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Abstract. Methods of formal description and verification represent a
viable way for achieving fundamentally bug-free software. However, in
reality only a small subset of the existing operating systems were ever
formally verified, despite the fact that an operating system is a critical
part of almost any other software system. This paper points out several
key design choices which should make the formal verification of an operat-
ing system easier and presents a work-in-progress and initial experiences
with formal verification of HelenOS, a state-of-the-art microkernel-based
operating system, which, however, was not designed specifically with for-
mal verification in mind, as this is mostly prohibitive due to time and
budget constrains.

The contribution of this paper is the shift of focus from attempts to
use a single “silver-bullet” formal verification method which would be
able to verify everything to a combination of multiple formalisms and
techniques to successfully cover various aspects of the operating system.
A reliable and dependable operating system is the emerging property
of the combination, thanks to the suitable architecture of the operating
system.

1 Introduction

Operating systems (OSes for short) have a somewhat special position among
all software. OSes are usually designed to run on bare hardware. This means
that they do not require any special assumptions on the environment except the
assumptions on the properties and behavior of hardware. In many cases it is
perfectly valid to consider the hardware as idealized hardware (zero mathemati-
cal probability of failure, perfect compliance with the specifications, etc.). This
means that it is solely the OS that defines the environment for other software.

OSes represent the lowest software layer and provide services to essentially
all other software. Considering the principle of recursion, the properties of an OS
form the assumptions for the upper layers of software. Thus the dependability of
end-user and enterprise software systems is always limited by the dependability
of the OS.



Finally, OSes are non-trivial software on their own. The way they are gener-
ally designed and programmed (spanning both the kernel and user mode, manip-
ulating execution contexts and concurrency, handling critical hardware-related
operations) represent significant and interesting challenges for software analysis.

These are probably the most important reasons that led to several research
initiatives in the recent years which target the creation of a formally verified OSes
from scratch (e.g. [14]). Methods of formal description and verification provide
fundamentally better guarantees of desirable properties than non-exhaustive en-
gineering methods such as testing.

However, 98 %' of the market share of general-purpose OSes is taken by
Windows, Mac OS X and Linux. These systems were clearly not designed with
formal verification in mind from the very beginning. The situation on the em-
bedded, real-time and special-purpose OSes market is probably different, but it
is unlikely that the segmentation of the desktop and server OSes market is going
to change very rapidly in the near future.

The architecture of these major desktop and server OSes is monolithic, which
makes any attempts to do formal verification on them extremely challenging
due to the large state space. Fortunately we can observe that aspects of several
novel approaches from the OS research from the late 1980s and early 1990s
(microkernel design, user space file system and device drivers, etc.) are slowly
emerging in these originally purely monolithic implementations.

In this paper we show how specific design choices can markedly improve the
feasibility of verification of an OS, even if the particular OS was not designed
specifically with formal verification in mind. These design choices can be grad-
ually introduced (and in fact some of them have already been introduced) to
mainstream general-purpose OSes.

Our approach is not based on using a single “silver-bullet” formalism, method-
ology or tool, but on combining various engineering, semi-formal and formal
approaches. While the lesser formal approaches give lesser guarantees, they can
complement the formal approaches on their boundaries and increase the coverage
of the set of all hypothetical interesting properties of the system.

We also demonstrate work-in-progress case study of an general-purpose re-
search OS that was not created specifically with formal verification in mind
from the very beginning, but that was designed according to state-of-the-art OS
principles.

Structure of the Paper. In Section 2 we introduce the design choices and our
case study in more detail. In Section 3 we discuss our approach of the combina-
tion of methods and tools. In Section 4 we present a preliminary evaluation of
our efforts and propose the imminent next steps to take. Finally, in Section 5 we
present the conclusion of the paper.

1 98 % of client computers connected to the Internet as of January 2010 [13].



2 Operating Systems Design

Two very common schemes of OS design are monolithic design and microkernel
design. Without going into much detail of any specific implementation, we can
define the monolithic design as a preference to put numerous aspects of the core
OS functionality into the kernel, while microkernel design is a preference to keep
the kernel small, with just a minimal set of features.

The features which are missing from the kernel in the microkernel design
are implemented in user space, usually by means of libraries, servers (e.g. pro-
cesses/tasks) and/or software components.

