
Developing a
Multiserver Operating System

Jakub Jermář
February 3, 2010

UINX.CZ

What is a Multiserver OS?

What is a Multiserver OS?
● microkernel-based OS,

which is...

What is a Multiserver OS?
● microkernel-based OS,

which is...
● ...multiserver

What is a Multiserver OS?
● microkernel-based OS,

which is...
● ...multiserver

– composed of multiple
server tasks

What is a Multiserver OS?
● microkernel-based OS,

which is...
● ...multiserver

– composed of multiple
server tasks

microkernel

server
task

server
task

server
task

server
task

server
task

server
task

app
task

app
task

app
task

app
task

app
task

app
task

What is a Multiserver OS?
● microkernel-based OS,

which is...
● ...multiserver

– composed of multiple
server tasks

● not every microkernel-
based OS is multiserver

microkernel

server
task

server
task

server
task

server
task

server
task

server
task

app
task

app
task

app
task

app
task

app
task

app
task

What is a Multiserver OS?
● microkernel-based OS,

which is...
● ...multiserver

– composed of multiple
server tasks

● not every microkernel-
based OS is multiserver

● not every OS is
microkernel-based

microkernel

server
task

server
task

server
task

server
task

server
task

server
task

app
task

app
task

app
task

app
task

app
task

app
task

OS Classification by Architecture

OS Classification by Architecture

microkernel

server
task

server
task

server
task

server
task

server
task

server
task

app
task

app
task

app
task

app
task

app
task

app
task

multiserver-
microkernel

OS Classification by Architecture

microkernel

server
task

server
task

server
task

server
task

server
task

server
task

app
task

app
task

app
task

app
task

app
task

app
task

microkernel

system
task

app
task

app
task

app
task

app
task

app
task

app
task

multiserver-
microkernel

microkernel with
single system task

OS Classification by Architecture

microkernel

server
task

server
task

server
task

server
task

server
task

server
task

app
task

app
task

app
task

app
task

app
task

app
task

microkernel

system
task

app
task

app
task

app
task

app
task

app
task

app
task

kernel

app
task

app
task

app
task

app
task

app
task

app
task

multiserver-
microkernel

microkernel with
single system task

monolithic kernel

The Multiserver Advantage

microkernel

server
task

server
task

server
task

server
task

server
task

server
task

app
task

app
task

app
task

app
task

app
task

app
task

microkernel

system
task

app
task

app
task

app
task

app
task

app
task

app
task

kernel

app
task

app
task

app
task

app
task

app
task

app
task

multiserver-
microkernel

microkernel with
single system task

monolithic kernel

The Multiserver Advantage

microkernel

server
task

server
task

server
task

server
task

server
task

server
task

app
task

app
task

app
task

app
task

app
task

app
task

microkernel

system
task

app
task

app
task

app
task

app
task

app
task

app
task

kernel

app
task

app
task

app
task

app
task

app
task

app
task

multiserver-
microkernel

microkernel with
single system task

monolithic kernel

The Multiserver Advantage

microkernel

server
task

server
task

server
task

server
task

server
task

server
task

app
task

app
task

app
task

app
task

app
task

app
task

microkernel

system
task

app
task

app
task

app
task

app
task

app
task

app
task

multiserver-
microkernel

microkernel with
single system task

monolithic kernel

The Multiserver Advantage

microkernel

server
task

server
task

server
task

server
task

server
task

server
task

app
task

app
task

app
task

app
task

app
task

app
task

microkernel

system
task

app
task

app
task

app
task

app
task

app
task

app
task

multiserver-
microkernel

microkernel with
single system task

monolithic kernel

The Multiserver Advantage

microkernel

server
task

server
task

server
task

server
task

server
task

server
task

app
task

app
task

app
task

app
task

app
task

app
task

microkernel

multiserver-
microkernel

microkernel with
single system task

monolithic kernel

The Multiserver Advantage

microkernel

server
task

server
task

server
task

server
task

server
task

server
task

app
task

app
task

app
task

app
task

app
task

app
task

microkernel

multiserver-
microkernel

microkernel with
single system task

monolithic kernel

The Multiserver Advantage

microkernel

server
task

server
task

server
task

server
task

app
task

app
task

app
task

app
task

app
task

microkernel

multiserver-
microkernel

