
Introduction

Martin Děcký 10th May 2006



HelenOS ProjectHelenOS Project

Experimental development operating system

http://www.helenos.eu/
C, assembly
Multiplatform

IA-32, IA-64, AMD64, MIPS (32), Sparc V9 (64), 
PowerPC (32, 64)

SMP support
“Monolithic micro-kernel”
BSD license

http://www.helenos.eu/


MotivationsMotivations

Understand the design of an OS
From the bottom: synchronization, memory 
management, exceptions, linkage, booting, etc.
From the top: subsystems and interfaces design
Understand the whole system

Testbed for experimental ideas
Easy to port, easy to enhance, easy to rewrite
Try to figure out new paradigms (files  objects, 
drivers  methods of tasks, etc.)

Understand other interactions
Compilers, boot loaders, emulators/simulators



Brief HistoryBrief History

2001 – 2004
SPARTAN kernel developed by Jakub Jermar (IA-32)
SMP support on IA-32

Late 2003
Port of SPARTAN to MIPS

Late 2004
A team software project at Faculty of Mathematics 
and Physics (six developers, one senior supervisor)
First specification

2005
Kernel work

● Ports to IA-64, AMD64, Sparc and PowerPC



Current StatusCurrent Status

Kernel
Full functionality according the specs on all platforms
Ability to host user space on all platforms

User space
Preliminary syscall API, a few basic C functions
Support for kernel-managed threads and user-
managed (pseudo) threads
IPC framework (messages, shared memory)
Preliminary user space driver interface



Current Status Current Status (2)(2)



ArchitectureArchitecture



Kernel SubsystemsKernel Subsystems

Physical memory management
Buddy system atop of frame zones (self-contained)
Slab allocator

Virtual memory management
Generic interface for address space management

● Page Table (4-level) instance, Global Hash Table 
instance

● TLB interface
● User address space divided into areas

Time management
Preemptive scheduling
Generic timeout interface



Kernel Subsystems Kernel Subsystems (2)(2)

Synchronization
Spin-lock

● On non-SMP systems just disabling preemption
● Some ability to detect deadlocks

Wait queue
● Basic passive primitive, threads waiting for an event

Semaphore, mutex, condition variable, RW lock, futex
Scheduler

Round-robin with multiple priority queues
Each CPU has his own queues, load-balancing thread
Lazy FPU context switching (if supported by HW)
Task management (common address space)



Kernel Subsystems Kernel Subsystems (3)(3)

Interrupt/Exception handling mechanism
Syscalls, IPC
Device drivers interface, Capabilities control

Covered in detail later
Minor subsystems

Boot infrastructure
Data structures

● Bitmap, B+ tree, chained hash table, lists, fifo
ELF loader
String, sort functions, printf(), debug macros
Kernel symbol table
Kernel console

● Mostly for debugging purposes



User SpaceUser Space

libc
Basic standard C functions and types

● Environment functions (__main, __exit, etc.)
● malloc, free (atop of AS areas)
● puts, printf and other I/O
● memcpy, strlen, etc.

HelenOS specific
Thread management

● Kernel-managed & user-managed threads (psthreads)
Capabilities
Synchronization

● Futexes
Softint, softfloat



IPCIPC

Unidirectional communication
Phones

● Identifies starting point (as file descriptor)
● Phone 0 connected to Naming Service task
● call_sync, call_async

Answerbox
● Receives messages (wait_for_call)

– 4 native integers (method, 3 arguments)
– Answer expected by answer (return value, 3 arguments)

Synchronous messages
● call_sync blocks
● Returns the given answer



IPC IPC (2)(2)

Asynchronous messages
● call_async never blocks

– Fixed buffer in kernel, dynamic in user space
– Registers callback

● Answer received in wait_for_call
– Answers have higher priority than calls
– Runs callback

Connections
● connect_me_to

– Client initiated connection
● accept/refuse
● forward (initially used by Naming Service)

● connect_to_me
– Server initiated connection



IPC IPC (3)(3)

1st phase

app

ns

driver

00

2nd phase

app

ns

driver

00

connect_to_me



IPC IPC (4)(4)

3rd phase

4th phase

app

ns

driver

00

connect_me_to

app

ns

driver

00



DDIDDI

User space hardware drivers
Task needs special capabilities
Map physical memory into AS
Map I/O space (mostly IA-32 specific)
Control preemption
Receive messages upon interrupt

● Simple stateless language for handling level-triggered 
interrupts in kernel

Drivers and clients communicate using IPC
● Keyboard driver
● Framebuffer driver
● Early PCI driver



Boot ProcessBoot Process

Hardware-dependent boot stages
Boot loader, loading of initial user space tasks into 
memory, bootstraping

Hardware-dependent initialization
CPUs, memory, exceptions, interrupts, drivers, etc.

Generic initialization
Buddy system, slab allocator
Main kernel thread, load-balancing thread

Initial user space tasks
init (tests, capability manager)
ns (IPC naming service)
pci, fb (simple hardware drivers)



Near FutureNear Future

Finishing all missing bits in the ports
Implement shutdown actions
Stabilizing the DDI, useful drivers

Block devices
Read-only filesystem

Implement more of libc
First interactive user space programs

Shell
Tetris

Kernel virtualization
Security contexts
XEN



Distant FutureDistant Future

Major rewrite
Best way to evaluate gained knowledge

Filesystem
Component kernel
Pure asynchronous IPC

Using threads and psthreads



To Sum UpTo Sum Up

Every mistake in the computer industry gets 
made at least 3 times: once by the mainframe 
folks, once by minicomputer folks, and at 
least once by microprocessor folks.

– John Mashey