2.1 HelenOS

HelenOS is a general-purpose research OS which is being developed at Charles
University in Prague. The source code is available under the BSD open source
license and can be freely downloaded from the project web site [11]. The authors
of the code base are both from the academia and from the open source commu-
nity (several contributors are employed as Solaris kernel developers and many
are freelance IT professionals).

HelenOS uses a preemptive priority-feedback scheduler, it supports SMP
hardware and it is designed to be highly portable. Currently it runs on 7 distinct
hardware architectures, including the most common TA-32, x86-64 (AMDG64), TA-
64, SPARC v9 and PowerPC. It also runs on ARMv7 and MIPS, but currently
only in simulators and not on physical hardware.

Although HelenOS is still far from being an everyday replacement for Linux
or Windows due to the lack of end-user applications (whose development is
extremely time-consuming, but unfortunately of no scientific value), the essential
foundations such as file system support and TCP/IP networking are already in
place.

HelenOS does not currently target embedded devices (although the ARMvT7
port can be very easily modified to run on various embedded boards) and does
not implement real-time features. Many development projects such as task snap-
shoting and migration, support for MM U-less platforms and performance mon-
itoring are currently underway.

HelenOS can be briefly described as microkernel multiserver OS. However,
the actual design guiding principles of the HelenOS are more elaborate:

Microkernel principle Every functionality of the OS that does not have to be
necessary implemented in the kernel should be implemented in user space.
This implies that subsystems such as the file system, device drivers (except
those which are essential for the basic kernel functionality), naming and
trading services, networking, human interface and similar features should be
implemented in user space.

Full-fledged principle Features which need to be placed in kernel should be
implemented by full-fledged algorithms and data structures. In contrast to



several other microkernel OSes, where the authors have deliberately chosen
the most simplistic approach (static memory allocation, naive algorithms,
simple data structures), HelenOS microkernel tries to use the most advanced
and suitable means available. It contains features such as AVL and B+ trees,
hashing tables, SLAB memory allocator, multiple in-kernel synchronization
primitives, fine-grained locking and so on.

Multiserver principle Subsystems in user space should be decomposed with
the smallest reasonable granularity. Each unit of decomposition should be
encapsulated in a separate task. The tasks represent software components
with isolated address spaces. From the design point of view the kernel can
be seen as a separate software component, too.

Split of mechanism and policy The kernel should only provide low-level me-
chanisms, while the high-level policies which are built upon these mechanisms
should be defined in user space. This also implies that the policies should be
easily replaceable while keeping the low-level mechanisms intact.

Encapsulation principle The communication between the tasks/components
should be implemented only via a set of well-defined interfaces. In the user-
to-user case the preferred communication mechanism is HelenOS IPC, which
provides reasonable mix of abstraction and performance (RPC-like primitives
combined with implicit memory sharing for large data transfers). In case
of synchronous user-to-kernel communication the usual syscalls are used.
HelenOS IPC is used again for asynchronous kernel-to-user communication.

Portability principle The design and implementation should always maintain
a high level of platform neutrality and portability. Platform-specific code in
the kernel, core libraries and tasks implementing device drivers should be
clearly separated from the generic code (either by component decomposition
or at least by internal compile-time APIs).

In Section 3 we argue that several of these design principles significantly
improve the feasibility of formal verification of the entire system. On the other
hand, other design principles induce new interesting challenges for formal de-
scription and verification.

The run-time architecture of HelenOS is inherently dynamic. The bindings
between the components are not created at compile-time, but during bootstrap
and can be modified to a large degree also during normal operation mode of the
system (via human interaction and external events).

The design of the ubiquitous HelenOS IPC mechanism and the associated
threading model present the possibility to significantly reduce the size of the
state space which needs to be explored by formal verification tools, but at the
same time it is quite hard to express these constrains in many formalisms. The
IPC is inherently asynchronous with constant message buffers in the kernel and
dynamic buffers in user space. It uses the notions of uni-directional bindings,
mandatory pairing of requests and replies, binding establishment and abolish-
ment handshakes, memory sharing and fast message forwarding.