microkernel with
single system task

monolithic kernel

Pros and Cons Overview

Pros and Cons Overview
Pros
● Improved robustness

and fault isolation
● Clean interface

between servers
● Simpler components
● Flexibility in

connecting
components

Pros and Cons Overview
Pros
● Improved robustness

and fault isolation
● Clean interface

between servers
● Simpler components
● Flexibility in

connecting
components

Cons
● Worse performance
● No cross-layer

optimizations

Multiserver-Microkernel Examples

Multiserver-Microkernel Examples

Hurd
http://hurd.gnu.org

Multiserver-Microkernel Examples

Hurd
http://hurd.gnu.org

MINIX 3
http://minix3.org

Multiserver-Microkernel Examples

Hurd
http://hurd.gnu.org

MINIX 3
http://minix3.org

HelenOS
http://helenos.org

Simplified HelenOS Architecture

Simplified HelenOS Architecture

microkernel
SPARTAN

Simplified HelenOS Architecture

microkernel
SPARTANNaming service

Device mapper

RAM disk
driver

VFS

FATDEVFS

ATA disk
driver

MBR partition
driver

Task monitor

i8042 driver
Char mouse

 driver

Framebuffer
service

Keyboard
Service

Console server

Clipboard
service

GUID partition
driver

file backed
block device

GUID partition
driver

TMPFS

Simplified HelenOS Architecture

microkernel
SPARTANNaming service

Device mapper

RAM disk
driver

VFS

FAT

Network packet
server

DEVFS

ATA disk
driver

MBR partition
driver

Task monitor

i8042 driver
Char mouse

 driver

Framebuffer
service

Keyboard
Service

Console server

Clipboard
service

GUID partition
driver

file backed
block device

GUID partition
driver

TMPFS

IPICMP ARP

TCP UDP

loopback
driver

dp8390
driver

nildummyEthernet

Simplified HelenOS Architecture

microkernel
SPARTANNaming service

Device mapper

RAM disk
driver

VFS

FAT

Network packet
server

DEVFS

ATA disk
driver

MBR partition
driver

Task monitor

i8042 driver
Char mouse

 driver

Framebuffer
service

Keyboard
Service

Console server

Clipboard
service

GUID partition
driver

file backed
block device

GUID partition
driver

TMPFS

IPICMP ARP

TCP UDP

loopback
driver

dp8390
driver

nildummyEthernet Application

Making it all hold together

Making it all hold together

● The previous slide shows 28 independent
server tasks running at one time

Making it all hold together

● The previous slide shows 28 independent
server tasks running at one time

● Some servers may even run in multiple
instances

Making it all hold together

● The previous slide shows 28 independent
server tasks running at one time

● Some servers may even run in multiple
instances

● All servers provide some services to other
server tasks or applications; most servers
require services from other servers

Making it all hold together

● The previous slide shows 28 independent
server tasks running at one time

● Some servers may even run in multiple
instances

● All servers provide some services to other
server tasks or applications; most servers
require services from other servers

● Together these server tasks provide the
services of the operating system

Making it all hold together (II)

● So how do these tasks communicate?

Making it all hold together (II)

● So how do these tasks communicate?
● Both the monolithic OS and the single

system task microkernel OS deal only with
one address space

Making it all hold together (II)

● So how do these tasks communicate?
● Both the monolithic OS and the single

system task microkernel OS deal only with
one address space

● In a multiserver OS, the servers are in
separate address spaces

Making it all hold together (II)

● So how do these tasks communicate?
● Both the monolithic OS and the single

system task microkernel OS deal only with
one address space

● In a multiserver OS, the servers are in
separate address spaces

● Message passing provided by the kernel
– IPC

HelenOS IPC

HelenOS IPC

● Message passing

HelenOS IPC

● Message passing
– unusual metaphor of making phone calls

and leaving a message in the answerbox

HelenOS IPC

● Message passing
– unusual metaphor of making phone calls

and leaving a message in the answerbox
● Asynchronous

HelenOS IPC

● Message passing
– unusual metaphor of making phone calls

and leaving a message in the answerbox
● Asynchronous

● Number of communicating tasks can be 1,
2 or N

HelenOS IPC

● Message passing
– unusual metaphor of making phone calls

and leaving a message in the answerbox
● Asynchronous

● Number of communicating tasks can be 1,
2 or N

– communicating with self

– communicating with a peer

– peer forwards the call to third party

HelenOS IPC (II)

