

http://d3s.mff.cuni.cz

Martin Děcký

decky@d3s.mff.cuni.cz

CHARLES UNIVERSITY IN PRAGUE

faculty of mathematics and physics

open source general-purpose multiplatform POSIX-similar microkernel multiserver operating system designed

bm scratch

Not a Linux/*BSD/etc. distribution SPARTAN microkernel Custom user space http://www.helenos.org

open source general-purpose multiple form POSIX-similar microkernel multiple rver operating system designed from scratch

3-clause BSD license

bzr://bzr.helenos.org/mainline

http://trac.helenos.org

http://www.ohloh.net/p/helenos

open source general-purpose multiplatform POSIX-similar microkernel multiserver operating sy em designed from scra

Rather breadth-first than depth-first Desktop

Server Embedded

open source general-purpose multiplatform POSIX-similar microkernel multis ver operating system designed from scratch

IA-32 and AMD64 (PC)

IA-64 (Itanium)

ARM (Neo FreeRunner, BeagleBoard, BeagleBone, Raspberry Pi)

MIPS (Malta)

PowerPC (iMac G4)

UltraSPARC (Ultra 60, Enterprise T1000)

open source general-purpose multiplatform POSIX-similar microkernel multiserver operating system designed from atch

Mostly familiar "common sense" API
Unicode (no legacy character sets)
No skeletons in the closet (strcpy, signals, fork & exec)
libposix as an optional emulation layer

open source general-purpose multiplatform POSIX-similar microkernel multiserver operating system designed from scratch

Memory management Scheduling Asynchronous IPC Not a trivial kernel

open source general-purpose multiplatform POSIX-similar microkernel multiserver operating system designed from scratch

Component-based design

Separate and isolated user space tasks (servers)

Naming service, VFS, file system drivers, Location service, device drivers, network layers, graphics stack layers, etc.

Designed from scratch

- SPARTAN kernel since 2001
- HelenOS since 2005
- Latest release 0.5.0 (Fajtl) in August 9th 2012
- Some 330K lines of code in the mainline branch
 - About 93 % in C, 3 % in assembler
 - About 30 % of comments
 - "Very well-commented source code" [ohloh.net]
- Some 45 contributors
 - About 20 active during the last year (only 10 of them at least 10 commits)


```
async_exch_t *async_exchange_begin(async_sess_t *sess)
  <-->if (sess == NULL)
  <--><-->return NULL;
 <-->async_exch_t *exch;
 <-->fibril_mutex_lock(&async_sess_mutex);
 <-->if (!list_empty(&sess->exch_list)) {
 <--><-->exch = (async_exch_t *)
             list_get_instance(list_first(&sess->exch_list),
             async_exch_t, sess_link);
 <--><-->list_remove(&exch->sess_link);
 <--><-->list_remove(&exch-)global_link);
<-->} else {
<--><-->/*
<--><-->if ((sess->mgmt == EXCHANGE_ATOMIC) ||
<--><--> (sess->mgmt == EXCHANGE_SERIALIZE)) {
<--><-->exch = (async_exch_t *) malloc(sizeof(async_exch_t));
<--><--><f (exch != NULL) {
<--><--><-->to-->to-->to-->link_initialize(&exch->sess_link);
<--><--><-->dobal_link):
<--><--><-->exch->sess = sess;
<--><--><-->exch->phone = sess->phone;
```

Commits

Lines of code

Design principles

- Microkernel design principle
- General-purpose design principle
- Non-fundamentalistic design principle
- Full-fledged design principle
- Multiserver design principle
- Split of mechanism and policy design principle
- Encapsulation design principle
- Portability design principle

Why?

Windows

- A fatal exception OE has occurred at 0028:C562F1B7 in VXD ctpci9x(05)
- + 00001853. The current application will be terminated.
- Press any key to terminate the current application.
- Press CTRL+ALT+DEL again to restart your computer. You will lose any unsaved information in all applications.

Press any key to continue

Reliability Robustness Dependability Natural design

Dependability

IEEE definition

"Dependability is a measurable and provable degree of system's availability, reliability and its maintenance support"

In other words

Formal verification of correctness and quality of service with respect to predefined specification/criteria

Dependability (2)

Dependability (2)

Microkernel OS community

FOSDEM 2012

- February 4th − 5th 2012, Brussels, Belgium
- Université libre de Bruxelles
- Jakub Jermář chaired the Microkernel OS Devroom
 - Participation of HelenOS, Genode Labs, NOVA, MINIX, Hurd

FOSDEM 2013

- February 2nd − 3rd 2013, Brussels, Belgium
- Genode Labs chaired the Microkernel and Componentbased OS Devroom

FOSDEM 2012

Home > Schedule > Tracks > Microkernel OS Devroom

Microkernel OS Devroom

Room: K.3.201

Sunday 2012-02-05

Event	Speaker	Room	When
Welcome! or Why do we meet here today	Jakub Jermář	K.3.201	09:00-09:25
Introduction to the NOVA kernel API	Julian Stecklina	K.3.201	09:30-10:00
Introduction of the Genode OS Framework	Norman Feske	K.3.201	10:10-10:55
Introduction to HelenOS	Jakub Jermář	K.3.201	11:10-11:55
The microkernel overhead	Martin Děcký	K.3.201	13:00-14:00
The agony of choice - the diversity of microkernels in Genode	Stefan Kalkowski	K.3.201	14:10-14:55
Dive into HelenOS Device Drivers	Jiří Svoboda	K.3.201	15:05-15:50
Panel discussion	Julian Stecklina , Jakub Jermář , Ben Gras , Christian Helmuth	K.3.201	16:00-17:00

Google

Learning by doing

- Keep the Moore's law in mind early during the design phase
- Do not put the kernel in charge of purely user space namespaces
- Too much synchronization spoils the kernel

Features

- File systems
 - ext4, FAT, exFAT, ISO 9660, UDF, MFS
- Networking
 - IPv4 & IPv6, NE2000, E1000, RTL8139
- GUI
 - Composing desktop
- USB 1.1 (UHCI, OHCI)
 - HID, mass storage
- PATA, SATA (AHCI)
- GNU binutils, Portable C Compiler (PCC), MIPS simulator

What next?

What next?

- Towards self-hosting
 - GCC, Clang
- Go
- VFS2
- FUSE
- BIRD, KnotDNS

What next? (2)

- User space driven system-wide scheduler
- User space driven SMP management
- New RCU algorithms
 - AP-RCU (highly portable, decently scalable PaR)
 - AH-RCU (highly scalable, microkernel-friendly)
- Implicitly shared resources management
 - De-duplicated caching, future usage prediction (readahead), resource pressure evaluation (out-of-memory conditions)

Join us!

www.helenos.org