For easier management of the asynchronous messages and the possibility to
process multiple messages from different peers without the usual kernel threading



overhead, the core user space library manages the execution flow by so-called
fibrils. A fibril is a user-space-managed thread with cooperative scheduling. A
different fibril is scheduled every time the current fibril is about to be blocked
while sending out IPC requests (because the kernel buffers of the addressee are
full) or while waiting on an IPC reply. This allows different execution flows within
the same thread to process multiple requests and replies. To safeguard proper
sequencing of IPC messages and provide synchronization, special fibril-aware
synchronization primitives (mutexes, condition variables, etc.) are available.

Because of the cooperative nature of fibrils, they might cause severe perfor-
mance under-utilization in SMP configurations and system-wide bottlenecks. As
multicore processors are more and more common nowadays, that would be a
substantial design flaw. Therefore the fibrils can be also freely (and to some de-
gree even automatically) combined with the usual kernel threads, which provide
preemptive scheduling and true parallelism on SMP machines. Needless to say,
this combination is also a grand challenge for the formal reasoning.

Incidentally, the full-fledged principle causes that the size of the HelenOS
microkernel is considerably larger compared to other “scrupulous” microker-
nel implementations. The average footprint of the kernel on TA-32 ranges from
569 KiB when all logging messages, asserts, symbol resolution and the debugging
kernel console are compiled in, down to 198 KiB for a non-debugging production
build. But we do not believe that the raw size of the microkernel is a relevant
quality criterion per se, without taking the actual feature set into account.

To sum up, the choice of HelenOS as our case study is based on the fact that
it was not designed in advance with formal verification in mind (some of the
design principles might be beneficial, but others might be disadvantageous), but
the design of HelenOS is also non-trivial and not obsolete.

2.2 The C Programming Language

A large majority of OSes is coded in the C programming language (HelenOS
is no exception to this). The choice of C in the case of kernel is usually well-
motivated, since the C language was designed specifically for implementing sys-
tem software [10]: It is reasonably low-level in the sense that it allows to access
the memory and other hardware resources with similar effectiveness as from
assembler; It also requires almost no run-time support and it exports many fea-
tures of the von Neumann hardware architecture to the programmer in a very
straightforward, but still relatively portable way.

However, what is the biggest advantage of C in terms of run-time performance
is also the biggest weakness for formal reasoning. The permissive memory access
model of C, the lack of any reference safety enforcement, the weak type system
and generally little semantic information in the code — all these properties do
not allow to make many general assumptions about the code.

Programming languages which target controlled environments such as Java
and Cf are generally easier for formal reasoning because they provide a well-
known set of primitives and language constructs for object ownership, threading
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Fig. 1. Overview of the formalisms and tools proposed.

and synchronization. Many non-imperative programming languages can be even
considered to be a form of “executable specification” and thus very suitable for
formal reasoning. In C, almost everything is left to the programmer who is free
to set the rules.

The reasons for frequent use of C in the user space of many established OSes
(and HelenOS) is probably much more questionable. In the case of HelenOS,
except for the core libraries and tasks (such as device drivers), C might be
easily replaced by any high-level and perhaps even non-imperative programming
language. The reasons for using C in this context are mostly historical.

However, as we have stated in Section 1, the way general-purpose OSes are
implemented changes only slowly and therefore any propositions which require
radical modification of the existing code base before committing to the formal
verification are not realistic.

3 Analysis

In this section, we analyze the properties we would like to check in a general-
purpose OS. Each set of properties usually requires a specific verification method,
tool or toolchain.

Our approach will be mostly bottom-up, or, in other words, from the lower
levels of abstraction to the higher levels of abstraction. If the verification fails on



a lower level, it usually does not make much sense to continue with the higher
levels of abstraction until the issues are tackled. A structured overview of the
formalisms, methods and tools can be seen on Figure 1.

Some of the proposed methods cannot be called “formal methods” in the
rigorous understanding of the term. However, even methods which are based
on semi-formal reasoning and non-exhaustive testing provide some limited guar-
antees in their specific context. A valued property of the formal methods is
to preserve these limited guarantees even on the higher levels of abstraction,
thus allowing the semi-formal methods to complement the big picture where the
formal methods do not provide any feasible verification so far. This increases
the coverage of the set of all hypothetical interesting properties of the system
(although it is probably impossible to formally define this entire set).

Please note that the titles of the following sections do not follow any partic-
ular established taxonomy. We have simply chosen the names to be intuitively
descriptive.