● Message ~ Phone call
– simple calls

– combo calls

HelenOS IPC (II)

● Message ~ Phone call
– simple calls

– combo calls

● Simple calls
– Six 32-bit / 64-bit words of payload

HelenOS IPC (II)

● Message ~ Phone call
– simple calls

– combo calls

● Simple calls
– Six 32-bit / 64-bit words of payload

● Combo calls
– memory sharing

– large data block copying

– tasks negotiate, kernel arbitrates

Life with IPC

Life with IPC

● Restricting interactions between logical
components to IPC has some advantages

Life with IPC

● Restricting interactions between logical
components to IPC has some advantages

– the components understand a protocol

– the protocol can be verified

– the protocol can have many
implementations

Life with IPC

● Restricting interactions between logical
components to IPC has some advantages

– the components understand a protocol

– the protocol can be verified

– the protocol can have many
implementations

● object oriented design

Life with IPC (II)

● It also brings some problems

Life with IPC (II)

● It also brings some problems
– writing IPC by hand is tedious compared to

mere function calls in monolithic designs

Life with IPC (II)

● It also brings some problems
– writing IPC by hand is tedious compared to

mere function calls in monolithic designs
● could be generated from some high level

architecture description
● all HelenOS IPC written by hand so far

Life with IPC (II)

● It also brings some problems
– writing IPC by hand is tedious compared to

mere function calls in monolithic designs
● could be generated from some high level

architecture description
● all HelenOS IPC written by hand so far

– it is difficult to implement non-trivial
protocols using asynchronous IPC

Life with IPC (II)

● It also brings some problems
– writing IPC by hand is tedious compared to

mere function calls in monolithic designs
● could be generated from some high level

architecture description
● all HelenOS IPC written by hand so far

– it is difficult to implement non-trivial
protocols using asynchronous IPC

● callbacks and event loops
● HelenOS has a framework for it

Asynchronous framework

Asynchronous framework

● Makes the asynchronous communication a
pleasant experience

– no event loops

– no callbacks

Asynchronous framework

● Makes the asynchronous communication a
pleasant experience

– no event loops

– no callbacks

● Introduces fibrils (userspace threads) to
already multithreaded tasks

– client's connection handled by a fibril in
server

– fibril can send asynchronous messages
and wait for them later

Asynchronous framework (II)

thread

task

thread

thread~

~

~

~ ~ ~ ~ ~
fibrils

task

thread~

~ ~
fibrils

Asynchronous framework (II)

thread

task

thread

thread~

~

~

~ ~ ~ ~ ~
fibrils

task

thread~

~ ~
fibrils

Using async framework

Using async framework

● Waiting for a request
– callid = async_get_call(&call)

Using async framework

● Waiting for a request
– callid = async_get_call(&call)

● Answer a request with n return values
– ipc_answer_n(callid, retval, ...)

Using async framework

● Waiting for a request
– callid = async_get_call(&call)

● Answer a request with n return values
– ipc_answer_n(callid, retval, ...)

● Send one message with n arguments
– msgid = async_send_n(phone, method, ...,

&answer)

Using async framework

● Waiting for a request
– callid = async_get_call(&call)

● Answer a request with n return values
– ipc_answer_n(callid, retval, ...)

● Send one message with n arguments
– msgid = async_send_n(phone, method, ...,

&answer)

● Wait for an answer to a sent message
– async_wait_for(msgid, &retval0)

● Send of n arguments and receive of m
return values combined

– retval0 = async_req_n_m(phone,
method, ..., …)

Using async framework (II)

● Send of n arguments and receive of m
return values combined

– retval0 = async_req_n_m(phone,
method, ..., …)

● Sharing memory
– async_share_in/out_start(phone, ...)

– async_share_in/out_receive(&callid, ...)

– async_share_in/out_finalize(callid, ...)

Using async framework (II)

● Copying data
– async_data_read/write_start(phone, ...)

– async_data_read/write_receive(&callid, ...)

