	Constraints on implementations

	Review of RCU algorithms
	General purpose user space RCU
	Signal based user space RCU
	Classic kernel RCU
	Houston's RCU
	Podzimek's RCU
	Sleepable RCU
	Preemptible RCU in Linux
	Summary

	Implemented RCU algorithms
	Requirements
	Preemptible kernel A-RCU
	Preemptible Podzimek's kernel RCU
	User space RCU

	Use of RCU in HelenOS
	Resizable concurrent hash table
	Existing concurrent hash tables
	Implemented concurrent hash table
	Improving futex subsystem scalability

	Upgradable user space futexes
	Futexes in singlethreaded programs
	RCU as a waiting mechanism in libc


	Evaluation
	Methodology
	Read-side scalability
	Write-side overhead
	Hash table lookup scalability
	Hash table update overhead
	Futex kernel subsystem performance
	Libc futex performance
	Discussion of results

	Summary
	Conclusion
	Future work

	Getting started with HelenOS
	Navigating the source tree
	Numerical results
	Bibliography