3.1 C Language Compiler and Continuous Integration Tool

The initial levels of abstraction do not go far from the C source code and common
engineering approaches. First, we would certainly like to know whether our code
base is compliant with the programming language specification and passes only
the basic semantic checks (proper number and types of arguments passed to
functions, etc.). It is perhaps not very surprising that these decisions can be
made by any plain C compiler. However, with the current implementation of
HelenOS even this is not quite trivial.

Besides the requirement to support 7 hardware platforms, the system’s com-
pile-time configuration can be also affected by approximately 65 configuration
options, most of which are booleans, the rest are enumerated types.

These configuration options are bound by logical propositions in conjunctive
or disjunctive normal forms and while some options are freely configurable, the
value of others gets inferred by the build system of HelenOS. The overall number
of distinct configurations in which HelenOS can be compiled is at least one order
of magnitude larger than the plain number of supported hardware platforms.

Various configuration options affect conditional compilation and linking. The
programmers are used to make sure that the source code compiles and links fine
with respect to the most common and obvious configurations, but the unforeseen
interaction of the less common configuration options might cause linking or even
compilation errors.

A straightforward solution is to generate all distinct configurations, starting
from the open variables and inferring the others. This can be part of the contin-
uous integration process which would try to compile and link the sources in all
distinct configurations.

If we want to be really pedantic, we should also make sure that we run all
higher level verification methods on all configurations generated by this step.



That would certainly require to multiply the time required by the verification
methods at least by the number of the distinct configurations. Constraining the
set of configurations to just the most representative ones is perhaps a reasonable
compromise to make the verification realistic.

3.2 Regression and Unit Tests

Running regression and unit tests which are part of HelenOS code base in the
continuous integration process is fairly easy. The only complication lies in the
technicalities: We need to setup an automated network of physical machines and
simulators which can run the appropriate compilation outputs for the specific
platforms. We need to be able to reboot them remotely and distribute the boot
images to them. And last but not least, we need to be able to gather the results
from them.

Testing is always non-exhaustive, thus the guarantees provided by tests are
strictly limited to the use cases and contexts which are being explicitly tested.
However, it is arguably easier to express many common use cases in the pri-
mary programming language than in some different formalism. As we follow the
bottom-up approach, filtering out the most obvious bugs by testing can save us
a lot of valuable time which would be otherwise waisted by a futile verification
by more formal (and more time-consuming) methods.

3.3 Instrumentation

Instrumentation tools for detecting memory leaks, performance bottlenecks and
soft-deadlocks are also not usually considered to be formal verification tools
(since it is hard to define exact formal properties which are being verified by the
non-exhaustive nature of these tools). They are also rarely utilized on regular
basis as part of the continuous integration process. But again, it might be helpful
to just mention them in the big picture.

If some regression or unit tests fail, they sometimes do not give sufficient
information to tell immediately what is the root cause of the issue. In that case
running the faulting tests on manually or automatically instrumented executable
code might provide more data and point more directly to the actual bug.

3.4 Verifying C Language Compiler

C language compilers are traditionally also not considered to be formal veri-
fication tools. Many people just say that C compilers are good at generating
executable code, but do not care much about the semantics of the source code
(on the other hand, formal verification tools usually do not generate any exe-
cutable code at all). However, with recent development in the compiler domain,
the old paradigms are shifting.

As the optimization passes and general maturity of the compilers improve
over time, the compilers try to extract and use more and more semantic infor-
mation from the source code. The C language is quite poor on explicit semantic



information, but the verifying compilers try to rely on vendor-specific language
extensions and on the fact that some semantic information can be added to the
source code without changing the resulting executable code.

The checks done by the verifying compilers cannot result in fatal errors in
the usual cases (they are just warnings). Firstly, the compilers still need to suc-
cessfully compile a well-formed C source code compliant to some older standard
(e.g. C89) even when it is not up with the current quality expectations. Old
legacy source code should still pass the compilation as it did decades ago.

Secondly, the checks run by the verifying compilers are usually not based on
abstract interpretation. They are mostly realized as abstract syntax tree trans-
formations much in the line with the supporting routines of the compilation
process (data and control flow graph analysis, dead code elimination, register
allocation, etc.) and the evaluation function is basically the matching of antipat-
terns of common programming bugs.