– async_data_read/write_finalize(callid, …)

Using async framework (III)

● Copying data
– async_data_read/write_start(phone, ...)

– async_data_read/write_receive(&callid, ...)

– async_data_read/write_finalize(callid, …)

● Fibrils often need to be synchronized
– Fibril synchronization primitives

● Mutexes
● Readers-Write locks
● Condition variables

Using async framework (III)

Code example
req = async_send_2(vfs_phone, VFS_IN_MOUNT, dev_handle, flags, NULL);
rc = async_data_write_start(vfs_phone, (void *) mpa, mpa_size);
if (rc != EOK) {
 ...
}
rc = async_data_write_start(vfs_phone, (void *) opts, str_size(opts));
if (rc != EOK) {
 ...
}
rc = async_data_write_start(vfs_phone, (void *) fs_name, str_size(fs_name));
if (rc != EOK) {
 ...
}
/* Ask VFS whether it likes fs_name. */
rc = async_req_0_0(vfs_phone, IPC_M_PING);
if (rc != EOK) {
 ...
}
async_wait_for(req, &rc);

Code example (II)
if (read)
 res = async_data_read_receive(&callid, NULL);
else
 res = async_data_write_receive(&callid, NULL);
if (read)
 fibril_rwlock_read_lock(&file->node->contents_rwlock);
else
 fibril_rwlock_write_lock(&file->node->contents_rwlock);
msg = async_send_3(fs_phone, read ? VFS_OUT_READ : VFS_OUT_WRITE,
 file->node->dev_handle, file->node->index, file->pos, &answer);
ipc_forward_fast(callid, fs_phone, 0, 0, 0, IPC_FF_ROUTE_FROM_ME);
async_wait_for(msg, &rc);
if (read)
 fibril_rwlock_read_unlock(&file->node->contents_rwlock);
else
 fibril_rwlock_write_unlock(&file->node->contents_rwlock);
ipc_answer_1(rid, rc, bytes);

Code example (II)
if (read)
 res = async_data_read_receive(&callid, NULL);
else
 res = async_data_write_receive(&callid, NULL);
if (read)
 fibril_rwlock_read_lock(&file->node->contents_rwlock);
else
 fibril_rwlock_write_lock(&file->node->contents_rwlock);
msg = async_send_3(fs_phone, read ? VFS_OUT_READ : VFS_OUT_WRITE,
 file->node->dev_handle, file->node->index, file->pos, &answer);
ipc_forward_fast(callid, fs_phone, 0, 0, 0, IPC_FF_ROUTE_FROM_ME);
async_wait_for(msg, &rc);
if (read)
 fibril_rwlock_read_unlock(&file->node->contents_rwlock);
else
 fibril_rwlock_write_unlock(&file->node->contents_rwlock);
ipc_answer_1(rid, rc, bytes);

Code example (II)

libc

VFS

TMPFS

Code example (II)

libc

VFS

TMPFS

1. VFS_IN_READ

Code example (II)

libc

VFS

TMPFS

1. VFS_IN_READ

2. IPC_M_DATA_READ

Code example (II)

libc

VFS

TMPFS

1. VFS_IN_READ

2. IPC_M_DATA_READ

3. VFS_OUT_READ

Code example (II)

libc

VFS

TMPFS

1. VFS_IN_READ

2. IPC_M_DATA_READ

3. VFS_OUT_READ

4. ipc_forward()

Code example (II)

libc

VFS

TMPFS

1. VFS_IN_READ

2. IPC_M_DATA_READ

3. VFS_OUT_READ

4. ipc_forward()

5. ipc_answer(EOK)

Code example (II)

libc

VFS

TMPFS

1. VFS_IN_READ

2. IPC_M_DATA_READ

3. VFS_OUT_READ

4. ipc_forward()

5. ipc_answer(EOK)

6. ipc_answer(EOK)

Code example (II)

libc

VFS

TMPFS

1. VFS_IN_READ

2. IPC_M_DATA_READ

3. VFS_OUT_READ

4. ipc_forward()

5. ipc_answer(EOK)

6. ipc_answer(EOK)7. ipc_answer(EOK)

Demo

Questions?

www.helenos.org

jakub@jermar.eu

http://www.helenos.org/
mailto:jakub@jermar.eu

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86

