CHARLES UNIVERSITY PRAGUE

faculty of mathematics and physics

Introguciion

Martin Décky 10™ May 2006

§
LR
A

Experimental development operating system

~ http://www.helenos.eu/
~ C, assembly

~ Multiplatform
> |A-32, IA-64, AMD64, MIPS (32), Sparc V9 (64),
PowerPC (32, 64)
' SMP support
~ *Monolithic micro-kernel”

~ BSD license

http://www.helenos.eu/

livation

"~ Understand the design of an OS

> From the bottom: synchronization, memory
management, exceptions, linkage, booting, etc.

= From the top: subsystems and interfaces design
= Understand the whole system

~ Testbed for experimental ideas
> Easy to port, easy to enhance, easy to rewrite
= Try to figure out new paradigms (files - objects,

drivers > methods of tasks, etc.)

. 7 Understand other interactions
= Compilers, boot loaders, emulators/simulators

2001 - 2004
> SPARTAN kernel developed by Jakub Jermar (IA-32)
= SMP support on 1A-32

~ Late 2003
> Port of SPARTAN to MIPS

' Late 2004
= A team software project at Faculty of Mathematics

and Physics (six developers, one senior supervisor)
= First specification
— 2005

» Kernel work
* Ports to 1A-64, AMD64, Sparc and PowerPC

Current Stat

~ Kernel
= Full functionality according the specs on all platforms
= Ability to host user space on all platforms

~ User space
> Preliminary syscall API, a few basic C functions
= Support for kernel-managed threads and user-
managed (pseudo) threads
= |PC framework (messages, shared memory)
= Preliminary user space driver interface

Current Status o

" _~ SImics Console: conl
SPARTAN kernel, release 0.1.0 (Dawn), revision 1137:1140
Built on Z006-03-30 21:03:58 for sparchbd

opyright (C) 2001-2006 HelenOS project
Ox00O000000400000 : hardcoded_ktext_size=137K, hardcoded_kdata_size=70K
onfig.memory_size=64M

onfig.cpu_count=1

pu®: manuf=UltraSPARC, impl=UltraSPARC II, mask=16

kconsole>

alld — call® <function> -> call function().

alll — calll <function> <argl> -> call functiom(argl).

allZ — callZ <function’> <argl> <argZ> -> call functionlargl,argZ).

all3 - call3d <function> <argl> <argZ> <arg3> -> call function(argl,argZ,arg3).
pus — List all processors.

describe — Describe specified command.

exit - Exit kconsole

halt - Halt the kernel.

help — List of supported commands.

=etd - set <dest_addr> <uvalue> - 4byte version

=labs — List SLAB caches.

symaddr - Return symbol address.

<cheduler — List all scheduler information

hreads - List all threads

asks — List all tasks

Ib — Print TLB of current processor.

ersion - Print version informatiom.

zones — List of memory zones.

zone - Show memory zone structure.

exc — Print exception table.

kconsole>

kernel

Scheduler

* threads
* per CPU run-queues
* load balancing

Kernel Device Drivers

* system clock

* interrupt controllers
* basic console

* SMP config

Architectur

Memory Management User Task

* physical memory
* virtual memory

* address spaces User Task

Syscalls
* thread/task control
* address space control

*IPC
* DDI

N\

User Task

"Capable" task

- 1/0 space manager
- Memory manager
- Task manager

IPC

* answerboxes

* phones

* (a)synchronous
* short messages

Capability Manager

- —— IPC
Device Driver ——p Syscall
Interface access

HARDWARE m— Y

Interrupt
’ via IPC

' Physical memory management
> Buddy system atop of frame zones (self-contained)
» Slab allocator

~ Virtual memory management
= Generic interface for address space management
* Page Table (4-level) instance, Global Hash Table
iInstance
* TLB interface
* User address space divided into areas
~ Time management
> Preemptive scheduling
» Generic timeout interface

~ Synchronization
> Spin-lock
* On non-SMP systems just disabling preemption
* Some ability to detect deadlocks
= Walit queue
* Basic passive primitive, threads waiting for an event
> Semaphore, mutex, condition variable, RW lock, futex

~ Scheduler
= Round-robin with multiple priority queues
= Each CPU has his own queues, load-balancing thread
» Lazy FPU context switching (if supported by HW)
> Task management (common address space)

" Interrupt/Exception handling mechanism
~ Syscalls, IPC

"' Device drivers interface, Capabilities control
> Covered in detail later

~ Minor subsystems
> Boot infrastructure

» Data structures
* Bitmap, B+ tree, chained hash table, lists, fifo

> ELF loader
= String, sort functions, printf(), debug macros
» Kernel symbol table
» Kernel console
* Mostly for debugging purposes

User Space

“libc
» Basic standard C functions and types
* Environment functions (__main, __exit, etc.)
* malloc, free (atop of AS areas)
* puts, printf and other 1/O
* memcpy, strlen, etc.

~ HelenOS specific
> Thread management
* Kernel-managed & user-managed threads (psthreads)
> Capabilities
= Synchronization
* Futexes
> Softint, softfloat

~ Unidirectional communication
> Phones
* |dentifies starting point (as file descriptor)
* Phone 0 connected to Naming Service task
°call sync,call async
> Answerbox
* Receives messages (wait for call)
- 4 native integers (method, 3 arguments)
- Answer expected by answer (return value, 3 arguments)
> Synchronous messages
* call sync blocks
* Returns the given answer

> Asynchronous messages

* call async never blocks
- Fixed buffer in kernel, dynamic in user space
- Registers callback

* Answer received in wait for call
- Answers have higher priority than calls
- Runs callback

= Connections
e connect me to

- Client initiated connection
* accept/refuse
* forward (initially used by Naming Service)

° connect_to_me
— Server initiated connection

connect_to_me

connect_me_to

~ 4" phase

app

~ User space hardware drivers
» Task needs special capabilities
= Map physical memory into AS
> Map 1/O space (mostly I1A-32 specific)
= Control preemption
» Recelve messages upon interrupt

* Simple stateless language for handling level-triggered
interrupts in kernel
= Drivers and clients communicate using IPC
* Keyboard driver
* Framebuffer driver
* Early PCI driver

Boot Process

~ Hardware-dependent boot stages
> Boot loader, loading of initial user space tasks into
memory, bootstraping
' Hardware-dependent initialization
> CPUs, memory, exceptions, interrupts, drivers, etc.
~ Generic initialization
= Buddy system, slab allocator
= Main kernel thread, load-balancing thread
~ Initial user space tasks
> init (tests, capability manager)
@ ns (IPC naming service)
= pci, b (simple hardware drivers)

"~ Finishing all missing bits in the ports
~ Implement shutdown actions
' Stabilizing the DDI, useful drivers
> Block devices
= Read-only filesystem
~ Implement more of libc
' First interactive user space programs
> Shell
@ Tetris
~ Kernel virtualization

@ Security contexts
> XEN

Distant Futui

~ Major rewrite
> Best way to evaluate gained knowledge

"~ Filesystem
' Component kernel

~ Pure asynchronous IPC
= Using threads and psthreads

§
LR
A

Every mistake in the computer industry gets
made at least 3 times: once by the mainframe
folks, once by minicomputer folks, and at
least once by microprocessor folks.

— John Mashey

O