The checks are usually conservative. The verifying compilers identify code
constructs which are suspicious, which might arise out of programmer’s bad
intuition and so on, but even these code snippets cannot be tagged as definitive
bugs (since the programmer can be simply in a position where he/she really
wants to do something very strange, but nevertheless legitimate). It is upon the
programmer to examine the root cause of the compiler warning, tell whether it
is really a bug or just a false positive and fix the issue by either amending some
additional semantic information (e.g. adding an explicit typecast or a vendor-
specific language extension) or rewriting the code.

Although this level of abstraction is coarse-grained and conservative, it can be
called semi-formal, since the properties which are being verified can be actually
defined quite exactly and they are reasonably general. They do not deal with
single traces of methods, runs and use cases like tests, but they deal with all
possible contexts in which the code can run.

3.5 Static Analyzer

Static analyzers try to go deeper than verifying compilers. Besides detecting
common antipatterns of bugs, they also use techniques such as abstract inter-
pretation to check for more complex properties.

Most commercial static analyzers come with a predefined set of properties
which cannot be easily changed. They are coupled with the commonly used se-
mantics of the environment and generate domain-specific models of the software
based not only on the syntax of the source code, but also based on the assump-
tions derived from the memory access model, allocation and deallocation rules,
tracking of references and tracking of concurrency locks.

The biggest advantage of static analyzers is that they can be easily included
in the development or continuous integration process as an additional automated
step, very similar to the verifying compilers. No manual definition of code-specific
properties is needed and false positives can be relatively easily eliminated by
amending some explicit additional information to the source code within the
boundaries of the programming language.



The authors of static analyzers claim large quantities of bugs detected or
prevented [1], but static analyzers are still relatively limited by the kind of bugs
they are designed to detect. They are usually good at pointing out common issues
with security implications (specific types of buffer and stack overruns, usage of
well-known functions in an unsafe way, clear cases of forgotten deallocation of
resources and release of locks, etc.). Unfortunately, many static analyzers only
analyze a single-threaded control flow and are thus unable to detect concurrency
issues such as deadlocks.

3.6 Static Verifier

There is one key difference between a static analyzer and a static verifier: Static
verifiers allow the user to specify one’s own properties, in terms of preconditions,
postconditions and invariants in the code. Many static verifiers also target true
multithreaded usage patterns and have the capability to check proper locking
order, hand-over-hand locking and even liveliness.

In the context of an OS kernel and core libraries two kinds of properties are
common:

Consistency constrains These properties define the correct way how data is
supposed to be manipulated by some related set of subroutines. Checking
for these properties ensures that data structures and internal states will not
get corrupt due to bugs in the functions and methods which are designed to
manipulate them.

Interface enforcements These properties define the correct semantics by which
a set of subroutines should be used by the rest of the code. Checking for these
properties ensures that some API is always used by the rest of the code in a
specified way and all reported exceptions are handled by the client code.

3.7 Model Checker

On the first sight it does not seem to be reasonable to consider general model
checkers as relevant independent tools for formal verification of an existing OS.
While many different tools use model checkers as their backends, verifying a
complete model of the entire system created by hand seems to be infeasible both
in the sense of time required for the model creation and resources required by
the checker to finish the exhaustive traversal of the model’s state space.

Nevertheless, model checkers on their own can still serve a good job veri-
fying abstract properties of key algorithms without dealing with the technical
details of the implementation. Various properties of synchronization algorithms,
data structures and communication protocols can be verified in the most generic
conditions by model checkers, answering the question whether they are designed
properly in theory.

If the implementation of these algorithms and protocols do not behave cor-
rectly, we can be sure that the root cause is in the non-compliance between the
design and implementation and not a fundamental flaw of the design itself.



3.8 Architecture and Behavior Checker

All previously mentioned verification methods were targeting internal properties
of the OS components. If we are moving to a higher-level abstraction in order to
specify correct interaction of the encapsulated components in terms of interface
compatibility and communication, we can utilize Behavior Protocols [2] or some
other formalism describing correct interaction between software components.

To gain the knowledge about the architecture of the whole OS in terms of
software component composition and bindings, we can use Architecture Descrip-
tion Language [12] as the specification of the architecture of the system. This
language has the possibility to capture interface types (with method signatures),
primitive components (in terms of provided and required interfaces), composite
components (an architectural compositions of primitive components) and the
bindings between the respective interfaces of the components.

