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● microkernel-based OS, 

which is...
● ...multiserver

– composed of multiple 
server tasks

● not every microkernel-
based OS is multiserver

● not every OS is 
microkernel-based
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Pros and Cons Overview
Pros
● Improved robustness 

and fault isolation
● Clean interface 

between servers
● Simpler components
● Flexibility in 

connecting 
components

Cons
● Worse performance
● No cross-layer 

optimizations
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Multiserver-Microkernel Examples

Hurd
http://hurd.gnu.org

MINIX 3
http://minix3.org

HelenOS
http://helenos.org
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Making it all hold together

● The previous slide shows 28 independent 
server tasks running at one time

● Some servers may even run in multiple 
instances

● All servers provide some services to other 
server tasks or applications; most servers 
require services from other servers

● Together these server tasks provide the 
services of the operating system
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● So how do these tasks communicate?
● Both the monolithic OS and the single 

system task microkernel OS deal only with 
one address space

● In a multiserver OS, the servers are in 
separate address spaces

● Message passing provided by the kernel
– IPC
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● Message passing
– unusual metaphor of making phone calls 

and leaving a message in the answerbox
● Asynchronous

● Number of communicating tasks can be 1, 
2 or N

– communicating with self

– communicating with a peer

– peer forwards the call to third party 
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HelenOS IPC (II)

● Message ~ Phone call
– simple calls

– combo calls

● Simple calls
– Six 32-bit / 64-bit words of payload

● Combo calls
– memory sharing

– large data block copying

– tasks negotiate, kernel arbitrates
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Life with IPC

● Restricting interactions between logical 
components to IPC has some advantages

– the components understand a protocol

– the protocol can be verified

– the protocol can have many 
implementations

● object oriented design



Life with IPC (II)

● It also brings some problems



Life with IPC (II)

● It also brings some problems
– writing IPC by hand is tedious compared to 

mere function calls in monolithic designs



Life with IPC (II)

● It also brings some problems
– writing IPC by hand is tedious compared to 

mere function calls in monolithic designs
● could be generated from some high level 

architecture description
● all HelenOS IPC written by hand so far



Life with IPC (II)

● It also brings some problems
– writing IPC by hand is tedious compared to 

mere function calls in monolithic designs
● could be generated from some high level 

architecture description
● all HelenOS IPC written by hand so far

– it is difficult to implement non-trivial 
protocols using asynchronous IPC



Life with IPC (II)

● It also brings some problems
– writing IPC by hand is tedious compared to 

mere function calls in monolithic designs
● could be generated from some high level 

architecture description
● all HelenOS IPC written by hand so far

– it is difficult to implement non-trivial 
protocols using asynchronous IPC

● callbacks and event loops
● HelenOS has a framework for it
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Asynchronous framework

● Makes the asynchronous communication a 
pleasant experience

– no event loops

– no callbacks

● Introduces fibrils (userspace threads) to 
already multithreaded tasks

– client's connection handled by a fibril in 
server

– fibril can send asynchronous messages 
and wait for them later
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● Waiting for a request
– callid = async_get_call(&call)

● Answer a request with n return values
– ipc_answer_n(callid, retval, ...)

● Send one message with n arguments
– msgid = async_send_n(phone, method, ..., 

&answer)

● Wait for an answer to a sent message
– async_wait_for(msgid, &retval0)



● Send of n arguments and receive of m 
return values combined

– retval0 = async_req_n_m(phone, 
method, ..., …)

Using async framework (II)



● Send of n arguments and receive of m 
return values combined

– retval0 = async_req_n_m(phone, 
method, ..., …)

● Sharing memory
– async_share_in/out_start(phone, ...)

– async_share_in/out_receive(&callid, ...)

– async_share_in/out_finalize(callid, ...)
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– async_data_read/write_receive(&callid, ...)
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● Copying data
– async_data_read/write_start(phone, ...)

– async_data_read/write_receive(&callid, ...)

– async_data_read/write_finalize(callid, …)

● Fibrils often need to be synchronized
– Fibril synchronization primitives

● Mutexes
● Readers-Write locks
● Condition variables

Using async framework (III)



Code example
req = async_send_2(vfs_phone, VFS_IN_MOUNT, dev_handle, flags, NULL);
rc = async_data_write_start(vfs_phone, (void *) mpa, mpa_size);
if (rc != EOK) {
       ...
}
rc = async_data_write_start(vfs_phone, (void *) opts, str_size(opts));
if (rc != EOK) {
        ...
}
rc = async_data_write_start(vfs_phone, (void *) fs_name, str_size(fs_name));
if (rc != EOK) {
        ...
}
/* Ask VFS whether it likes fs_name. */
rc = async_req_0_0(vfs_phone, IPC_M_PING);
if (rc != EOK) {
        ...
}
async_wait_for(req, &rc);



Code example (II)
if (read)
        res = async_data_read_receive(&callid, NULL);
else 
        res = async_data_write_receive(&callid, NULL);
if (read)
        fibril_rwlock_read_lock(&file->node->contents_rwlock);
else
        fibril_rwlock_write_lock(&file->node->contents_rwlock);
msg = async_send_3(fs_phone, read ? VFS_OUT_READ : VFS_OUT_WRITE,
    file->node->dev_handle, file->node->index, file->pos, &answer);
ipc_forward_fast(callid, fs_phone, 0, 0, 0, IPC_FF_ROUTE_FROM_ME);
async_wait_for(msg, &rc);
if (read)
        fibril_rwlock_read_unlock(&file->node->contents_rwlock);
else
        fibril_rwlock_write_unlock(&file->node->contents_rwlock);
ipc_answer_1(rid, rc, bytes);
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        res = async_data_write_receive(&callid, NULL);
if (read)
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        fibril_rwlock_write_lock(&file->node->contents_rwlock);
msg = async_send_3(fs_phone, read ? VFS_OUT_READ : VFS_OUT_WRITE,
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ipc_forward_fast(callid, fs_phone, 0, 0, 0, IPC_FF_ROUTE_FROM_ME);
async_wait_for(msg, &rc);
if (read)
        fibril_rwlock_read_unlock(&file->node->contents_rwlock);
else
        fibril_rwlock_write_unlock(&file->node->contents_rwlock);
ipc_answer_1(rid, rc, bytes);
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Code example (II)

libc

VFS

TMPFS

1. VFS_IN_READ

2. IPC_M_DATA_READ

3. VFS_OUT_READ

4. ipc_forward()

5. ipc_answer(EOK)

6. ipc_answer(EOK)7. ipc_answer(EOK)
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Questions?



www.helenos.org

jakub@jermar.eu

http://www.helenos.org/
mailto:jakub@jermar.eu
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