It is extremely important to define the right role of the behavior and architec-
ture description. A flawed approach would be to reverse-engineer this description
from the source code (either manually or via some sophisticated tool) and then
verify the compliance between the description and the implementation. However,
different directions can give more interesting results:

Description as specification Behavior and architecture description created
independently on the source code serves the role of specification. This has
the following primary goals of formal verification:

Horizontal compliance Also called compatibility. The goal is to check
whether the specifications of components that are bound together are
semantically compatible. All required interfaces need to be bound to pro-
vided interfaces and the communication between the components cannot
lead to no activity (a deadlock), bad activity (a livelock) or other com-
munication and synchronization errors.

Vertical compliance Also called substituability. The goal is to check whe-
ther it is possible to replace a set of primitive components that are
nested inside a composite component by the composite component it-
self. In other words, this compliance can answer the question whether
the architecture description of the system is sound with respect to the
hierarchical composition of the components.

Specification and implementation compliance Using various means of
generating artificial environments for an isolated component a checker is
able to partially answer the question whether the implementation of the
component is an instantiation of the component specification.

Description as abstraction Generating the behavior and architecture descrip-
tion from the source code by means of abstract interpretation can serve the
purpose of verifying various properties of the implementation such as invari-
ants, preconditions and postconditions. This is similar to static verification,
but on the level of component interfaces.

Unfortunately, most of the behavior and architecture formalisms are static,
which is not quite suitable for the dynamic nature of most OSes. This limitation



can be circumvented by considering a relevant snapshot of the dynamic run-time
architecture. This snapshot fixed in time is equivalent to a statically defined
architecture.

The key features of software systems with respect to behavior and archi-
tecture checkers are the granularity of the individual primitive components, the
level of isolation and complexity of the communication mechanism between them.
Large monolithic OSes created in semantic-poor C present a severe challenge be-
cause the isolation of the individual components is vague and the communication
between them is basically unlimited (function calls, shared resources, etc.).

OSes with explicit component architecture and fine-grained components (such
as microkernel multiserver systems) make the feasibility of the verification much
easier, since the degrees of freedom (and thus the state space) is limited.

Horizontal and vertical compliance checking can be done exhaustively. This
is a fundamental property which allows the reasoning about the dependability
of the entire component-based OS. Assuming that the lower-level verification
methods (described in Sections 3.1 to 3.7) prove some specific properties of the
primitive components, we can be sure that the composition of the primitive
components into composite components and ultimately into the whole OS does
not break these properties.

The feasibility of many lower-level verification methods from Sections 3.1 to
3.7 depends largely on the size and complexity of the code under verification. If
the entire OS is decomposed into primitive components with a fine granularity,
it is more likely that the individual primitive components can be verified against
a large number of properties. Thanks to the recursive component composition
we can then be sure that these properties also hold for the entire system.

The compliance between the behavior specification and the actual behav-
ior of the implementation is, unfortunately, the missing link in the chain. This
compliance cannot be easily verified in an exhaustive manner. If there is a dis-
crepancy between the specified and the actual behavior of the components, we
cannot conclude anything about the properties holding in the entire system.

However, there is one way how to improve the situation: code generation.
If we generate implementation from the specification, the compliance between
them is axiomatic. If we are able to generate enough code from the specification
to run into the hand-written “business code” where we check for the lower-level
properties, the conclusions about the component composition are going to hold.

3.9 Behavior Description Generator

To conclude our path towards higher abstractions we can utilize tools that can
generate the behavior descriptions from textual use cases written in a domain-
constrained English. These generated artifacts can be then compared (e.g. via
vertical compliance checking) with the formal specification. Although the com-
parison might not provide clean-cut results, it can still be helpful to confront
the more-or-less informal user expectations on the system with the exact formal
description.



3.10 Summary

So far, we have proposed a compact combination of engineering, semi-formal and
formal methods which start at the level of C programming language, offer the
possibility to check for the presence of various common antipatterns, check for
generic algorithm-related properties, consistency constrains, interface enforce-
ments and conclude with a framework to make these properties hold even in the
case of a large OS composed from many components of compliant behavior.

We do not claim that there are no missing pieces in the big picture or that the
semi-formal verifications might provide more guarantees in this setup. However,
state-of-the-art OS design guidelines can push further the boundaries of practical
feasibility of the presented methods. The limited guarantees of the low-level
methods hold even in the composition and the high-level formal methods do
not have to deal with unlimited degrees of freedom of the primitive component
implementation.

We have spoken only about the functional properties. In general, we cannot
apply the same formalisms and methods on extra-functional properties (e.g.
timing properties, performance properties, etc.). And although it probably does
make a good sense to reason about component composition for the extra-functi-
onal properties, the exact relation might be different compared to the functional
properties.

The extra-functional properties need to be tackled by our future work.

4 Evaluation

This section copies the structure of the previous Section 3 and adds HelenOS-
specific evaluation of the the proposed formalisms and tools. As this is still
largely a work-in-progress, in many cases just the initial observations can be
made.

The choice of the specific methods, tools and formalisms in this initial phase
is mostly motivated by their perceived commonality and author’s claims about
fitness for the given purpose. An important part of further evaluation would
certainly be to compare multiple particular approaches, tools and formalisms to
find the optimal combination.

4.1 Verifying C Language Compiler and Continuous Integration
Tool

The primary C compiler used by HelenOS is GNU GCC 4.4.3 (all platforms) [3]
and Clang 2.6.0 (IA-32) [4]. We have taken some effort to support also ICC
and Sun Studio C compilers, but the compatibility with these compilers in not
guaranteed.

The whole code base is compiled with the -Wall and -Wextra compilation
options. These options turn on most of the verification checks of the compilers.
The compilers trip on common bug antipatterns such as implicit typecasting



of pointer types, comparison of signed and unsigned integer values (danger of
unchecked overflows), the usage of uninitialized variables, the presence of unused
local variables, NULL-pointer dereferencing (determined by conservative local
control flow analysis), functions with non-void return typed that do not return
any value and so on. We treat all compilation warnings as fatal errors (-Werror),
thus the code base must pass without any warnings.

We also turn on several more specific and strict checks. These checks helped
to discover several latent bugs in the source code:

-Wfloat-equal Check for exact equality comparison between floating point val-
ues. The usage of equal comparator on floats is usually misguided due to the
inherent computational errors of floats.

-Wcast-align Check for code which casts pointers to a type with a stricter
alignment requirement. On many RISC-based platforms this can cause run-
time unaligned access exceptions.

-Wconversion Check for code where the implicit type conversion (e.g. from float
to integer, between signed and unsigned integers or between integers with
different number of bits) can cause the actual value to change.

To enhance the semantic information in the source code, we use GCC-specific
language extensions to annotate some particular kernel and core library routines:

__attribute_((noreturn)) Functions marked in this way never finish from the
point of view of the current sequential execution flow. The most common case
are the routines which restore previously saved execution context.

__attribute_((returns_twice)) Functions marked in this way may return
multiple times from the point of view of the current sequential execution
flow. This is the case of routines which save the current execution context
(first the function returns as usual, but the function can eventually “return
again” when the context is being restored).

The use of these extensions has pointed out to several hard-to-debug bugs
on the TA-64 platform.

The automated continuous integration building system is currently work-in-
progress. Thus, we do not test all possible configurations of HelenOS with each
changeset yet. Currently only a representative set of 14 configurations (at least
one for each supported platform) is tested by hand by the developers before
committing any non-trivial changeset.

From occasional tests of other configurations by hand and the frequency of
compilation, linkage and even run-time problems we conclude that the auto-
mated testing of all feasible configurations will be very beneficial.

4.2 Regression and Unit Tests

As already stated in the previous section, the continuous integration building
system has not been finished yet. Therefore regression and unit tests are executed
occasionally by hand, which is time consuming and prone to human omissions.
An automated approach is definitively going to be very helpful.



4.3 Instrumentation

We are in the process of implementing our own code instrumentation framework
which is motivated mainly by the need to support MMU-less architectures in the
future. But this framework might be also very helpful in detecting memory and
generic resource leaks. We have not tried Valgrind [17] or any similar existing
tool because of the estimated complexity to adopt it for the usage in HelenOS.

4.4 Static Analyzer

The integration of various static analyzers into the HelenOS continuous inte-
gration process is underway. For the initial evaluation we have used Stanse [16]
and Clang Analyzer [5]. Both of them showed to be moderately helpful to point
out instances of unreachable dead code, use of language constructs which have
ambiguous semantics in C and one case of possible NULL-pointer dereference.

The open framework of Clang seems to be very promising for implementing
domain-specific checks (and at the same time it is also a very promising compiler
framework). Our mid-term goal is to incorporate some of the features of Stanse
and VCC (see Section 4.5) into Clang Analyzer.

HelenOS was also scanned by Coverity [7] in 2006 when no errors were de-
tected. However, since that time the code base has not been analyzed by Coverity.

4.5 Static Verifier

We have started to extend the source code of HelenOS kernel with annotations
understood by Frama-C [9] and VCC [18]. Initially we have targeted simple
kernel data structures (doubly-linked circular lists) and basic locking operations.
Currently we are evaluating the initial experiences and we are trying to identify
the most suitable methodology, but we expect quite promising results.

As the VCC is based on the Microsoft C++ Compiler, which does not support
many GCC extensions, we have been faced with the requirement to preprocess
the source code to be syntactically accepted by VCC. This turned out to be
feasible.

4.6 Model Checker

We are in the process of creating models of kernel wait queues (basic HelenOS
kernel synchronization primitive) and futexes (basic user space thread synchro-
nization primitive) using Promela and verify several formal properties (deadlock
freedom, fairness) in Spin [15]. As both the Promela language and the Spin model
checker are mature and commonly used tools for such purposes, we expect no
major problems with this approach. Because both synchronization primitives
are relatively complex, utilizing a model checker should provide a much more
trustworthy proof of the required properties than “paper and pencil”.

The initial choice of Spin is motivated by its suitability to model threads,
their interaction and verify properties related to race conditions and deadlocks
(which is the common sources of OS-related bugs). Other modeling formalisms
might be more suitable for different goals.



4.7 Architecture and Behavior Checker

We have created an architecture description in ADL language derived from SOFA
ADL [12] for the majority of the HelenOS components and created the Behavior
Protocol specification of these components. Both descriptions were created inde-
pendently, not by reverse-engineering the existing source code. The architecture
is a snapshot of the dynamic architecture just after a successful bootstrap of
HelenOS.

Both the architecture and behavior description is readily available as part
of the source code repository of HelenOS, including tools which can preprocess
the Behavior Protocols according to the architecture description and create an
output suitable for bp2promela checker [2].

As the resulting complexity of the description is larger than any of the previ-
ously published case studies on Behavior Protocols (compare to [6]), our current
work-in-progress is to optimize and fine-tune the bp2promela checker to process
the input.

We have not started to generate code from the architecture description so
far because of time constrains. However, we believe that this is a very promising
way to go and provide reasonable guarantees about the compliance between the
specification and the implementation.

4.8 Behavior Description Generator

We have not tackled the issue of behavior description generation yet, although
tools such as Procasor [8] are readily available. We do not consider it our priority
at this time.

5 Conclusion

In this paper we propose a complex combination of various verification methods
and tools to achieve the verification of an entire general-purpose operating sys-
tem. The proposed approach generally follows a bottom-up route, starting with
low-level checks using state-of-the-art verifying C language compilers, following
by static analyzers and static verifiers. In specific contexts regression and unit
tests, code instrumentation and model checkers for the sake of verification of key
algorithms are utilized.

Thanks to the properties of state-of-the-art microkernel multiserver oper-
ating system design (e.g. software component encapsulation and composition,
fine-grained isolated components), we demonstrate that it should be feasible to
successfully verify larger and more complex operating systems than in the case
of monolithic designs. We use formal component architecture and behavior de-
scription for the closure. The final goal — a formally verified operating system —
is the emerging property of the combination of the various methods.

The contribution of this paper is the shift of focus from attempts to use a
single “silver-bullet” method for formal verification of an operating system to



a combination of multiple methods supported by a suitable architecture of the
operating system. The main benefit is a much larger coverage of the set of all
hypothetical properties.

We also argue that the approach should be suitable for the mainstream
general-purpose operating systems in the near future, because they are grad-
ually incorporating more microkernel-based features and fine-grained software
components.

Although the evaluation of the proposed approach on HelenOS is still work-
in-progress, the preliminary results and estimates are promising.
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